
A Schema and Ontology-Assisted Heterogeneous Information Integration Study 
 

Chapter 4 Research Prototype 

According to the research method described in Chapter 3, a schema and 

ontology-assisted heterogeneous information integration prototype system is 

implemented. This system shows that the integration method of this research is able to 

obtain the interoperability between multiple heterogeneous information sources. In 

this Chapter, the platform, architecture, and development of our prototype system is 

described in the following sections.  

4.1. Prototype System Architecture 

The prototype system architecture is shown in Figure 4-1. In our implementation, 

we tackle three kinds of heterogeneous information sources including structured data 

source, semi-structured data source, and unstructured data source. They respectively 

are relational database management system, native XML database, and web pages. 

Microsoft SQL Server 2000 is choose as the structured data source as well as Tamino 

4.1.4 native XML Database is choose as the semi-structured data sources. Besides, we 

also take a web page repository as the unstructured data source.  

Users connect to the prototype system which is built on the web server through the 

Internet by the client side browser. The prototype system receives the request from the 

user and sends it to the underlying information sources. After the underlying 

information sources process the requests, the prototype system collects the results and 

shows them to the user on the browser.  

 65



A Schema and Ontology-Assisted Heterogeneous Information Integration Study 
 

P ro to ty pe  S y stem
(W eb  S erv er A p p lica tio n )

S Q L  S erv er T am in o

In te rn et

R ela tio n a l D atab ase O b jec t an d  N ativ e  X M L  D atab ase

C lien t
(W eb  B ro w ser)

W eb  P ag es

W eb  P ag es  R ep o sito ry

 

Figure 4-1: The Prototype System Architecture 

4.2. Prototype System Platform 

In our implementation, we choose Active Server Page (ASP) and Java Server Pages 

(JSP) as our programming language and Microsoft Windows XP Professional edition 

as the operating system. The specification of the prototype system platform is 

described in Table 4-1. We use Microsoft Internet Information Server 6.0 and Tomcat 

5.0 as the web server. Microsoft SQL Server 2000 and Tamino 4.1.4 native XML 

database are the underlying databases. This prototype system uses client/server 

architecture. Microsoft Internet Explorer 6.0 is chosen as the client side web browser.  

 66



A Schema and Ontology-Assisted Heterogeneous Information Integration Study 
 

We also use Protégé 2.0 with OWL plug-in to edit the required ontology. And we 

use Jena API from HP Labs as the ontology inference engine to perform the needed 

reasoning in the prototype system.  

4.3. Prototype System Design 

Because of the lack of real world cases, we choose an application scenario of a 

university to implement our prototype system. Under such a scenario, we simulate 

three kinds of information sources as the required implementation scenario, which 

are: 

1. Structured information source: Relational Database 

2. Semi-structured information source: Native XML Database 

3. Unstructured information source: Web Pages Repository 

The complete schemas of the structured and semi-structured information sources 

are put in A Simple Example Implementation - A and A Simple Example 

Implementation - B. After the simulation of the required scenario, we start to create 

the needed global schema. According to the research method described in Chapter 3, 

we first use the generic construct correspondences to transform the schema of the 

structured information source, the relational database, into the form of XML Schema 

(see A Simple Example Implementation - C). Since the form of the schema of the 

semi-structured information source, the native XML database, is XML Schema, we 

need not to do the transformation on it. Afterward, we create global schema manually 

by using the method described in Chapter 3 (see A Simple Example Implementation - 

D).  

 67



A Schema and Ontology-Assisted Heterogeneous Information Integration Study 
 

We still must create the required ontology to catch the relationships that can not be 

hold in the global schema. We follow the research method to create the ontology in 

OWL by using the ontology editor – Protégé 2.0 with OWL plug-in from Stanford. 

Figure 4-2 demonstrates the creation of the ontology by means of Protégé 2.0. The 

complete ontology in OWL is shown in A Simple Example Implementation - E. 

 

Figure 4-2: Demonstration of the creation of the ontology by means of Protégé 2.0 

Figure 4-3 shows the prototype system functions design architecture. We provide 

an open query interface. Users formulate their query in the form of XQuery 

expression by referencing the structure described in the global schema. And the 

individual function of the other two primary query-processing components is 

described one by one as follows: 

 68



A Schema and Ontology-Assisted Heterogeneous Information Integration Study 
 

Query 
Interface

XQuery Parsing 

Inference Processing 

 

Figure 4-3: Prototype System Functions 

1. Mediator: 

I. XQuery Parsing:  

Because the query interface is designed to accept open query in an XQuery 

expression, the system needs an XQuery parser to parse the query issued by the 

user from query interface.  

II. Inference Processing:  

After receiving the user query from interface, the mediator issues a reasoning 

request according to the user query to the ontology in order to find out the 

implicit relationships hidden in the user query.  

Prototype 
System

Mediator Query Reformulating 

Query Decomposing 

Result Composing 

Query Translating 
Wrapper

Result Packaging 

 69



A Schema and Ontology-Assisted Heterogeneous Information Integration Study 
 

III. Query Reformulating: 

After receiving the reasoning results, the mediator reformulates the user query 

according to those results. Due to the reformulation process, the system can find 

out more answers with higher precision and accuracy to the query.  

IV. Query Decomposing: 

The mediator then arranges the query plan and decomposes the reformulated 

query into sub-queries according to the specified mapping which is specified 

according to the GAV approach.  

V. Result Composing: 

The mediator takes responsibility for composing the final results in XML 

document format from the temporal results sent by the wrapper. Finally, show the 

results to the user on the browser.  

2. Wrapper: 

I. Query Translating: 

The wrapper takes the responsibility of translating the sub-query passed by the 

mediator into the form of the native query. And then pass the native query into 

local sources for finding out the needed answers.  

II. Result Packaging: 

The wrapper should also collect the query results sent by the local source and 

sent it back to the mediator to wait for further processing.  

 70



A Schema and Ontology-Assisted Heterogeneous Information Integration Study 
 

4.4. Prototype System Presentation 

According to the functions description of the previous section, we demonstrate the 

implementation of the prototype system as follows: 

Figure 4-4 is the query interface of this prototype system.  

 

Figure 4-4: Query Interface of the Prototype System 

Figure 4-5 illustrates that users formulate the query according to the global schema 

provided by the prototype system. We give a sample query here to illustrate the query 

process of the prototype system. 

Sample Query: “find out advisors of teaching assistants of course ‘ADB’ ” 

XQuery Expression: 

 71



A Schema and Ontology-Assisted Heterogeneous Information Integration Study 
 

FOR $a IN document(‘GS.xml’)/GSROOT 
LET $b := FOR $t IN document(‘GS.xml’)/GSROOT/TeachingAssistant 
         LET $d := FOR $c IN document(‘GS.xml’)/GSROOT/course 
                  WHERE $c/cname = ‘ADB’ 
                  RETURN $c/ta_id 
         WHERE $t/ta_id = $d 
         RETURN $t/ta_name 
WHERE $a//name = $b 
RETURN $a//advisor, $b 

 

 

Figure 4-5: Users formulate the XQuery expression of their own queries according to 

the global schema 

After receiving the user query, the system sends a reasoning request to ontology to 

find out if there have been additional relationships hidden in the user query. Then 

system reformulates the user query according to the reasoning result. Figure 4-6 

 72



A Schema and Ontology-Assisted Heterogeneous Information Integration Study 
 

shows the reformulated query generated by the system after the query reformulation 

process. The paths highlight in red color in the reformulated query is complemented 

by the system automatically according to the reasoning result. 

 

Figure 4-6: The reformulated query 

The system decomposes the reformulated query and generates the query plan as the 

sequencial reference of sending the sub-queries to the wrappers. Figure 4-7 shows the 

query plan generated by the prototype system. 

 73



A Schema and Ontology-Assisted Heterogeneous Information Integration Study 
 

 

Figure 4-7: The query plan generated by the prototype system 

According to the query plan, system passes the sub-queries to the corresponding 

wrapper. The wrapper takes responsible of translating the sub-query into the 

corresponding native query. Then the wrapper sends the native query to the 

underlying source to find out the answer of the query request. Figure 4-8 and 4-9 

show the translated query generated by wrappers and the temporal result after 

querying the underlying source. 

 74



A Schema and Ontology-Assisted Heterogeneous Information Integration Study 
 

 

Figure 4-8: The decomposed sub-queries and the translated query generated by 

wrappers 

 

Figure 4-9: The decomposed sub-queries and the translated query generated by 

 75



A Schema and Ontology-Assisted Heterogeneous Information Integration Study 
 

wrappers (continue) 

After finishing the tasks of the wrappers, the system collects the temporal results 

and composes them into an XML document to complete the query-processing. Figure 

4-10 shows the completeness of the query-processing. 

 

Figure 4-10: Query-processing complete 

Figure 4-11 shows the final result in XML document. The structure of the final 

result is according to the global schema. We add an additional annotation attribute, 

source, for showing the answer that was retrieved from which information source.  

 76



A Schema and Ontology-Assisted Heterogeneous Information Integration Study 
 

 

Figure 4-11: The query result in XML document 

 77




