
Chapter 2

Literature Review

In this chapter, we first provide an overview of DFA. In the next section, we review

the Modeling Language which is usually adopted to construct DFA models based on

stochastic programming. (Birge, Dempster, Gassmann, Gunn, King, and Wallace,

1987; Yu, Ji, and Wang, 2003) In the last section, we introduce the concept of

Decision Support System, and give a brief description about the software currently in

the DFA market.

2.1 Dynamic Financial Analysis

One of the tasks of property/casualty executives is the assessment of the risks and

rewards associated with strategic decisions. Too often, insurance executives must rely

on intuition rather than systematic analysis when making these decisions. Even when

financial decisions are based on a careful evaluation of the risk factors, the outcome

of those decisions can be highly uncertain. Today, a systematic approach to financial

modeling exists which projects financial results under a variety of possible scenarios,

showing how outcomes might be affected by changing business, competitive and

economic conditions. This approach has been called Dynamic Financial Analysis, or

DFA.

DFA is a systematic approach based on large-scale computer simulations for the

integrated financial modeling of non-life insurance and reinsurance companies aimed

at assessing the risks and benefits associated with strategic decisions. (Kaufmann,

 6

Gadmer, and Klett, 2001) DFA is not an academic discipline by itself. It borrows

many well-known concepts and methods from economics and statistics. It is part of

the financial management of the firm. The objectives of DFA are helping management

in:

 strategic asset allocation,

 capital allocation,

 performance measurement,

 market strategies,

 business mix,

 pricing decisions,

 product design,

 others.

DFA is a combination of software, methods, concepts, processes and skills. Skilled

people are the most critical ingredient in carrying out the analysis. In Figure 2-1, we

use the American Re-Insurance Company’s Risk Management System (ARMS)

(Berger, Adam, and Madsen, 1999) to describe an example of the methods and tools

that are necessary for carrying out DFA. However, the structure referred to here is

generic and it does not describe specifically any one of the DFA tools available in the

market, but it identifies all those elements that are typical in any DFA model.

 7

Figure 2-1 American Re-Insurance Company’s Risk Management System (ARMS)

(Berger, Adam, and Madsen, 1999)

A workable model must be a simplified version of reality. The Input includes the facts

about the state of the company and industry at the time of the simulation. The Global

Economic Model (GEM) is a scenario generator generating plausible time series

outcomes of future economies based on user specifications and parameter settings.

The GEM comprises stochastic models for the risk factors affecting a company (e.g.

interest rates, inflation, stock market returns).

The outputs of GEM are fed to the Asset Model as well as the Liability and

Re-insurance Model. These two models project different asset and liability classes

along each economic scenario. The Business Model considers the underlying strategy

of the business managers. It models the decisions that management makes as the

business moves forward through time. This also includes any change in asset

allocation or in re-insurance structure. The Accounting Framework refers to

accounting implications.

 8

The Model Calibration and Optimization expresses that finding suitable parameters

for the models to produce sensible scenarios is an integral part of the DFA, and the

simulation results should be used to readjust the strategy for the optimization of the

target values of the company. Figure 2-2 (Kaufmann, Gadmer, and Klett, 2001) takes

a clearer view of this concept.

Figure 2-2 Main structure of a DFA model (Kaufmann, Gadmer, and Klett, 2001)

DFA incorporates feedback loops and management intervention decisions into the

models. Management should analyze the output in order to improve the strategy. For

example, if a given scenario shows that the loss ratio is unacceptably high for a line of

business, then the model will assume that rate level and other underwriting decisions

will be made by management. This can be repeated until management is convinced by

the superiority of a certain strategy.

DFA grew in the late 1990s out of practical needs rather than academic research. The

main driving force behind the genesis and development of DFA is the related research

committee of the Casualty Actuarial Society (CAS). Their website

(http://www.casact.org/research/dfa/index.html) provides a variety of background

 9

http://www.casact.org/research/dfa/index.html

materials on the topic, in particular a comprehensive and easy-to-read handbook (DFA

Committee of the Casualty Actuarial Society, 1999) describing the value proposition

and the basic concepts of DFA. A fully example of a DFA, with emphasis on the

underlying quantitative problems, is given in (Kaufmann, Gadmer, and Klett, 2001),

whereas (Lowe, and Stanard, 1996) describes the development and implementation of

a large-scale DFA decision support system for a company.

2.2 Modeling Language

Geoffrion (Geoffrion, 1987) identified two major problems confronting the

management science/operations research (MS/OR) community. First, doing MS/OR

tends to be a low productivity activity. Following factors contribute to this problem—

1) Three distinct representations are used typically for each model: a “natural”

representation suitable for communication with people without special training in

MS/OR, a mathematical representation suitable for analytical use, and a

computer-executable representation (Fourer, 1983). Such multiple representations

are inefficient of their redundancy, susceptible to inconsistency, and they demand

too many different skills to complete even small projects.

2) Interfacing models with advanced solvers traditionally has been a laborious task

requiring specialized skills.

3) Most modeling software addresses just one among the many kinds of models that

arise—e.g., just linear programs.

4) Available modeling software typically serves just one or two of many phases of

the total life-cycle associated with model-based analysis and system.

A second problem facing MS/OR is that managers and policy makers call for

 10

model-based assistance too infrequently. MS/OR professionals and their work often

are incomprehensible to non-specialists. It is not surprising that managers are

reluctant to use models that are both confusing and expensive to build. Unless this

environment changes, MS/OR models will not achieve widespread use among

non-technical managers.

The problems just enumerated call for a new generation of modeling systems with the

following desirable features:

a) Modeling languages are designed to represent large and complex models using a

few relatively simple statements (Geoffrion, 1987; Fourer, Gay, and Kernighan,

1990; Brooke, Kendrick, Meeraus, and Raman, 1998).

b) Modeling languages are designed to support the entire modeling life-cycle

(Geoffrion, 1987; Geoffrion, 1989).

c) Modeling languages are designed to allow the accumulation, sharing, integration,

and reuse of data, models, solvers, and derived knowledge (Choobineh, 1991;

Brooke, Kendrick, Meeraus, and Raman, 1998).

d) Modeling languages are designed to improve the productivity and managerial

acceptance of MS/OR activities (Geoffrion, 1987; Fourer, Gay, and Kernighan,

1990).

e) Desktop implementation with a modern user interface (Geoffrion, 1987; Dotzauer,

and Holmstrom, 1998)

As mentioned above, the human modelers describe programs in a readable and

symbolic form, such as the familiar algebraic notation for variables, constraints, and

objectives. For the computer, an explicit algorithm is required to solve the problem. In

the earliest, MPS standard which was named after an early IBM LP product was

 11

adopted as the computational representations of the corresponding mathematical

model. (Kuip, 1993) The main drawback of MPS was its difficulties to be understood

by human. Thus any application of mathematic programming should involve

translating the one form to the other.

Matrix generators (Fourer, 1983) were the first step to facilitate the formulation of

mathematical problems. Matrix generators were special computer programs which

computer could execute to produce a program in the algorithm’s desired form.

However, matrix-generator form is not a modeler's form as previously defined. It is

instead a distinct intermediate form intended primarily to facilitate translation to an

algorithm's form. Because modeler's form and matrix-generator form are dissimilar,

converting from the one to the other--which must still be done by a person--is not a

trivial job. Indeed, writing a matrix generator is a job of computer programming, and

has all of the characteristics of any programming task.

There is also a quite different approach to translation, in which as much work as

possible is left to the machine. The central feature of this alternative approach is a

modeling language (Fourer, 1983) that is founded on a simple idea: the modelers

should deal with the computer directly in modeler’s form. A modeling language is not

a programming language; rather, it is a declarative language that expresses the

modeler's form of a program in a notation that a computer system can interpret.

Unfortunately, however, because these forms are ambiguous and complex (as are

natural languages generally), and important elements of their notation--notably

subscripts and Σ signs--are incompatible with ordinary computer hardware, they are

neither readable nor translatable by foreseeable computer system.

 12

Nevertheless, an existing modeler's form is a sensible starting point for the design of

an attractive and workable modeling language. Fourer also made several important

statements on the design philosophy of modeling language. The variety and

complexity of the existing modeler's form must be reduced so that every expression

has an unambiguous syntax and meaning. Notation must also be altered to employ a

standard computer character set.

Take present modeling languages for example, AMPL (Fourer, Gay, and Kernighan,

1990) and GAMS (Brooke, Kendrick, Meeraus, and Raman, 1998) have a powerful

indexed-sum (“SUM”) notation that corresponds to the algebraic use of Σ. The syntax

of certain expressions is tighter and less ambiguous, as in the use of "t in 1 . . T" to

mean t = 1 T. Modeling language also enforces a certain amount of

organization on the various parts of the model, again to avoid ambiguity and to

facilitate translation.

Another point should be made about modeling language is the design of translators. A

matrix-generator language is intended only as an intermediate between the modeler's

and the algorithm's form; hence, such a language can be designed for ease of

compilation and execution, and the more complex aspects of its translation can be left

to people. A modeling language, by contrast, is exclusively an understandable

modeler's form as Figure 2-3 indicates, so that the heart of a modeling language

system is a translator that converts an ML model plus data to an algorithm's form.

 13

Figure 2-3 Modeling language in LINGO

Fourer (Fourer, 1983) suggested that it is useful to distinguish two "phases" in the

work of a modeling language translator:

1. The analysis phase reads the modeling language description of the model and

determines how the algorithm's form is to be written.

2. The generation phase reads the explicit data for the model and actually writes the

algorithm's form.

Any effective modeling language translator must implement both of these phases,

either as two independent subsystems or as overlapping parts of a single system.

Indeed, the essential tasks of modeling language translation--parsing the language,

interpreting the expressions, and converting to a lower level form--are currently

performed by many common computer systems, particularly programming-language

 14

compilers. There can be little doubt that it is practical to implement a modeling

language translator, given present-day knowledge of computers and computer

systems.

Successful implementations offer another persuasive argument for the value and

practicality of modeling language. Several modeling languages have been developed.

These include structured modeling language (SML) (Geoffrion, 1987), generalized

algorithm for mathematical systems (GAMS) (Brooke, Kendrick, Meeraus, and

Raman, 1998), a mathematical programming language (AMPL) (Fourer, Gay, and

Kernighan, 1990), linear, interactive and general optimizer (LINGO), and structured

query language for mathematical programming (SQLMP) (Choobineh, 1990).

2.3 Decision Support System

The complexity of Decision Support System (DSS) design process is the result of the

need to model not only the problem data and processes, but also the mathematical

relationships, the integration of data and models, and the decision making style of the

decision maker. (Raghunathan, 1996) One of the most widely accepted approaches

(Turban, 1995) decomposes a DSS into dialog management, data management, and

model management components.

 15

Figure 2-4 Typical architecture of DSS (Turban, 1995)

Dialog management comprises all user interfaces with the system such as a language

for initiating system action (e.g., solve a model) and various means for representing

information (e.g., graphics). Data management involves the creation, storage,

manipulation, and retrieval of data. This may often require a database management

system (DBMS) as a subunit of the DSS to perform this function. Model management

involves equivalent functional capabilities for models, and a model management

system (MMS) is the corresponding subunit of the DSS, which performs these

functions.

A strong assumption of the DSS approach is that MMS should be designed to support

the work of professional model builders throughout the model development life cycle,

by providing its users with flexible and rapid access to models, data, and solution

procedures. In Tsaih’s resent study on DSS for credit rating (Tsaih, Liu, Liu, and Lien,

2004), the MMS design has taken some important steps. The system architecture is

depicted as follows:

 16

Figure 2-5 Architecture of DSS for Credit Rating (Tsaih, Liu, Liu, and Lien, 2004)

The MVC (Model-View-Controller) concept is adopted to implement web-based user

interface. MTS (Model Transforming Subsystem) and LPS (Loan Process Subsystem)

separate the concerns of building model from applying the model. MDAS (Model

Defining Application Server), MRM (Model Recording Module) and TDV (Table of

Defined Variables), together with the mechanisms like Calculation Priority, Rule

Types, facilitate the complexity involved in building a well-defined mathematical

model. The maintenance and upgrade of models are easy by merely re-defining the

rule or adding new defined variables without managing any complex program.

With new breakthroughs in technology, it was no surprise researchers tried to apply

their findings in ways that are useful to institutional and private investors. However,

since the genesis of DFA was driven by the industry rather than academia, barely few

 17

academic studies have been made on the system architecture for DFA application. On

the contrary, there are a number of companies in the market that offer software

packages or components for DFA, usually in conjunction with related consulting

services. Remetrica II by Benfield Group (http://www.benfieldgreig.com) provides

modular environments that can be adapted relatively quickly to different company

structures, and that are mainly used for addressing dedicated problems, usually the

structuring of complex reinsurance programs or other deals. Another type of DFA

software, such as Finesse 2000 by SS&C (http://www.ssctech.com), the general

insurance version of Prophet by B&W Deloitte (http://www.bw-deloitte.com/home/),

TAS P/C by Tillinghast (http://www.towers.com) or DFA by DFA Capital

Management Inc (http://www.dfa.com), is large-scale systems that model a company

in great detail and that are used for internal risk management and strategic planning

purposes on a regular basis, usually in close connection with other business systems.

 18

http://www.benfieldgreig.com/
http://www.ssctech.com/
http://www.bw-deloitte.com/home/
http://www.towers.com/
http://www.dfa.com/

