
Chapter 4

System Implementation

In the preceding chapter we have seen an overview of MLDFA. Now, we are ready to

consider how to incorporate a DFA model into its architecture. In the first section, we

represent DFA domain knowledge explicitly by an object-oriented framework. Next,

after succeeding in identifying objects and operations within the DFA domain, we

integrate these elements into different architectural components based on

consideration of commonality and variant. In the last section, we illustrate how a

well-designed user interface could help users in working with MLDFA.

4.1 DFA Object-Oriented Framework

A DFA model represents a business entity’s view of the world. In the narrowest sense

of the term, it is used to represent the forecasting accounting reports in an insurance

organization. Given this situation, two things must be defined in an object-oriented

framework to let accounting reports can be simulated. They are accounts, and

transactions which post to those accounts.

Three kinds of accounts common to all balance sheets are asset, liability and equity.

So it follows that these are the three primary objects in the framework. On the side of

transactions, although it is common to use transaction object in the real world

accounting systems, we implement these transaction events within the methods of

each account objects. The main reason is that the transactions in a DFA model are

quite simpler than these in the real world. A DFA system is not necessary to have

 34

some means for carrying out day-to-day accounting activities. It simply projects

balance sheet by stochastic simulation, and assumes that all cash flows take place at

end of each time period or an infinitesimal time at the beginning of the next period.

Another feature of a DFA system is its ability to provide reasonable time series

outcomes of future global economies risk factors (e.g. interest rates, inflation, stock

market returns). These outcomes are then used to drive both the asset and liability

sides of the balance sheet. Thus, the top-level hierarchy in our object-oriented

framework is as showed in Figure 4-1.

Figure 4-1 BalanceSheet hierarchy

 35

The top-level object is our framework is BalanceSheet. As in the real world,

BalanceSheet is composed of Asset, Liability and Equity. Most object-oriented

programming languages, including C#, haven't defined special language support for

the composition relationship. In MLDFA, we implement this by including an instance

of the account object in BalanceSheet.

The same concept applies to both Asset and Liability. Although there are many

possible ways to set up an account structure, we set Asset and Liability as composite

objects which represent total assets and liabilities of an insurance company.

References to each AssetItem and BusinessLine instance are created and saved in an

array within these two objects. EconomicRisk deals with the projection of future

economic environments. AssetItem and BusinessLine may use EconomicFactor in

its simulation. Notation in Figure 4-1 shows this relationship.

AssetItem is an abstract class which defines characteristics common to all asset items

in an insurance company. These characteristics are then available by inheritance to

more specialized subclasses such as Bond or RealEstate (complete AssetItem

hierarchy is presented at Appendix A). These subclasses share the characteristics of

AssetItem, and probably add new behaviors.

Unlike AssetItem, liability risk is better described through the line of business. It is

important to recognize that each line of business has its own particular business model.

Liability projections need to be performed on a line-by-line basis before being

aggregated to a total company level. Abstract class BusinessLine describes common

characteristics to all business lines. The variable features for each business line are

 36

captured in its inheriting classes (complete BusinessLine hierarchy is presented at

Appendix B).

Transactions between account objects must be controlled to fit the real case in the

insurance company. Asset and liability values are combined with their corresponding

cash flow patterns to arrive at new balance at next period. All of this must be done

within an accounting framework. For example, when incurred losses are developed,

losses paid and losses outstanding must be developed together. A mismatch would

generate an inappropriate result in the subsequent financial activities. In our

implementation, we utilize the composition hierarchies to deal with this problem.

Table 4-1 explains the transaction process of cash receipt activity in each run of

simulation. The other transaction processes are summarized in Table 4-2.

Table 4-1 Processes of cash inflow

1. BalanceSheet.receiveCashInflow() invokes Asset.decrease() to decrease some assets value.

 1.1 Asset.decrease() determines which assets (ex. Account Receivable and Reinsurance

Receivable) should decrease its value.

1.2 Asset.decrease() computes decreasing amount for each specified AssetItem.

1.3 Asset.decrease() invokes AssetItem.decrease() in each specified AssetItem

instances.

 1.3.1 Specified AssetItem instances execute decrease() to update its value.

2. BalanceSheet.receiveCashInflow() invokes Asset.invest() to allocate new money.

 2.1 Asset.invest() determines which assets are to be bought based on the rebalancing

strategy.

2.2 Asset.invest() decides investment amount for each specified AssetItem.

2.3 Asset.invest() invokes AssetItem.invest() in each specified AssetItem.

 2.3.1 Specified AssetItem instances execute decrease() to update its value.

3. BalanceSheet.receiveCashInflow() invokes Equity.decrease() for bad debts.

 3.1 Equity.decrease() updates its value based on bad debts amount.

 37

Table 4-2 Summary of transaction processes in framework

Seq. Control method in

BalanceSheet

Subtask in account objects Description

1.1 liability.simulatePremium() Simulate premiums

1.2 asset.invest() Invest unearned premium

on assets

1 receivePremium()

(Carry out premiums

written cycle)

1.3 liability.increase () Increase unearned premium

reserves

2.1 asset.simulate() Simulate capital gains (or

losses) from assets

2 simulateInvestment()

(Simulate investment

results) 2.2 equity.increase()

(or equity.decrease())

Increase (or decrease) equity

from capital gains (or losses)

3.1 asset.decrease() Decrease some asset accounts

due to premium receipts or

reinsurance recovery

3.2 asset.invest() Reinvest cash on assets

3 receiveCashInflow()

(Perform cash inflows)

3.3 equity.decrease() Adjust equity for bad debts

4.1 liability.simulateLoss() Simulate loss cycle

4.2 asset.increase() Increase Reinsurance

Recoverable

4.3 asset.indemnify() Make loss payment

4.4 liability.decrease () Decrease Loss Reserves

4 outgoCashOutflow()

(Perform cash outflows)

4.5 equity.decrease() Decrease equity when

payment amount is greater

than the loss reserves

4.2 Arrangement of Commonalities and Variants

The object-oriented framework we provide in previous section is adequate if we

implement programs manually. It incorporates engineering knowledge necessary to

produce a DFA application. The low level implementation details could be left to the

framework users including both Model Managers and programmers to decide the

application they need. Once the application meets their requirements, it is released.

 38

In this traditional object-oriented development, there is generally no activity to

identify potential, but unspecified needs of the users. To properly address these

problems, DFA application must be developed with the expectation of future reuse

and change. The main distinction between DSSDSA and other DFA applications is the

ability to handle multiple variants of a DFA model.

Figure 4-2 Commonalities and variants

As Figure 4-2 indicates, a DFA model may change over time; we call these

differences variants. Different DFA models may have a common core of

characteristics; we call such things commonalities. To identity and to organize all the

commonalities and variants, the framework we propose seems ideal to be a starting

point.

The class hierarchies describe the common relationships among all elements that arise

in a set of similar DFA models. A particular model is created by defining an instance

of this framework, i.e., supplying concrete subclasses of AssetItem and

BusinessLine to provide the necessary customizations. In Figure 4-3, we add a

 39

special symbol <V> in our framework to represent variability, and elements that are

not tagged by a <V> as a commonality.

Figure 4-3 Commonalities and variants in framework

Figure 4-3 shows that all DFA models are based on balance sheet (BalanceSheet)

simulation. Asset, Liability and Equity are common to all balance sheets. AssetItem,

BusinessLine, and EconomicFactor are tagged by a <V>, which means they vary in

different models. In each variable class, the same variability concept applies to its

 40

methods. Method AssetItem.sell() is always the same even in different instances

(new balance = old balance - sell amount). In contrast, Model Manager may use

different stochastic differential equations in AssetItem.simulate() to define how the

value of an asset item is developed within each time period.

After identifying the common parts and variable parts, the next step is to decide when

and how these parts are integrated into MLDFA. Figure 4-4 depicts our

implementation strategy.

Figure 4-4 Commonalities and variants in MLDFA

 41

Common Objects are shared across a set of DFA models. For increasing productivity,

this shared part is implemented once and reused each time in Processing Subsystem.

On the contrary, Run-time Variables, such as initial positions for risk factors or some

simulation settings, are decisions determined by end users at simulation time. This

kind of variables can only be bound into application directly from a user at run-time

of Processing Subsystem. Variable Objects reach a certain level of complexity. These

objects contain both common parts and variable parts. It leads to a fail in binding

them totally at compile-time or run-time.

Code generation mechanism is adopted to solve this problem. The essential idea is to

directly implement Common Methods as Templates in Model Transformation

Subsystem. Each kind of specialized subclass (ex. account receivable, personal

automobile) has its own template which contains most of the behavior for subclasses

of that type. Typically, templates in MTS usually generate custom-made classes by

following steps:

1. Getting the data: Specifications about Variable Methods are recorded in a XML

file. Templates first parse this XML file and store its information into an

equivalent data structure. (In C#, a standard XML parser is used to create the

DOM(Document Object Model) data structure.)

2. Analyzing and transforming the data: The information is validated by checking for

completeness or consistencies. Some transformations are made to change the

original specifications into legal named variables or permitted expressions.

3. Generating the codes: A typical template in MTS is simple a series of print

statements (StreamWriter.Write() in C#) with occasional flow of control

statement. This is straightforward in principle, but becomes messy with details. A

 42

simple example is given in next section alongside the demonstration of user

interface design and specification file.

After these generated codes are compiled into Executable Codes, Processing

Subsystem binds them at run-time to deal with the simulation run itself. This binding

process is simple. As described earlier, a generated class inherits a well-defined

interface from an abstract class (AssetItem or BusinessLine). This well-defined

interface could be easily composed with Asset and Liability in Processing Subsystem.

Asset and Liability do not need to know about the implementation details in

generated classes. While simulation runs, they simply instantiate these generated

classes and send requests to them.

4.3 User Interface Design

Decision models are given a visual presentation in modern decision support systems,

and it is through this visual representation that users can manipulate models. As an

ongoing project, MLDFA has not finalized its user interface design. The purpose of

this section is to show the possible solution that ensures the concepts addressed in the

previous chapters are carried forward into the UI design stage. In order to keep the

presentation concise, we do not provide the detailed operational manual here, but

focus on demonstrating how a proper UI could help users to create and to manipulate

an instance of model concepts.

Perhaps the most interesting advantage of using object-oriented framework plus code

generation is that they provide an object-oriented style user interface. Many

object-oriented systems only look object-oriented to the programmer. The user does

 43

not think in terms of objects, inheritance, and reuse. In MLDFA, the advantages

available to the object-oriented programmer are also made available to the user. A

prototype of UI for Model Transformation Subsystem is presented in Figure 4-5.

Figure 4-5 Screenshot of Model Transformation Subsystem

The key idea of this design is to explicitly represent knowledge that had been

embedded in our framework. Multiple graphical presentation schemes are possible,

but an intuitive solution is to use a tree widget to display the class hierarchy in our

objected-oriented framework. Based on the tree-like representation, users can see the

whole structure of the model that is being generated. Another advantage is tree-like

representation is also wildly used by other applications such as Windows Explorer.

This explorer-style interface allows users who understand the DFA domain to work

with the MTS without having to receive additional training.

 44

Just as working with Windows Explorer, users could use the mouse over the tree

widget to display a dynamic pop-up menu that provides commands such as “Add

Interest Rate”, “Add Parameter”, “Add Real Estate”, and “Delete”, etc. Under each

hierarchy, users create a new element (object), and its specification can be edited on

the right panel. Each type of elements has its own contents view, which depends on its

characteristics. Figure 4-5 shows Interest Rate contents view allows users to define

element’s name, initial position, description, parameter specifications, and simulation

formula.

The point to be made is that some mechanisms may help users to define simulation

formula appropriately. It is common practice to let users drag and drop necessary

elements from tree widget to formula text editor, and automatically make some

wording adjustments (ex. replace blank between words with underline symbol).

Dynamic pop-up menu which displays available mathematic functions could also aid

users.

The model specifications obtained through the user interface will be described in

XML file. The paragraph corresponding to the example in above screenshot is

presented in Figure 4-6. Once Model Manager completes the whole DFA model

specification, it is time for code generation. Concerning above example, the template

for interest rate object and its output source codes is presented in Figure 4-7 and

Figure 4-8.

 45

Figure 4-6 Example: Partial Content of XML

Figure 4-7 Example: Template for Interest Rate Object (Partial)

 46

Figure 4-8 Example: Output codes for Interest Rate Object (Partial)

 47

