
35

6. Part 1 of the Solution:

The Downloadable Architecture

To overcome the shortcomings of C/S architecture, the improved C/S

architecture, namely downloadable architecture, is proposed. It allows

developers to develop downloadable BISs to be downloaded, installed and

run on end-user machines dynamically and automatically from a central

location. A BIS architecture shows how a BIS is realized by a collection of

elements together with the interactions among these elements (David &

Shaw, 1993; Shaw et al., 1995). I discuss these matters in more detail

below.

6.1 Elements of the Downloadable Architecture

Like the C/S architecture (Orfali et al., 1999), the downloadable

architecture consists of three types of building blocks: required client

program, optional application server, and required database. One

characteristic in which the downloadable architecture differs from the

Windows-based C/S architecture is the automatic deployment of client

programs. The client programs of the Windows-based C/S architecture

implemented as Windows programs have to be deployed manually. In

36

contrast, the client programs of the downloadable architecture are

implemented as ActiveX-enabled Websites called program warehouses, and

will be deployed automatically. Please compare Figure 3 with Figure 4.

Figure 3. Architectural Overview of Two-Tier Windows-Based C/S BISs

37

Figure 4. Architectural Overview of Two-Tier Downloadable BISs

38

A program warehouse consists of a home page, a menu page, a

message page, one or more package carriers, one or more component

packages, and zero or more DLL packages. The home page, the menu page,

the message page, and the package carrier all are simple Web pages. The

home page is used to inspect the end-user environment, customize the

Website for the end-user, split up the browser window into frames, and

other such Website initialization processes. The menu page is used to list

all available functions of the client program. The message page is used to

display information about the system. The package carrier is used to

deliver a component package and zero or more DLL packages to the

end-user machine. In addition, the package carrier also performs some user

interface processes to increase the usability of the client program. The

component package and the DLL package both are CAB-format

compressed files (CAB files) that include one or more downloadable files.

The component package contains an ActiveX component (OCX file) and its

installation instructions (INF file), but the DLL package contains only an

ActiveX component's dependent DLL. Each of the ActiveX components is

composed of an embedded form, zero or more pop-up forms, and zero or

more design-time-only forms, to implement a function of the client

program that appears as a menu item on the menu page. Figures 11-17

contain examples of downloadable BISs.

39

6.2 Interactions among Elements

A downloadable BIS is a Web-based system, and can be accessed

through an ActiveX-enabled Web browser from anywhere with Intranet or

Extranet connectivity. Here, I outline interactions among elements (see

Figure 4).

Firstly, an end-user visits the program warehouse, and then the menu

page is displayed within the end-user's browser.

Secondly, the end-user selects the desired function from the menu

page, and then a function-specific package carrier is downloaded to the

end-user machine.

Thirdly, the browser analyzes the package carrier to retrieve the

ActiveX component's globally unique identifier (GUID), the ActiveX

component's minimum required version, and the component package's

download location. Using this information, the browser checks whether a

recent enough version of the ActiveX component exists in the end-user

machine. If it does not already exist, the browser downloads the component

package, extracts the included ActiveX component and ActiveX

component's installation instructions, and then installs the ActiveX

component against the installation instructions.

Fourthly, the browser parses ActiveX component's installation

40

instructions to retrieve each dependent DLL's file name, each dependent

DLL's minimum required version and each dependent DLL package's

download location. Using this information, the browser checks whether a

recent enough version of the DLL exists in the end-user machine. If it does

not already exist, the browser downloads the DLL package, extracts the

included DLL, and then installs the DLL against the ActiveX component's

installation instructions.

Finally, the browser instantiates and initializes the ActiveX

component before an ActiveX component instance, which embeds in the

package carrier, is displayed within the browser.

6.3 Communications among Elements

The downloadable architecture is loosely coupled, meaning one

element can be understood without examining the other, and one element

often can be changed without changing the other. Nevertheless,

communication among the elements of downloadable architecture is

unavoidable. In downloadable architecture, there are five types of

communication: communication between ActiveX component instances,

communication between AtiveX component instances and Web scripts,

communication between client-side Web scripts and server-side Web scripts,

41

communication between client-side Web scripts, and communication

between server-side Web scripts. The inter-module communication methods

provided by high-level programming languages, such as global variable,

procedure call, and message passing (Dershem & Jipping, 1995; Sebesta,

2007), cannot work in the downloadable architecture (note that

downloadable system is created using multi-languages and is a multi-process

system). The interprocess communication methods provided by operating

systems, such as IPC, RPC, DCOM, and CORBA (Microsoft, 2007c; OMG,

2001; Silberschatz et al., 2004), also cannot work in the downloadable

architecture (note that there is no overlap between lifetimes of ActiveX

component instances). Moreover, most of the session state maintenance

methods provided by Web technologies, such as ASP/PHP session variable,

URL-encoded variable, hidden form variable (Kristol, 2001; Wang & Katila,

2003), are partial solutions. In fact, session cookie (Kristol, 2001; Wang &

Katila, 2003) is the only solution that supports all such types of

communication. Table 2 lists the frequently used Win32 API functions that

include cookie functions and hyperlink navigation functions.

6.4 Web Browser Security Settings

For security reasons, by default, most Web browsers will block or

warn against the download and installation of ActiveX components. Thus,

42

it is necessary to configure the browser's security settings to enable

ActiveX components. Taking IE 6.0 as an example, follow the steps below

to configure the browser's security settings.

1. To assign the program warehouse to the Trusted sites zone:

(1) In IE, on the Tools menu, click Internet Options.

(2) On the Security tab, click the Trusted Sites icon, and then click

Sites.

(3) Clear the Require server verification (https:) for all sites in this

zone check box.

(4) Under Add this Web site to the zone, type the URL of the program

warehouse.

(5) Click Add, and then click OK twice.

2. To configure the security level for the Trusted sites zone:

(1) In IE, on the Tools menu, click Internet Options.

(2) On the Security tab, click the Trusted Sites icon, and then click

Custom Level.

(3) Scroll down to ActiveX controls and plug-ins, and then set all

options to Enable.

(4) Click OK twice.

43

Table 2. Frequently Used Win32 API Functions

Function Description

InternetGetCookie Retrieves the cookie for the specified URL

InternetSetCookie Creates a cookie associated with the specified URL

HlinkGoBack Executes a hyperlink jump backward within the navigation stack

HlinkGoForward Executes a hyperlink jump forward within the navigation stack

HlinkSimpleNavigateToString Executes a hyperlink jump to a new document or object

HlinkSimpleNavigateToMoniker Executes a hyperlink jump, specified by a moniker, to a new document or object

