
44

7. Part 2 of the Solution:

The Architecture Transformation Process

This chapter presents a simple and systematic process, which

transforms existing WinBISs into the downloadable architecture for the

purpose of deployability improvement. I will first outline the process from

beginning to end. I will then discuss some activities of the process in

detail.

7.1 The Client Program Architecture Transformation Process

To be precise, such BIS architecture transformation involves only the

client programs. It is for this reason that I simply propose a client program

architecture transformation process (see Figure 5). Repeat this process for

each client program of a WinBIS, until they are all transformed into

program warehouses, and then the WinBIS will be transformed into the

downloadable architecture.

The process covers the various project management and engineering

activities. The process begins with the activity that prepares a plan for the

project. This activity and the activity that monitors and controls the project

45

Creating ActiveX Project

Copying Function-Specific
Primary Form

Attaching Function-Specific
Non-Primary Forms

E2. Making ActiveX Component

Setting File Version

Compiling & Linking
ActiveX Component

Modifying Design and Code

E1. Making Home Page, Menu Page, and Message Page

E3. Making Installation Instructions File

E4. Packaging ActiveX Component and its dependent DLLs

E5. Making Package Carrier

M1. Planning Architecture Transformation Project

E6. Testing
ActiveX Component

E7. Debugging
ActiveX Component

E2. Making ActiveX Component

[Not All Components are Made][d] ＝
[a] ＝ [Test is Passed] [b] ＝ [Test is Failed]

[All Components are Made][c] ＝

[d]

[a]

[b]

[c] [c] [d]

Figure 5. Client Program Architecture Transformation Process Model

46

against the plan are both typical project management activities.

Engineering activities are repeatedly performed. The first engineering

activity is to make the home page, menu page and message page. The next

is to make the ActiveX component using a VB-like tool. The third is to

make the installation instructions file. The fourth is to package the ActiveX

component and its dependent DLLs. The fifth is to make the package

carrier. The sixth is to test the ActiveX component and its dependent

elements that include the installation instructions file, the package carrier,

and DLLs. Finally, debug the ActiveX component and its dependent

elements if the test fails.

Please note that signing CAB files that include component packages

and DLL packages with a valid digital certificate is not necessary for

Intranet- or Extranet-based downloadable BISs. A digital signature is a way

to tell the end-user to accept the CAB files. It is an indication of the author

of the CAB files. In an environment where everybody knows this CAB file

is safe, and they are likely to accept it, the developer can ask the end-user

to configure the browser's security settings to accept and download

unsigned CAB files.

7.2 Making the ActiveX Component

47

The code of a specific function transforms into an ActiveX component

by using a VB-like tool. Such ActiveX component-making activity consists

of the following steps (see Figures 3, 4 and 5). Additional information

about the VB-like tools can be found in the related documents (Borland,

2005; Microsoft, 1998; SyBase, 2004).

1. Create a new ActiveX component project. Such a project in VB is called

"ActiveX control project", while in Delphi it is called "ActiveForm

project". After that, the VB-like tool brings up a blank form that will

embed in the package carrier. Such an embedded form in VB is called

"UserControl form", in Delphi is called "Active form", and in this paper

is called "embedded form".

2. Open the primary form of the function. Then copy all components and

code of the primary form (except the VB-like tool auto-generated code)

to the embedded form via the clipboard.

3. Add all non-primary forms of the function to the project.

4. Slightly modify the design and code of the function, such as to rid the

embedded form of the pull-down menu; to modify the global variable

related code in response to the change from global variable to session

cookie; to write code for communication with Web scripts and other

ActiveX components; or to manipulate the Web browser. The

48

modifications are unconcerned with business logic.

5. Specify the file version of the ActiveX component.

6. Compile and link the project to produce the ActiveX component.

7.3 Making the Installation Instructions File (INF File)

An INF file is a text file, which can be created or modified using any

text editor in which the user can control the insertion of line breaks. It

provides installation instructions that the browser uses to download and

install an ActiveX component and DLLs required by the component.

Moreover, an INF file is made up of different named sections. Some

sections have predefined names and some sections have a name defined by

the writer of the INF file. A line with a square bracket ([]) signals the start

of a new section. The word inside the square bracket is the section name.

All the lines that follow are considered the same section, until the next

section starts. Note that I will confine our discussion to the needs of the

downloadable architecture. For complete information about the INF files,

refer to the related documents (Microsoft, 2007b).

The downloadable architecture uses three types of sections to control

the download and installation of an ActiveX component and its dependent

DLLs. I discuss these sections in more detail below. In addition, Figure 6

49

shows an example of the INF file for the MyProfile component. This INF

file can be modified to download and install any ActiveX component by

changing MyProfile's information to the desired ActiveX component's

information.

7.3.1 The [Add.Code] Section

This section provides a complete list of all the files that end-users

have to download and install. FileName=SectionName is used in this

section to specify a required file, and to map the file to a section of the

same name. During the actual installation process, the browser will install

each file needed in reverse order, as stated in this section. Hence, the

developer needs to ensure that the ActiveX component (OCX file) is listed

first in this section, followed by dependent DLLs, with the least-dependent

DLL at the bottom of the list.

7.3.2 The Component Section

This section contains all the information necessary to download and

install the ActiveX component, and should be named the same as the

ActiveX component's file name. The following lines are required in this

section.

50

Figure 6. Example Installation Instructions File

51

1. clsid={12345678-1234-1234-1234-123456789ABC}. This line specifies

the string representation of the GUID of the ActiveX component,

enclosed in braces {}.

2. file=thiscab. This line indicates the ActiveX component is located in the

same CAB file as the INF file.

3. FileVersion=a,b,c,d. This line specifies the minimum required file

version of the ActiveX component.

4. RegisterServer=yes. This line asks to register the ActiveX component.

7.3.3 The DLL-Specific Section

Each DLL-specific section contains all information necessary to

download and install a dependent DLL of the ActiveX component, and

should be named the same as the dependent DLL's file name. The following

lines are required in each DLL-specific section.

1. file=URL. This line indicates where the DLL package can be

downloaded from.

2. FileVersion=a,b,c,d. This line specifies the minimum required file

version of the DLL.

52

3. DestDir=11. This line asks to place the DLL into the \Windows\System

directory.

7.4 Packing the ActiveX Component and Its Dependent DLLs

Each ActiveX component and its installation instructions must be

packaged in a CAB file, called a component package. Each ActiveX

component's dependent DLL must also be packaged in a CAB file, called a

DLL package. Developers can use the Cabarc.exe command line utility,

which comes with the Microsoft Cabinet Software Development Kit

(Cabinet SDK), to create these two CAB files. The Cabinet SDK can be

downloaded from this location: http://msdn2.microsoft.com/en-us/library/

ms974336.aspx.

Component packages are created using the n command, followed by

the name of the component package to be created, followed by the name of

the INF file, in turn followed by the name of the OCX file, as shown in

Figure 7. DLL packages are created using the n command, followed by the

name of the DLL package to be created, finally followed by the name of the

DLL file, as shown in Figure 8. For detailed instructions on using the

Cabarc.exe utility, see the Microsoft Cabarc User's Guide (Cabarc.doc)

included in the DOCS folder of the Cabinet SDK.

53

Usage：cabarc n PackageFileName InfFileName ComponentFileName

e.g.：cabarc n MyProfile.cab MyProfile.inf MyProfile.ocx

Figure 7. Packing the ActiveX Component Using Cabarc.exe

Usage：cabarc n PackageFileName DllFileName

e.g.：cabarc n BillUtilities.cab BillUtilities.bpl

Figure 8. Packing the Dependent DLL Using Cabarc.exe

7.5 Making the Package Carrier

To put it more precisely, package carriers have three functions: (a) to

create and initialize an instance of a function-specific ActiveX component

that the end-user wants to use; (b) to specify the minimum required file

version of the ActiveX component, and the download location for the

component package; and (c) to perform some user interface processes to

increase the usability of the downloadable BIS.

The easiest way to create and initialize an instance of the ActiveX

component, as well as to specify the file version of the ActiveX component

and the download location for the component package, is to use the

OBJECT html tag (see Figure 9). The important attributes of the OBJECT

tag are summarized below.

54

1. CODEBASE: Specifies the download location for the component

package. As an option, developers can specify the file version of the

ActiveX component by attaching a number sign (#) and file version at

the end of the CODEBASE path. If #version is not specified and a

version of this ActiveX component is already installed on the end-user

machine, no download occurs. If #version is specified and an earlier

version of the ActiveX component is already installed on the end-user

machine, the component package will be downloaded. If the ActiveX

component is not present on the end-user machine, the component

package will be downloaded whether #version is specified or not.

2. CLSID: Specifies the string representation of the GUID of the ActiveX

component. The format is "CLSID:12345678-1234-1234-1234-123456

789ABC".

3. ID: Specifies a document-wide name of the ActiveX component

instance that client-side Web scripts can reference.

Unfortunately, Microsoft has made changes to the way that IE handles

ActiveX components. Microsoft lost in a key Web browser patent ruling.

The ruling forced Microsoft to redesign IE to get around the patent.

Therefore, end-users cannot directly interact with ActiveX component

instances created by the OBJECT tag. End-users can interact with such

ActiveX component instances after activating their user interfaces, by

55

either clicking it or using the TAB key to focus on it and then pressing the

SPACEBAR or the ENTER key (Microsoft, 2007a). For this reason, I will

make use of an external script file to create and initialize an ActiveX

component instance rather than using the OBJECT tag. ActiveX component

instances created from external script files immediately respond to

end-user interaction and do not need to be activated. Figure 10 contains an

example of creating and initializing an ActiveX component instance using

the external script file.

Additionally, package carriers perform three types of user interface

processes that include (a) displaying an icon and a text string that identify

the function to the end-user; (b) showing the end-user the ActiveX

component is being downloaded and installed; and (c) avoiding showing a

disabled ActiveX component instance. Figure 10 demonstrates such user

interface processes.

<OBJECT

 CODEBASE=/MyProfile/MyProfile.cab#version=2,0,0,4

 CLSID=CLSID:EDF5F200-87BF-4D2B-A22B-D2D077CFBB5A

 ID=ax>

</OBJECT>

Figure 9. Example of Creating an ActiveX Component
Instance Using the OBJECT Tag

56

<!-- MyProfile.asp - Example Package Carrier, is implemented using JavaScript and ASP -->

<%@ LANGUAGE=JavaScript %>

<HTML>
<HEAD>
 <META HTTP-EQUIV=Content-Type CONTENT=text/html;CHARSET=iso-8859-1>
 <STYLE>
 BODY {color:green;margin:0;margin-left:10}
 </STYLE>
</HEAD>

<!-- names the package carrier -->
<BODY ID=MyProfileAsp>

<!-- avoids to show a disabled ActiveX component instance -->
<%
if (Request.Cookies("LoginName") == "")
%>
 <TABLE><TR><TD></TD><TD>Please Login First</TD></TR></TABLE>
<%
else
{
%>
 <!-- begin to display information about the ActiveX component is being downloaded and installed -->
 <TABLE><TR>
 <TD></TD>
 <TD ID=FunTitle>My Profile – Downloading </TD>
 </TR></TABLE>

 <!-- creates an ActiveX component instance by using an external script file -->
 <SCRIPT LANGUAGE=JavaScript SRC=MyProfile.js></SCRIPT>

 <SCRIPT LANGUAGE=JavaScript>
 //finish to display information about the ActiveX component is being downloaded and installed
 function showLoaded(){if(document.readyState=="complete")FunTitle.innerText="My Profile";}
 document.onreadystatechange=showLoaded;

 //initializes the ActiveX component instance
 ax.tabIndex=0;
 ax.focus();
 ax.color=0xE0FFFF;
 </SCRIPT>
<%
}
%>
</BODY>
</HTML>

// MyProfile.js - External Script File, is implemented using JavaScript.

var obj=document.createElement("object");
MyProfileAsp.appendChild(obj);
obj.codeBase="/MyProfile/MyProfile.cab#version=2,0,0,4";
obj.classid="CLSID:EDF5F200-87BF-4D2B-A22B-D2D077CFBB5A";
obj.id="ax";

//creates an ActiveX component instance
//inserts the ActiveX component instance into the package carrier
//sets the URL for the component package
//sets the GUID of the ActiveX component
//names the ActiveX component instance

Figure 10. Example Package Carrier

