
5

2. Literature Review

This chapter is organized as follows. Section 2.1 discusses the

characteristics and classifications of BISs. Section 2.2 discusses legacy

BISs. Section 2.3 discusses the deployment problem of BISs and its

solutions. Section 2.4 discusses Visual Basic (VB) -like visual

programming. Section 2.5 discusses the relationship between the contents

of this chapter and the study presented in this paper.

2.1 Business Information Systems

A BIS can be defined as an information system, which integrates

information technology, people, and business, by which data are received,

stored, computed, and converted into information to suit some business

purposes (Inderscience, 2007; Laudon & Laudon, 2005; Martin et al., 2004;

Mosley et al., 1997). With the increasing complexity of business and the

growing need for information, BISs are more important than ever (Larson

et al., 2005).

2.1.1 Fundamental Business Information System Principles

6

Figure 1. Business Information System Principles
Source: Larson et al. (2005)

The five basic principles of BISs are shown in figure 1 and as follows

(Larson et al., 2005).

1. Control Principle – managers need to control and monitor business

activities. The control principle prescribes that a BIS has internal

controls. Internal controls are methods and procedures allowing

managers to control and monitor business activities. They include

policies to direct operations toward common goals, procedures to ensure

reliable management reports, safeguards to protect company assets, and

methods to achieve compliance with laws and regulations.

2. Relevance Principle – decision makers need relevant information to

make informed decisions. The relevance principle prescribes that a BIS

7

reports useful, understandable, timely, and pertinent information for

effective decision-making. The system must be designed to capture data

that make a difference in decisions. To ensure this, we must consider all

decision makers when identifying relevant information for disclosure.

3. Compatibility Principle – BISs must be consistent with the aims of a

company. The compatibility principle prescribes that a BIS conforms to

a company's activities, personnel, and structure. It also must adapt to a

company's unique characteristics. The system must not be intrusive but

must work in harmony with and be driven by company goals.

4. Flexibility Principle – BISs must be able to adjust to changes. The

flexibility principle prescribes that a BIS be able to adapt to changes in

the company, business environment, and needs of decisions makers.

Technological advances, competitive pressures, consumer tastes,

regulations, and company activities constantly evolve. A BIS must be

designed to adapt to these changes.

5. Cost-Benefit Principle – the cost-benefit principle prescribes that the

benefits from an activity in a BIS outweigh the costs of that activity.

The costs and benefits of an activity such as producing a specific report

will impact the decisions of both external and internal users. Decisions

regarding other systems principles are also affected by the cost-benefit

principle.

8

2.1.2 Classifications of Business Information Systems

A classification is both a process and a product. On the one hand,

classification is the act or process of systematically arranging some subject

matter into groups or categories according to selected criteria. On the other

hand, classification is the more or less formally structured set of classes or

categories which emerges (Bailey, 2005; Vessey et al., 2005; Wheaton,

1968).

Classification systems in botany, chemistry, and zoology have played

an indisputable role in the development of their respective fields. First,

they provide a set of unifying constructs so that the area of interest can be

described systematically; more than that, however, they interpret the

aspects of relevance. Second, they predict future development areas; the

periodic table, for example, predicted the existence of certain elements

decades before they were isolated. Third, a system of classification is a

means to an end, rather than an end in itself. It can help, for example, to

determine relationships between what is classified and other selected

variables of interest, in which case it can be used to interpret, predict, or

control some aspect of interest. In particular, it is generally agreed that a

classification system should permit exhaustive classification and comprise

mutually exclusive categories (Vessey et al., 2005; Wheaton, 1968).

9

Table 1. Example of the Types of Business Information Systems

Classification Criteria Example of the Types of BISs

Organizational Level
Transaction Processing Systems
Management Information Systems
Decision Support Systems

Functional Area
Accounting Information Systems
Production Management Systems
Human Resource Management Systems

Application Scope
Personal Information Management Systems
Enterprise Resource Planning Systems
Interorganizational Systems

System Architecture
Centralized Systems
Client/Server Systems
Web-Based Systems

BISs vary widely in their functions, capabilities, performance and

social consequences, as well as in their components, inputs, outputs and the

users that they can support. Normally, they are classified in several ways

such as: (a) organizational levels, (b) major functional areas, (c) support

provided by the system (application scope), and (d) system architecture

(Barron et al., 1999; Turban et al., 1996) (see Table 1).

2.2 Legacy Business Information Systems

Legacy BISs are BIS that are critical to the operation of companies,

but that were developed years ago using early information technologies.

These BISs have been maintained for many years by many software

10

engineers, and while many changes have been made to the BIS, the

supporting documentation may not be current. These factors contribute to

the staggering cost of maintaining legacy BISs. Consequently, there is an

urgent need to find ways to make these BISs more maintainable without

disrupting the operation of the company (Joiner & Tsai, 1998).

Some years ago, legacy BISs were one of the major information

systems problems, but this has become less prominent recently. This is

possibly because many companies have been obliged to replace old BISs to

ensure Y2K (millennium) compliance. However, it is safe to predict that

the problem will soon appear again, in a much more severe form (Bennett

& Rajlich, 2000).

2.2.1 Tactics for Dealing with Legacy Business Information Systems

Much effort has been expended over the past twenty years in

developing technology solutions to legacy BISs, of which there are several

approaches (Lee & Yoo, 2000; Martin et al., 1990; Martin et al., 2004;

McNurlin & Sprague, 2005; Seacord et al., 2003; Serrano et al., 2002):

1. Replace legacy BISs with purchased packages – this is a very attractive

alternative when it can be used. If there is an available packaged system

that satisfies the needs of the company, then it can be purchased and

11

installed to replace the obsolete BIS. In many instances, however, there

is no packaged system that is deemed satisfactory, so this option may

not be available.

2. Rewrite legacy BISs – in some cases, a legacy BIS may beyond rescue.

If the code is convoluted and patched, if the technology is antiquated, or

if the design is poor, it may be necessary to start from scratch. The

thought of rewriting a large BIS is often discouraging because of the

large amount of resources it will take.

3. Improve legacy BISs – reworking the old BIS to make it less difficult to

maintain by upgrading the documentation and converting existing

spaghetti code into structured code. This is a more ambitious form of

improving aims to upgrade the old BIS so that it better serves the needs

of the organization and is also easily changeable so that its functionality

can be upgraded as the needs changes. It is often possible to upgrade an

old BIS for less than half the cost of developing a new one.

2.2.2 Myths Associated with Legacy Business Information Systems

It is important to dispel some common myths about legacy BISs.

Misinformation has always surrounded much of the debate regarding

legacy BISs. Misinformation originates from many sources. Most of these

12

sources have little practical experience working with these systems or may

have an agenda that is furthered by avoiding or downplaying the role of

legacy BISs within the company (Ulrich, 2002). Below are common myths

associated with legacy BISs (Bennett & Rajlich, 2000; Ulrich, 2002).

1. Legacy BISs provide little or limited business value – legacy BISs are

the lifeblood of a company because they process critical company data.

Currently, the majority of legacy BISs are written in COBOL. COBOL

applications process 85 percent of all global business data. If these

applications suddenly disappeared, companies would find themselves at

a major loss.

2. Legacy BIS functionality is no longer valid – this is perhaps the greatest

misconception about legacy BISs. Legacy functionality may be hard to

decipher, hard to invoke, or redundantly defined, but legacy business

logic is also very reliable. In other words, most legacy BISs contain

accurate and relevant business logic, but they do not typically invoke

this logic in a way that is conducive to dynamic business requirements.

3. New technologies will provide the ultimate answer to legacy BISs – it is

seductive to think that current technology developments, such as

components, middleware, enterprise computing and so on will provide

the ultimate answer to legacy problem, and that once BISs are expressed

in this form, there will be no more legacy BISs. Experience acquired

13

over the past fifty years shows this is extremely naive. It is safe to

predict that in twenty years, information technology and information

systems will change in ways which we cannot imagine now, and we

shall have to work out how to cope with what now is the latest

technology, but will become tomorrow's legacy. In other words, the

legacy problem is enduring

4. Web-based BISs are rapidly displacing legacy BISs – Web-based front

ends may appear to be displacing legacy BISs, but legacy online

transaction volume continues to grow. The predominant online

transaction processing facility is IBM's Customer Information Control

System (CICS). CICS handled 20 billion transactions per day in 1998.

This was more than the total number of hits per day on the WWW at that

point in time. If legacy BISs were being displaced, one would expect

that this number would shrink over time. Two years later, however, IBM

reported that the number of daily CICS transactions jumped to 30

billion – an increase of 50 percent. The number of customers has also

grown. Gray & Reuter reported 30,000 CICS systems in use in 1993.

This number jumped to 50,000 CICS mainframe licenses by 1999. It is

clear that legacy BISs contine to be the mainstay of the majority of

business environments.

5. Organizations developing new BISs can ignore legacy BISs – studies

14

have shown that replacement BISs typically retain up to 80 percent or

more of the functionality of the existing BISs. Even if this figure is only

40 to 50 percent, the business rules that are in legacy BISs tend to be

difficult to reproduce to any degree of accuracy. Any effort to rebuild or

replace a legacy BIS, in whole or in part, should do so with an

understanding of the BISs being replaced. Legacy understanding is a

minimal requirement to determine which portions of the legacy BIS

need to be replaced.

2.3 The Deployment Problem and Its Solutions

Information system deployment is a complex process which covers all

the activities that have to be carried out from the end of the development

itself on developer sites to the actual installation and maintenance of the

information system on end-user machines (Carzaniga et al., 1998; Hall et

al., 1999). It is worth noting that until recently the research community

focused on the development and evolution of information systems. Very

little research work dealt with the delivery, installation and maintenance of

information systems on end-user machines (Coupaye & Estublier, 2000).

On the whole, there are two ways to ease the deployment load of

existing information systems. The first is to deploy information systems

15

using better deployment tools. Another way is to transform the architecture

of information systems for the purpose of deployability improvement. Over

the past few years, several research works have been devoted to the study

of deployment tools, such as Dolstra et al. (2004), Hall et al. (1999),

Hnetynka (2005), Taconet et al. (2003), and van der Hoek & Wolf (2003).

Dolstra et al. (2004) showed that deployment hazards are similar to

pointer hazards in memory models of programming language and can be

countered by imposing a memory management discipline on software

deployment. Based on this analysis, they have developed a generic

platform and language dependency verification; exact identification of

component variants; computation of complete closures containing all

components on which a component depends; maximal sharing of

components between such closures; and concurrent installation of revisions

and variants of components.

Hall et al. (1999) discussed how the Software Dock framework creates

a distributed, agent-based deployment framework to support the ongoing

cooperation and negotiation among software producers themselves and

among software producers and software consumers.

Hnetynka (2005) presented Deployment Factory, a model-driven

unified environment for deploying component-based applications. The

Deployment Factory is based on (a) the OMG Deployment and

16

Configuration Specification; (b) an analysis of contemporary used

component technologies; and (c) his experience from component-based

development.

Taconet et al. (2003) presented a software infrastructure to support the

deployment of large-scale distributed applications that they call Smart

Deployment Infrastructure (SDI). SDI offers automatic deployment of

multi-component applications. SDI provides a deployment solution to

customize the installation of applications for mobile users and to adapt to

the device's capabilities, to the user's preferences and geographical

location.

van der Hoek & Wolf (2003) defined a flexible release management

process and built a specialized tool to support that process in the context of

distributed, component-based software development. The tool, called

Software Release Manager (SRM), is based on two key notions. First,

while components can be released from physically separate sites, the actual

location of each component is transparent to those using the SRM. Second,

dependencies among components are explicitly recorded so that they can be

understood and exploited by the tool and its users. In particular, the tool

helps developers automatically document and track transitive dependencies,

and helps users in retrieving not just components, but also all of the

dependent components.

17

Carzaniga et al. (1998) and Jansen et al. (2005) characterized a variety

of deployment tools to help our understanding of such deployment tools.

Similarly, several research works have focused on the architecture

transformation of information systems, such as Babiker et al. (1997),

Bodhuin et al. (2002), Hassan & Holt (2005), Kazman & Carriere (1999),

Klusener et al. (2005), Krikhaar et al. (1999), Tahvildari et al. (2003), and

Woods et al. (1999).

Babiker et al. (1997) presented a reengineering model. The goal of the

model was to provide a comprehensive method to reengineer non object-

oriented systems into object-oriented architecture. The model consists of

three main processes: Reverse engineering, merging, and object-oriented

development. Reverse engineering extracts requirements and knowledge

from an existing software system and redocuments the system. In the

merging process, recovered requirements and knowledge from the reverse

engineering process are merged with new requirements and knowledge.

The merging process removes redundancy, checks for inconsistency, and

detects incompleteness. In the object-oriented development, a reengineered

system is developed using an object-oriented software development

method.

Bodhuin et al. (2002) presented a migration strategy whose target

system was a Web-enabled architecture based on the Model-View-

18

Controller design pattern. By extracting all the needed information from

the COBOL source code, the realized toolkit automatically generated the

wrappers for the business logic and the data model and the Web user

interface as Java Server Pages.

Hassan & Holt (2005) proposed an approach to migrate from one Web

development framework to another, in particular they showed an example

of migrating a Web application from the ASP to the NSP framework.

Kazman & Carriere (1999) presented Dali, an open, lightweight

workbench that aids an analyst in extracting, manipulating, and interpreting

architectural information. By assisting in the reconstruction of architecture

from extracted information, Dali helps an analyst redocument architecture

and discover the relationships between as-implemented and as-designed

architecture.

Klusener et al. (2005) provided detailed insight into the nuts and bolts

of architectural modification efforts, and delivered a road-map for

computer-aided life-cycle enabling for software. Others can use this work

or a variant thereof to conduct architectural modification efforts for their

own deployed software systems, when malleability of these systems is not

in alignment with business needs.

Krikhaar et al. (1999) described a two-phase process for software

19

architecture improvement, which is the synthesis of two research areas: the

architecture visualization and analysis area of Philips Research, and the

transformation engines and renovation factories area of the University of

Amsterdam. Phase one of the process is based on Relation Partition

Algebra. By lifting the information to higher levels of abstraction and

calculating metrics over the system, all kinds of quality aspects can be

investigated. Phase two is based on formal transformation techniques on

abstract syntax trees. The software architecture improvement process

allows for a fast feedback loop on results, without the need to deal with the

complete software and without any interference with the normal

development process.

Tahvildari et al. (2003) presented a quantitative framework that allows

specific non-functional requirements (or software qualities) such as

performance and maintainability to guide the reengineering process. The

framework aims to address three issues: (a) the composition of a list of

software transformations which relate to particular software qualities; (b)

the investigation of the mutual impact these transformations have on

software qualities; and (c) the design of a method to quantitatively assess

the impact of a particular transformation on a particular quality in terms of

metrics or quantitative software indices.

Woods et al. (1999) reflected on their experiences in reengineering

20

and reconstructing the architecture of complex software systems and

suggest a new model for organizing the information that results from such

reengineering efforts. The new model will make the exchange of

information among reengineering tools more predictable and robust.

To my knowledge, however, there have been no studies on the

ActiveX component-based architecture transformation of WinBISs for the

purpose of deployability improvement.

Incidentally, practical and well-defined ActiveX component-based BIS

architecture has not been described thus far. Therefore, I need not only

develop the architecture transformation process, but also define the

downloadable architecture.

2.4 Visual Basic-Like Visual Programming

The very first programmers had to work at the lowest possible level,

writing programs as sequences of bits. Since then the development of

programming techniques has aimed to make the programming task easier so

that people with less training should be able to produce programs which

work correctly, as quickly as possible. Visual programming is one current

aspect of that development (Edwards, 1988).

Visual programming is a programming method that allows developers

21

to graphically construct software. Compared with traditional textual

programming methods, visual programming provides a more efficient and

easier way of producing software. Several visual programming paradigms

already exist, and the features provided by different visual programming

paradigms may vary greatly. The VB-like visual programming paradigm is

supported by many popular software development tools (which in this

paper are called VB-like visual programming tools or VB-like tools), such

as VB (Microsoft, 1998), Delphi (Borland, 2005), and PowerBuilder

(SyBase, 2004). In fact, the VB-like visual programming paradigm is

widely used in BISs, including point of sales systems and accounting

information systems.

VB-like visual programming reveals six distinguishing characteristics

(Cheng et al., 2007). Firstly, VB-like visual programming supports

primarily the development of C/S, data-centric BISs. The database runs on

top of a shrink-wrapped RDBMS (Relational Database Management System)

package. In contrast, the client programs are either custom-built window

programs or ASP.NET-style Web programs, both developed using VB-like

visual programming.

Secondly, VB-like visual programming-developed programs consist of

form modules, each form comprising COTS (Commercial-Of-The-Shelf)

components. Moreover, there are six very common types of forms: splash

22

form, main form, about form, function-specific primary form, function-

specific secondary form, and function-specific design-time-only form.

Typically, a VB-like visual programming-developed program is almost

completely made up of these common forms.

Thirdly, the heart of VB-like visual programming consists of

component libraries and code generators. Through the reuse of COTS

components, VB-like visual programming enables developers to

dramatically reduce the amount of time and code required to write a

program. In addition, VB-like visual programming provides WYSIWYG

(What You See Is What You Get) code generators such as form editor and

report editor, where the developers merely fill in forms, drag and drop

icons, or click buttons to automatically generate most code (structured

code), and thus developers only need to hand-write some code

(unstructured code).

Fourthly, a component library designed especially for VB-like visual

programming is a special object-oriented class library that follows a certain

component specification, such as OMG CCM component specification,

Microsoft .NET component specification, or Borland VCL component

specification. Any component library must be installed on a VB-like tool,

and the installed components will appear on the component palette

systematically. Of course, developers are not limited to using the

23

components that ship with a VB-like tool. In fact, developers always add

certain customized or third-party components to the VB-like tool for

particular reasons. Currently, Microsoft .NET Framework Class Library

and Borland VCL Library are the most popular component libraries. Both

libraries provide components and functionalities that allow developers to

build forms, make reports, and to access databases.

Fifthly, VB-like visual programming supports unstructured code

through the event-driven writing method. In event-driven writing the

developers identify the events (such as a user action or a change in focus)

that the program must handle, and write event-handlers to respond to the

events.

Finally, in VB-like visual programming the developers always write

some non-event-handling code. Typical reasons given include reducing

code redundancy, simplifying complex event-handlers, decreasing memory

requirements, simplifying data passing between forms and facilitating code

reuse in the future.

It should be concluded, based on the characteristics outlined above

that: (a) VB-like visual programming is a form-oriented, COTS

components-based, and event-driven programming method; and (b) VB-

like visual programming is an iterative and incremental process that is

organized around five primary activities:

24

1. Creating a new form.

2. Adding a component to a form.

3. Setting a component property.

4. Writing an event-handler.

5. Writing some non-event-handling code.

2.5 Summary of Literature Review

1. Legacy BIS management is an important issue in information systems

(see section 2.2). The study presented in this paper proposes and

demonstrates a solution to make the maintenance of numerous legacy

WinBISs easier, and is thus a contribution to the information systems

field.

2. The study presented in this paper is a unique and innovative study

designed to improve the deployability of legacy WinBISs using ActiveX

components. To my knowledge, no studies have used a similar design to

address the same problem (see section 2.3).

3. The architecture transformation process presented in this paper is

suitable for the VB-like tool-implemented legacy (existing) WinBISs –

a type of BISs in the classification based on system architecture. An

architecture transformation process is independent of organizational

25

level, functional area, application scope, and other such non-

architectural classification criteria. We have no need to develop a more

specialized architecture transformation process to meet a particular

organizational level, functional area, or application scope (see section

2.1).

4. The architecture transformation process presented in this paper is

suitable for the VB-like tool-implemented legacy WinBISs. An

architecture transformation process is dependent on the information

system's architecture and implementation method. It is impossible to

develop a more general yet practical architecture transformation process,

which is independent of the information system's architecture and

implementation method (see section 2.1).

5. Almost all WinBISs are implemented using VB-like visual

programming. Moreover, VB-like visual programming is also the heart

of the architecture transformation process presented in this paper.

Section 2.4 discussed the essential features of VB-like visual

programming.

