7. The Illustration

7.1 Definition

There are three neural networks illustrated in the following. The structures of three neural networks are referring to the frameworks in Figure 1, and they all include one input layer, one hidden layer and one output node.

Take Network I in Figure 5 as an illustration. The Network I has one hidden node, two input nodes and one output node. Let net to be the net input of the hidden node, and the definition of net is defined in (13).

7.2 The Network I

Figure 5: The Network I

$$
\begin{align*}
& \text { net }=18 x_{1}+18 x_{2}-18 \tag{13}\\
& y=-\tanh (\text { net })=-\tanh \left(18 x_{1}+18 x_{2}-18\right) \tag{14}
\end{align*}
$$

7.2.1 The rule-extraction of the Network I

The area of round-off effect in the input space is $\left\{\mathbf{x} \mid 18 x_{1}+18 x_{2}-18>\psi\right\} \cup\{\mathbf{x} \mid$ $\left.18 x_{1}+18 x_{2}-18<-\psi\right\}$. Let the definition of y is in (14) and the range of non-vague y where is $\{-1\} \cup[-\tanh (\psi), \tanh (\psi)] \cup\{1\}$. We can have the following rules:

1. $\mathbf{f}^{-1}(-1)$ equals $\left\{\mathbf{x} \left\lvert\, x_{1}+x_{2}>1+\frac{\psi}{18}\right.\right\}$, which consists of an open polyhedron.
2. For any $y \in[-\tanh (\psi), \tanh (\psi)], \mathbf{f}^{-1}(y)$ equals $\left\{\mathbf{x} \mid 18 x_{1}+18 x_{2}=\tanh ^{-1}(-y)+18\right\}$, which consists of a line.
3. $\mathbf{f}^{-1}(1)$ equals $\left\{\mathbf{x} \left\lvert\, x_{1}+x_{2}<1-\frac{\psi}{18}\right.\right\}$, which consists of an open polyhedron.

Let's take $y=-0.5$ as an example, the corresponding of observation can be depicted in Figure 6.

Figure 6: The observation of $f^{1}(-0.5)$ in Network I.

7.2.2 The rule-extraction of the approximation Network I

Using g to approximate tanh, we can get equation (15).

$$
\hat{y}=-g(n e t) \equiv \begin{cases}-1 & \text { if net } \geq \kappa \tag{15}\\ -\beta_{1} \text { net }-\beta_{2} \text { net }^{2} & \text { if } 0 \leq \text { net }<\kappa \\ -\beta_{1} \text { net }+\beta_{2} \text { net }^{2} & \text { if }-\kappa<\text { net }<0 \\ 1 & \text { if net } \leq-\kappa\end{cases}
$$

For any \hat{y}, let $\mathrm{Xa}(\hat{y})$ be the set of x whose images under g are \hat{y}. Thus, we can have the following rules:

1. $\mathrm{Xa}(-1)$ equals $\left\{\mathbf{x} \left\lvert\, x_{1}+x_{2} \geq 1+\frac{\kappa}{18}\right.\right\}$, which consists of an open polyhedron.
2. For any $\hat{y} \in(-1,0], \operatorname{Xa}(\hat{y})$ equals $\left\{\mathbf{x} \left\lvert\, x_{1}+x_{2}=\frac{-\beta_{1}+\sqrt{\beta_{1}{ }^{2}-4 \hat{y} \beta_{2}}}{36 \beta_{2}}+1\right.\right\}$, which consists of a line.
3. For any $\hat{y} \in(0,1), \operatorname{Xa}(\hat{y})$ equals $\left\{\mathbf{x} \left\lvert\, x_{1}+x_{2}=\frac{\beta_{1}-\sqrt{\beta_{1}{ }^{2}+4 \hat{y} \beta_{2}}}{36 \beta_{2}}+1\right.\right\}$, which consists of a line.
4. $\mathrm{Xa}(1)$ equals $\left\{\mathbf{x} \left\lvert\, x_{1}+x_{2} \leq 1-\frac{\kappa}{18}\right.\right\}$, which consists of an open polyhedron.

Figure 7 illustrates the graph of $\mathrm{Xa}(-0.5)$.

Figure 7: The observation of $\mathrm{Xa}(-0.5)$ in the approximation Network I

7.3 The Network II

The Network II in Figure 8 has two hidden nodes, two input nodes and one output node. Let net ${ }_{1}$ and net t_{1} to be the net input of the hidden node, and the definitions of net $_{1}$ and net $_{2}$ are defined in (16).

Figure 8: The Network II.

$$
\begin{align*}
& \text { net }_{1}=18 x_{1}+18 x_{2}-18 \\
& \text { net }_{2}=-36 x_{1}-36 x_{2}+36 \tag{16}\\
& y=-\tanh \left(\text { net }_{1}\right)-\tanh \left(\text { net }_{2}\right)-1 \tag{17}
\end{align*}
$$

7.3.1 The rule-extraction of the Network II

The area of round-off effect for the net $_{1}$ is $\left\{\mathbf{x} \mid 18 x_{1}+18 x_{2}-18>\psi\right\} \cup\{\mathbf{x} \mid$ $\left.18 x_{1}+18 x_{2}-18<-\psi\right\}$. The area of round-off effect for the $n e t_{2}$ is $\left\{\mathbf{x} \mid-36 x_{1}-36 x_{2}+36>\right.$ $\psi\} \cup\left\{\mathbf{x} \mid-36 x_{1}-36 x_{2}+36<-\psi\right\}$. Let the definition of y is in (17), and the range of
non-vague y is $\left[\frac{\sqrt{\sqrt{5}-2}(\sqrt{5}-3)}{\sqrt{5}-1}-1, \frac{\sqrt{\sqrt{5}-2}(3-\sqrt{5})}{\sqrt{5}-1}-1\right]^{1}$. We can have the following rules:

1. $\mathbf{f}^{-1}\left(\frac{\sqrt{\sqrt{5}-2}(\sqrt{5}-3)}{\sqrt{5}-1}-1\right)$ equals $\left\{x_{1}+x_{2}=1+\frac{\tanh ^{-1}(-\sqrt{\sqrt{5}-2})}{18}\right\}$, which consists of a line.
2. For any $y \in\left(\frac{\sqrt{\sqrt{5}}-2(\sqrt{5}-3)}{\sqrt{5}-1}-1, \tanh (0.5 \psi)-2\right), \mathbf{f}^{-1}(y)$ equals $\left\{\mathbf{x} \mid x_{1}+x_{2}=\right.$ $\left.\frac{\tanh ^{-1}\left(a_{1}\right)}{18}+1,-a_{1}-\tanh \left(-2 \tanh ^{-1}\left(a_{1}\right)\right)=y+1, a_{1} \in[-\tanh (0.5 \psi), \tanh (0.5 \psi)]\right\}$, which consists of two parallel lines.
3. For any $y \in[\tanh (0.5 \psi)-2, \tanh (0.5 \psi)-\tanh (\psi)-1], \mathbf{f}^{-1}(y)$ equals $\left\{\mathbf{x} \mid x_{1}+x_{2}=\right.$ $\left.\frac{\tanh ^{-1}(-y-2)}{18}+1\right\} \cup\left\{\mathbf{x} \left\lvert\, x_{1}+x_{2}=\frac{\tanh ^{-1}\left(a_{1}\right)}{18}+1\right.,-a_{1}-\tanh \left(-2 \tanh ^{-1}\left(a_{1}\right)\right)=y\right.$ $\left.+1, a_{1} \in[-\tanh (0.5 \psi), \tanh (0.5 \psi)]\right\}$, which consists of three parallel lines.
4. For any $y \in(\tanh (0.5 \psi)-\tanh (\psi)-1, \tanh (\psi)-2], \mathbf{f}^{-1}(y)$ equals $\left\{\mathbf{x} \mid x_{1}+x_{2}=\right.$ $\left.\frac{\tanh ^{-1}(-y-2)}{18}+1\right\} \cup\left\{\mathbf{x} \left\lvert\, x_{1}+x_{2}=\frac{\tanh ^{-1}\left(a_{1}\right)}{18}+1\right.,-a_{1}-\tanh \left(-2 \tanh ^{-1}\left(a_{1}\right)\right)=y\right.$ $\left.+1, a_{1} \in[-\tanh (0.5 \psi), \tanh (0.5 \psi)]\right\}$, which consists of three parallel lines.
5. For any $y \in(\tanh (\psi)-2,-1), \mathbf{f}^{-1}(y)$ equals $\left\{\mathbf{x} \left\lvert\, x_{1}+x_{2}=\frac{\tanh ^{-1}\left(a_{1}\right)}{18}+1\right.,-a_{1}-\right.$ $\left.\tanh \left(-2 \tanh ^{-1}\left(a_{1}\right)\right)=y+1, a_{1} \in[-\tanh (0.5 \psi), \tanh (0.5 \psi)]\right\}$, which consists of two parallel lines.
6. $\mathbf{f}^{-1}(-1)$ equals $\left\{\mathbf{x} \left\lvert\, x_{1}+x_{2}>1+\frac{\psi}{18}\right.\right\} \cup\left\{\mathbf{x} \left\lvert\, x_{1}+x_{2}<1-\frac{\psi}{18}\right.\right\} \cup\left\{\mathbf{x} \mid x_{1}+x_{2}=1\right\}$, which consists of two parallel open polyhedra and a line.
7. For any $y \in(-1,-\tanh (\psi)), \mathbf{f}^{-1}(y)$ equals equals $\left\{\mathbf{x} \left\lvert\, x_{1}+x_{2}=\frac{\tanh ^{-1}\left(a_{1}\right)}{18}+1\right.,-a_{1}\right.$ $\left.-\tanh \left(-2 \tanh ^{-1}\left(a_{1}\right)\right)=y+1, a_{1} \in[-\tanh (0.5 \psi), \tanh (0.5 \psi)]\right\}$ which consists of two parallel lines.
8. For any $y \in[-\tanh (\psi)$, $-\tanh (0.5 \psi)+\tanh (\psi)-1), \mathbf{f}^{-1}(y)$ equals $\left\{\mathbf{x} \mid x_{1}+x_{2}=\right.$

[^0]$\left.1+\frac{\tanh ^{-1}(-y)}{18}\right\} \cup$ equals $\left\{\mathbf{x} \left\lvert\, x_{1}+x_{2}=\frac{\tanh ^{-1}\left(a_{1}\right)}{18}+1\right.,-a_{1}-\tanh \left(-2 \tanh ^{-1}\left(a_{1}\right)\right)\right.$
$\left.=y+1, a_{1} \in[-\tanh (0.5 \psi), \tanh (0.5 \psi)]\right\}$, which consists of three parallel lines.
9. For any $y \in[-\tanh (0.5 \psi)+\tanh (\psi)-1,-\tanh (0.5 \psi)], \mathbf{f}^{-1}(y)$ equals $\left\{\mathbf{x} \mid x_{1}+x_{2}=\right.$ $\left.1+\frac{\tanh ^{-1}(-y)}{18}\right\} \cup\left\{\mathbf{x} \left\lvert\, x_{1}+x_{2}=\frac{\tanh ^{-1}\left(a_{1}\right)}{18}+1\right.,-a_{1}-\tanh \left(-2 \tanh ^{-1}\left(a_{1}\right)\right)=y+1\right.$, $\left.a_{1} \in[-\tanh (0.5 \psi), \tanh (0.5 \psi)]\right\}$, which consists of three parallel lines
10. For any $y \in\left(-\tanh (0.5 \psi), \frac{\sqrt{\sqrt{5}-2}(\sqrt{5}-3)}{\sqrt{5}-1}-1\right), \mathbf{f}^{-1}(y)$ equals $\left\{\mathbf{x} \mid x_{1}+x_{2}=\right.$ $\left.\frac{\tanh ^{-1}\left(a_{1}\right)}{18}+1,-a_{1}-\tanh \left(-2 \tanh ^{-1}\left(a_{1}\right)\right)=y+1, a_{1} \in[-\tanh (0.5 \psi), \tanh (0.5 \psi)]\right\}$, which consists of two parallel lines.
11. $\mathbf{f}^{-1}\left(\frac{\sqrt{\sqrt{5}-2}(3-\sqrt{5})}{\sqrt{5}-1}-1\right)$ equals $\left\{\mathbf{x} \left\lvert\, x_{1}+x_{2}=1+\frac{\tanh ^{-1}(\sqrt{\sqrt{5}-2})}{18}\right.\right\}$, which consists of a line.

The corresponding of observation can be depicted in Figure 9.

Figure 9: The observation of Network II.

7.3.2 The rule-extraction of the approximation Network II

Since $a_{\mathrm{k}}=\tanh \left(n e t_{\mathrm{k}}\right)$ where $\mathrm{k}=1$ or 2, we can have equation (18) and (19), and the range of \hat{y} is $\left[\frac{\beta_{1}{ }^{2}}{6 \beta_{2}}-\frac{\beta_{1}{ }^{2}}{12 \beta_{2}}-1, \frac{-\beta_{1}{ }^{2}}{6 \beta_{2}}+\frac{\beta_{1}{ }^{2}}{12 \beta_{2}}-1\right]^{2}$.

$$
\left.\begin{array}{l}
\hat{a}_{\mathrm{k}}=g\left(\text { net }_{\mathrm{k}}\right) \equiv\left\{\begin{array}{ll}
1 & \text { if } \text { net }_{k} \geq \kappa \\
\beta_{1} \text { net }_{k}+\beta_{2} \text { net }_{k}{ }^{2} & \text { if } 0 \leq \text { net }_{k}<\kappa \\
\beta_{1} \text { net }_{k}-\beta_{2} \text { net }_{k}^{2} & \text { if }-\kappa<\text { net }_{k}<0 \\
-1 & \text { if net }
\end{array}{ }_{k} \leq-\kappa\right.
\end{array}\right\} \begin{aligned}
& \hat{y}=-\hat{a}_{1}-\hat{a}_{2}-1
\end{aligned}
$$

For any \hat{y}, let $\mathrm{Xa}(\hat{y})$ be the set of x whose images under g are \hat{y}. Thus, we can have the following rules:

1. $\operatorname{Xa}\left(\frac{\beta_{1}{ }^{2}}{6 \beta_{2}}-\frac{\beta_{1}{ }^{2}}{12 \beta_{2}}-1\right)$ equals $\left\{\mathbf{x} \left\lvert\, x_{1}+x_{2}=\frac{\beta_{1}-\sqrt{\beta_{1}{ }^{2}-12(\hat{y}+1) \beta_{2}}}{108 \beta_{2}}+1\right.\right\}$, which consists of a line.
2. For any $\hat{y} \in\left(\frac{\beta_{1}{ }^{2}}{6 \beta_{2}}-\frac{\beta_{1}{ }^{2}}{12 \beta_{2}}-1,0.5 \beta_{1} \kappa-0.25 \beta_{2} \kappa^{2}-2\right), \mathrm{Xa}(\hat{y})$ equals $\left\{\mathbf{x} \mid x_{1}+x_{2}\right.$ $\left.=\frac{\beta_{1} \pm \sqrt{\beta_{1}{ }^{2}-12(\hat{y}+1) \beta_{2}}}{108 \beta_{2}}+1\right\}$, which consists of two parallel lines.
3. For any $\hat{y} \in\left[0.5 \beta_{1} \kappa-0.25 \beta_{2} \kappa^{2}-2,-0.5 \beta_{1} \kappa+0.75 \beta_{2} \kappa^{2}-1\right), \mathrm{Xa}(\hat{y})$ equals $\left\{\mathbf{x} \mid x_{1}+\right.$ $\left.x_{2}=\frac{\beta_{1}-\sqrt{\beta_{1}{ }^{2}+4(\hat{y}+2) \beta_{2}}}{36 \beta_{2}}+1\right\} \cup\left\{\mathbf{x} \left\lvert\, x_{1}+x_{2}=\frac{\beta_{1} \pm \sqrt{\beta_{1}{ }^{2}-12(\hat{y}+1) \beta_{2}}}{108 \beta_{2}}+1\right.\right\}$, which consists of three parallel lines.
4. For any $\hat{y} \in\left[-0.5 \beta_{1} \kappa+0.75 \beta_{2} \kappa^{2}-1,-1\right), \operatorname{Xa}(\hat{y})$ equals $\left\{\mathbf{x} \mid x_{1}+x_{2}\right.$ $\left.=\frac{\beta_{1}-\sqrt{\beta_{1}{ }^{2}+4(\hat{y}+2) \beta_{2}}}{36 \beta_{2}}+1\right\} \cup\left\{\mathbf{x} \left\lvert\, x_{1}+x_{2}=\frac{\beta_{1} \pm \sqrt{\beta_{1}{ }^{2}-12(\hat{y}+1) \beta_{2}}}{108 \beta_{2}}+1\right.\right\}$, which

[^1]consists of three parallel lines.
5. $\mathrm{Xa}(-1)$ equals $\left\{\mathbf{x} \mid 18 x_{1}+18 x_{2}-18 \geq \kappa\right\} \cup\left\{\mathbf{x} \mid 18 x_{1}+18 x_{2}-18 \leq-\kappa\right\} \cup\left\{\mathbf{x} \mid x_{1}+x_{2}=\right.$ $1\}$, which consists of two open polyhedra and a line.
6. For any $\hat{y} \in\left(-1,0.5 \beta_{1} \kappa^{+} 0.75 \beta_{2} \kappa^{2}-1\right], \mathrm{Xa}(\hat{y})$ equals $\left\{\mathbf{x} \mid x_{1}+x_{2}\right.$ $\left.=\frac{-\beta_{1}+\sqrt{\beta_{1}{ }^{2}-4 \hat{y} \beta_{2}}}{36 \beta_{2}}+1\right\} \cup\left\{\mathbf{x} \left\lvert\, x_{1}+x_{2}=\frac{-\beta_{1} \pm \sqrt{\beta_{1}{ }^{2}+12(\hat{y}+1) \beta_{2}}}{108 \beta_{2}}+1\right.\right\}$, which consists of three parallel lines.
7. For any $\hat{y} \in\left(0.5 \beta_{1} \kappa^{+} 0.75 \beta_{2} \kappa^{2}-1,-0.5 \beta_{1} \kappa-0.25 \beta_{2} \kappa^{2}\right], \mathrm{Xa}(y)$ equals $\left\{\mathbf{x} \mid x_{1}+x_{2}\right.$ $\left.=\frac{-\beta_{1}+\sqrt{\beta_{1}{ }^{2}-4 \hat{y} \beta_{2}}}{36 \beta_{2}}+1\right\} \cup\left\{\mathbf{x} \left\lvert\, x_{1}+x_{2}=\frac{-\beta_{1} \pm \sqrt{\beta_{1}{ }^{2}+12(\hat{y}+1) \beta_{2}}}{108 \beta_{2}}+1\right.\right\}$, which consists of three parallel lines.
8. For any $\hat{y} \in\left(-0.5 \beta_{1} \kappa-0.25 \beta_{2} \kappa^{2}, \frac{-\beta_{1}{ }^{2}}{6 \beta_{2}}+\frac{\beta_{1}{ }^{2}}{12 \beta_{2}}-1\right), \operatorname{Xa}(\hat{y})$ equals $\left\{\mathbf{x} \mid x_{1}+x_{2}\right.$ $\left.=\frac{-\beta_{1} \pm \sqrt{\beta_{1}{ }^{2}+12(\hat{y}+1) \beta_{2}}}{108 \beta_{2}}+1\right\}$, which consists of two parallel lines.
9. $\mathrm{Xa}\left(\frac{-\beta_{1}{ }^{2}}{6 \beta_{2}}+\frac{\beta_{1}{ }^{2}}{12 \beta_{2}}-1\right)$ equals $\left\{\mathbf{x} \left\lvert\, x_{1}+x_{2}=\frac{-\beta_{1}+\sqrt{\beta_{1}{ }^{2}+12(\hat{y}+1) \beta_{2}}}{108 \beta_{2}}+1\right.\right\}$, which consists of a line.

The corresponding of observation can be depicted in Figure 10.

Figure 10: The observation of approximation Network II.

7.4 The Network III

Take Network III in Figure 4 as an illustration. The Network III has two hidden nodes, two input nodes and one output node. Let net ${ }_{1}$ and net ${ }_{2}$ to be the net input of the hidden node, and the definitions of net $_{1}$ and $n e t_{2}$ are defined in (10).

7.4.1 The rule-extraction of the Network III

The area of round-off effect for the net $_{1}$ is $\left\{\mathbf{x} \mid 18 x_{1}+18 x_{2}-18>\psi\right\} \cup\{\mathbf{x} \mid$ $\left.18 x_{1}+18 x_{2}-18<-\psi\right\}$. The area of round-off effect for the $n e t_{2}$ is $\left\{\mathbf{x} \mid-18 x_{1}+18 x_{2}-18>\right.$ $\psi\} \cup\left\{\mathbf{x} \mid-18 x_{1}+18 x_{2}-18<-\psi\right\}$, and the range of non-vague y where is $\{-3\} \cup$ $[-\tanh (\psi)-2, \tanh (\psi)] \cup\{1\}$. We can have the following rules:

1. $\mathbf{f}^{-1}(-3)=\left\{\mathbf{x} \left\lvert\, x_{1}+x_{2}>1+\frac{\psi}{18}\right., x_{1}-x_{2}<-1-\frac{\psi}{18}\right\}$ which is an open polyhedron in the input space.
2. For any $y \in[-\tanh (\psi)-2,-2 \tanh (\psi)-1), \mathbf{f}^{-1}(y)$ equals $\left\{\mathbf{x} \left\lvert\, x_{1}+x_{2}=1-\frac{\tanh ^{-1}(y+2)}{18}\right.\right.$, $\left.x_{1}-x_{2}<-1-\frac{\psi}{18}\right\} \cup\left\{\mathbf{x} \left\lvert\, x_{1}-x_{2}=-1+\frac{\tanh ^{-1}(y+2)}{18}\right., x_{1}+x_{2}>1+\frac{\psi}{18}\right\}$, which includes two half-lines.
3. For any $y \in[-2 \tanh (\psi)-1, \tanh (\psi)-2], \mathbf{f}^{-1}(y)$ equals $\left\{\mathbf{x} \left\lvert\, x_{1}+x_{2}=1-\frac{\tanh ^{-1}(y+2)}{18}\right.\right.$, $\left.x_{1}-x_{2}<-1-\frac{\psi}{18}\right\} \cup\left\{\mathbf{x} \left\lvert\, x_{1}-x_{2}=-1+\frac{\tanh ^{-1}(y+2)}{18}\right., x_{1}+x_{2}>1+\frac{\psi}{18}\right\} \cup\left\{\mathbf{x} \mid x_{1}+x_{2}=\right.$ $\left.\frac{\tanh ^{-1}\left(a_{1}\right)}{18}+1,-x_{1}+x_{2}=\frac{\tanh ^{-1}\left(-a_{1}-y-1\right)}{18}+1, a_{1} \in[1-2 \tanh (\psi), \tanh (\psi)]\right\}$, which includes two half-lines and a curve segment.
4. For any $y \in(\tanh (\psi)-2,-1), \mathbf{f}^{-1}(y)$ equals $\left\{\mathbf{x} \left\lvert\, x_{1}+x_{2}=\frac{\tanh ^{-1}\left(a_{1}\right)}{18}+1\right.,-x_{1}+x_{2}\right.$ $\left.=\frac{\tanh ^{-1}\left(-a_{1}-y-1\right)}{18}+1, a_{1} \in(-\tanh (\psi), \tanh (\psi))\right\}$, which includes a curve segment.
5. $\quad \mathbf{f}^{-1}(-1)=\left\{\mathbf{x} \left\lvert\, x_{1}=\frac{\tanh ^{-1}\left(a_{1}\right)}{18}\right., x_{2}=1, a_{1} \in[-\tanh (\psi), \tanh (\psi)]\right\} \cup\left\{\mathbf{x} \mid x_{1}+x_{2}>\right.$ $\left.1+\frac{\psi}{18}, x_{1}-x_{2}>-1+\frac{\psi}{18}\right\} \cup\left\{\mathbf{x} \left\lvert\, x_{1}+x_{2}<1-\frac{\psi}{18}\right., x_{1}-x_{2}<-1-\frac{\psi}{18}\right\}$, which includes a line segment and two open polyhedra.
6. For any $y \in(-1,-\tanh (\psi)), \mathbf{f}^{-1}(y)$ equals $\left\{\mathbf{x} \left\lvert\, x_{1}+x_{2}=\frac{\tanh ^{-1}\left(a_{1}\right)}{18}+1\right.,-x_{1}+x_{2}=\right.$ $\left.\frac{\tanh ^{-1}\left(-a_{1}-y-1\right)}{18}+1, a_{1} \in[-\tanh (\psi), \tanh (\psi)]\right\}$, which includes a curve segment.
7. For any $y \in[-\tanh (\psi), 2 \tanh (\psi)-1], \mathbf{f}^{-1}(y)$ equals $\left\{\mathbf{x} \left\lvert\, x_{1}+x_{2}=\frac{\tanh ^{-1}\left(a_{1}\right)}{18}+1\right.\right.$, $\left.-x_{1}+x_{2}=\frac{\tanh ^{-1}\left(-a_{1}-y-1\right)}{18}+1, a_{1} \in[-\tanh (\psi), 2 \tanh (\psi)-1]\right\} \cup\left\{\mathbf{x} \mid x_{1}-x_{2}=\right.$ $\left.-1+\frac{\tanh ^{-1}(y)}{18}, x_{1}+x_{2}<1-\frac{\psi}{18}\right\} \cup\left\{\mathbf{x} \left\lvert\, x_{1}+x_{2}=1-\frac{\tanh ^{-1}(y)}{18}\right., x_{1}-x_{2}>-1+\frac{\psi}{18}\right\}$, which includes a curve segment and two half-lines.
8. For any $y \in(2 \tanh (\psi)-1, \tanh (\psi)], \mathbf{f}^{-1}(y)$ equals $\left\{\mathbf{x} \left\lvert\, x_{1}-x_{2}=-1+\frac{\tanh ^{-1}(y)}{18}\right., x_{1}+\right.$ $\left.x_{2}<1-\frac{\psi}{18}\right\} \cup\left\{\mathbf{x} \left\lvert\, x_{1}+x_{2}=1-\frac{\tanh ^{-1}(y)}{18}\right., x_{1}-x_{2}>-1+\frac{\psi}{18}\right\}$, which includes two half-lines.
9. $\mathbf{f}^{-1}(1)=\left\{\mathbf{x} \left\lvert\, x_{1}+x_{2}<1-\frac{\psi}{18}\right., x_{1}-x_{2}>-1+\frac{\psi}{18}\right\}$, which is an open polyhedron in the input space.
Let's take $y=-2.995,-2.5,-1.5,-1,-0.5$ and 0.995 as examples, the corresponding of observation can be depicted in Figure 11.

Figure 11: The observation of $\mathrm{f}^{-1}(y)$ in Network III.
7.4.2 The rule-extraction of the approximation Network III

For any \hat{y}, let $\mathrm{Xa}(\hat{y})$ be the set of x whose images under g are \hat{y}. Thus, we can have the following rules:

1. $\mathrm{Xa}(-3)=\left\{\mathbf{x} \mid 18 x_{1}+18 x_{2} \geq \kappa^{+}+18,-18 x_{1}+18 x_{2} \geq \kappa^{+}+18\right\}$, which is an open polyhedron in the input space.
2. For any $\hat{y} \in(-3,-2], \mathrm{Xa}(\hat{y})$ equals $\left\{\mathbf{x} \left\lvert\, 18 x_{1}+18 x_{2}=\frac{-\beta_{1}+\sqrt{\beta_{1}{ }^{2}-4(\hat{y}+2) \beta_{2}}}{2 \beta_{2}}+18\right.\right.$,

$$
\begin{aligned}
& \left.-18 x_{1}+18 x_{2}-18 \geq \kappa\right\} \cup\left\{\mathbf{x} \left\lvert\,-18 x_{1}+18 x_{2}=\frac{-\beta_{1}+\sqrt{\beta_{1}^{2}-4(\hat{y}+2) \beta_{2}}}{2 \beta_{2}}+18\right.,\right. \\
& \left.18 x_{1}+18 x_{2}-18 \geq \kappa\right\} \cup\left\{\mathbf{x} \left\lvert\, 18 x_{1}+18 x_{2}=\frac{-\beta_{1}+\sqrt{\beta_{1}^{2}+4 \hat{a}_{1} \beta_{2}}}{2 \beta_{2}}+18\right.,-18 x_{1}+18 x_{2}\right.
\end{aligned}
$$ $\left.=\frac{-\beta_{1}+\sqrt{\beta_{1}{ }^{2}+4\left(-\hat{y}-1-\hat{a}_{1}\right) \beta_{2}}}{2 \beta_{2}}+18,0 \leq \hat{a}_{1}<1\right\}$, which consists of two half-lines and a curve segment.

3. For any $\hat{y} \in(-2,-1), \operatorname{Xa}(\hat{y})$ equals $\left\{\mathbf{x} \left\lvert\, 18 x_{1}+18 x_{2}=\frac{\beta_{1}-\sqrt{\beta_{1}{ }^{2}+4(\hat{y}+2) \beta_{2}}}{2 \beta_{2}}+18\right.\right.$,

$$
\begin{aligned}
& \left.-18 x_{1}+18 x_{2}-18 \geq \kappa\right\} \cup\left\{\mathbf{x} \left\lvert\, 18 x_{1}+18 x_{2}=\frac{-\beta_{1}+\sqrt{\beta_{1}{ }^{2}+4 \hat{a}_{1} \beta_{2}}}{2 \beta_{2}}+18\right.,-18 x_{1}+18 x_{2}\right. \\
& \left.=\frac{-\beta_{1}+\sqrt{\beta_{1}^{2}+4\left(-\hat{y}-1-\hat{a}_{1}\right) \beta_{2}}}{2 \beta_{2}}+18,0 \leq \hat{a}_{1}<1\right\} \cup\left\{\mathbf{x} \mid 18 x_{1}+18 x_{2}\right. \\
& \left.=\frac{\beta_{1}-\sqrt{\beta_{1}{ }^{2}-4 \hat{a}_{1} \beta_{2}}}{2 \beta_{2}}+18,-18 x_{1}+18 x_{2}=\frac{-\beta_{1}+\sqrt{\beta_{1}{ }^{2}+4\left(-\hat{y}-1-\hat{a}_{1}\right) \beta_{2}}}{2 \beta_{2}}+18,-1<\hat{a}_{1}<0\right\} \\
& \cup\left\{\mathbf{x} \left\lvert\,-18 x_{1}+18 x_{2}=\frac{\beta_{1}-\sqrt{\beta_{1}^{2}+4(\hat{y}+2) \beta_{2}}}{2 \beta_{2}}+18\right.,18 x_{1}+18 x_{2}-18 \geq \kappa\right\} \cup\left\{\mathbf{x} \mid 18 x_{1}+\right. \\
& 18 x_{2}=\frac{-\beta_{1}+\sqrt{\beta_{1}^{2}+4 \hat{a}_{1} \beta_{2}}}{2 \beta_{2}}+18,-18 x_{1}+18 x_{2}=\frac{\beta_{1}-\sqrt{\beta_{1}^{2}-4\left(-\hat{y}-1-\hat{a}_{1}\right) \beta_{2}}}{2 \beta_{2}}+18,0 \leq \hat{a}_{1}
\end{aligned}
$$

$<1\}$, which consists of three curve segments and two half-lines.
4. For $\hat{y}=-1, \mathrm{Xa}(-1)$ equals $\left\{\mathbf{x} \mid 18 x_{1}+18 x_{2} \leq-\kappa+18,-18 x_{1}+18 x_{2} \geq \kappa+18\right\} \cup\{\mathbf{x} \mid$ $\left.18 x_{1}+18 x_{2}=\frac{-\beta_{1}+\sqrt{\beta_{1}{ }^{2}+4 \hat{a}_{1} \beta_{2}}}{2 \beta_{2}}+18, x_{2}=1,0 \leq \hat{a}_{1}<1\right\} \cup\left\{\mathbf{x} \mid 18 x_{1}+18 x_{2}\right.$ $\left.=\frac{\beta_{1}-\sqrt{\beta_{1}{ }^{2}-4 \hat{a}_{1} \beta_{2}}}{2 \beta_{2}}+18, x_{2}=1,-1<\hat{a}_{1}<0\right\} \cup\left\{\mathbf{x} \mid 18 x_{1}+18 x_{2} \geq \kappa+18,-18 x_{1}+18 x_{2}\right.$
$\left.\leq-\kappa^{+}+18\right\}$, which consists of two line segments and two open polyhedra.
5. For any $\hat{y} \in(-1,0), \operatorname{Xa}(\hat{y})$ equals $\left\{\mathbf{x} \left\lvert\, 18 x_{1}+18 x_{2}=\frac{\beta_{1}-\sqrt{\beta_{1}{ }^{2}+4 \hat{y} \beta_{2}}}{2 \beta_{2}}+18\right.,-18 x_{1}\right.$ $\left.+18 x_{2}=\frac{-\beta_{1}+\sqrt{\beta_{1}^{2}+4\left(-\hat{y}-1-\hat{a}_{1}\right) \beta_{2}}}{2 \beta_{2}}+18,-1<\hat{a}_{1}<0\right\} \cup\left\{\mathbf{x} \mid-18 x_{1}+18 x_{2}\right.$

$$
\begin{aligned}
& \left.=\frac{-\beta_{1}+\sqrt{\beta_{1}{ }^{2}-4 \hat{y} \beta_{2}}}{2 \beta_{2}}+18, \quad 18 x_{1}+18 x_{2}-18<-\kappa\right\} \cup\left\{\mathbf{x} \mid 18 x_{1}+18 x_{2}\right. \\
& \left.=\frac{-\beta_{1}+\sqrt{\beta_{1}{ }^{2}-4 \hat{y} \beta_{2}}}{2 \beta_{2}}+18,-18 x_{1}+18 x_{2}=\frac{\beta_{1}-\sqrt{\beta_{1}{ }^{2}-4\left(-\hat{y}-1-\hat{a}_{1}\right) \beta_{2}}}{2 \beta_{2}}+18,0 \leq \hat{a}_{1}<1\right\} \\
& \cup\left\{\mathbf{x} \left\lvert\, 18 x_{1}+18 x_{2}=\frac{\beta_{1}-\sqrt{\beta_{1}{ }^{2}+4 \hat{y} \beta_{2}}}{2 \beta_{2}}+18\right., \text { net }{ }_{2}=\frac{\beta_{1}-\sqrt{\beta_{1}{ }^{2}-4\left(-\hat{y}-1-\hat{a}_{1}\right) \beta_{2}}}{2 \beta_{2}},-1<\hat{a}_{1}\right. \\
& <0\} \cup\left\{\mathbf{x} \left\lvert\, 18 x_{1}+18 x_{2}=\frac{-\beta_{1}+\sqrt{\beta_{1}{ }^{2}-4 \hat{y} \beta_{2}}}{2 \beta_{2}}+18\right.,-18 x_{1}+18 x_{2} \leq-\kappa+18\right\} . \text { Hence }
\end{aligned}
$$

$\mathrm{Xa}(\hat{y})$ consists of three curve segments and two half-lines.
6. For any $\hat{y} \in(0,1), \mathrm{Xa}(y)$ equals $\left\{\mathbf{x} \left\lvert\, 18 x_{1}+18 x_{2}=\frac{\beta_{1}-\sqrt{\beta_{1}{ }^{2}+4 \hat{y} \beta_{2}}}{2 \beta_{2}}+18\right.\right.$, net $_{2}$ $\left.=\frac{\beta_{1}-\sqrt{\beta_{1}{ }^{2}-4\left(-\hat{y}-1-\hat{a}_{1}\right) \beta_{2}}}{2 \beta_{2}},-1<\hat{a}_{1}<0\right\} \cup\left\{\mathbf{x} \left\lvert\,-18 x_{1}+18 x_{2}=\frac{\beta_{1}-\sqrt{\beta_{1}{ }^{2}+4 \hat{y} \beta_{2}}}{2 \beta_{2}}+18\right.\right.$, $\left.18 x_{1}+18 x_{2}-18 \leq-\kappa\right\} \cup\left\{\mathbf{x} \left\lvert\, 18 x_{1}+18 x_{2}=\frac{\beta_{1}-\sqrt{\beta_{1}{ }^{2}+4 \hat{y} \beta_{2}}}{2 \beta_{2}}+18\right.,-18 x_{1}+18 x_{2}-18 \leq\right.$ $-\kappa\}$), which consists of a curve segment and two half-lines.
7. $\mathrm{Xa}(1)$ equals $\left\{\mathbf{x} \mid 18 x_{1}+18 x_{2} \leq-\boldsymbol{\kappa}+18,-18 x_{1}+18 x_{2} \leq-\kappa+18\right\}$, which is an open polyhedron in the input space.

Let's take $\hat{y}=-2.5, \hat{y}=-1.5, \hat{y}=-1, \hat{y}=-0.5, \hat{y}=0.5$ as examples in Figure 12.

Figure 12: The observation of $\mathrm{Xa}(\hat{y})$ in Network III.

[^0]: ${ }^{1}$ For any net $\in\left\{\right.$ net $\left.\mid-\psi \leq n e t_{1} \leq \psi,-\psi \leq n e t_{2} \leq \psi\right\}: a_{1}=\tanh \left(\right.$ net $\left._{1}\right),-1<a_{1}<1, a_{2}=\tanh \left(\right.$ net $\left._{2}\right),-1<a_{2}<1, y=$ $-a_{1}-a_{2}-1 ; a_{2}=\tanh \left(-2 \tanh ^{-1}\left(a_{1}\right)\right)=\frac{-2 a_{1}}{1+a_{1}{ }^{2}}, y=-a_{1}+\frac{2 a_{1}}{1+a_{1}{ }^{2}}-1, \frac{d y}{d a_{1}}=a_{1}{ }^{4}+4 a_{1}{ }^{2}-1=0, a_{1}= \pm \sqrt{\sqrt{5}-2}$ and $y \in$ $\left[\frac{\sqrt{\sqrt{5}-2}(\sqrt{5}-3)}{\sqrt{5}-1}-1, \frac{\sqrt{\sqrt{5}-2}(3-\sqrt{5})}{\sqrt{5}-1}-1\right]$.

[^1]: ${ }^{2}$ For any net $\in\left\{\right.$ net $\left\lvert\,-\frac{\kappa}{2}<\right.$ net $_{1}<0,0 \leq$ net $\left._{2}<\kappa\right\}, \hat{a}_{1}=\beta_{1} n e t_{1}-\beta_{2} n e t_{1}^{2},-\frac{\beta_{1} \kappa}{2}-\frac{\beta_{2} \kappa}{4} \leq \hat{a}_{1}<0, \hat{a}_{2}=$ $\beta_{1} n e t_{2}+\beta_{2} n e t_{2}{ }^{2}, 0 \leq \hat{a}_{2}<1, \hat{y}=-\hat{a}_{1}-\hat{a}_{2}-1 ;$ net $1=-2 n e t_{2}, \hat{y}=\beta_{1} n e t_{1}-3 \beta_{2} n e t_{1}^{2}-1, \frac{d \hat{y}}{d n e t_{1}}=\beta_{1-6} \beta_{2} n e t_{1}=0$, net $t_{1}=\frac{\beta_{1}}{6 \beta_{2}}, \hat{y}=\frac{\beta_{1}^{2}}{6 \beta_{2}}-\frac{\beta_{1}^{2}}{12 \beta_{2}}-1 ;$ For any net $\in\left\{\right.$ net $\left.\left\lvert\, 0 \leq n e t_{1}<\frac{\kappa}{2}\right.,-\kappa \leq n e t_{2}<0\right\}, \hat{a}_{1}=\beta_{1} n e t_{1}+\beta_{2} n e t_{1}^{2}, 0 \leq$ $\hat{a}_{1}<g\left(\frac{\kappa}{2}\right), \hat{a}_{2}=\beta_{1} n e t_{2}-\beta_{2}$ net $_{2}{ }^{2},-1 \leq \hat{a}_{2}<0, \quad \hat{y}=-\hat{a}_{1}-\hat{a}_{2}-1 ;$ net $_{1}=-2 n e t_{2}, \quad \hat{y}=\beta_{1} n e t_{1}+3 \beta_{2} n e t_{1}^{2}-1$,

 $$
 \frac{d \hat{y}}{d n e t_{1}}=\beta_{1+6 \beta_{2} n e t_{1}=0, \text { net }}^{1}=\frac{-\beta_{1}}{6 \beta_{2}}, \hat{y}=\frac{-\beta_{1}^{2}}{6 \beta_{2}}+\frac{\beta_{1}^{2}}{12 \beta_{2}}-1 \text { and } \hat{y} \in\left[\frac{\beta_{1}^{2}}{6 \beta_{2}}-\frac{\beta_{1}^{2}}{12 \beta_{2}}-1, \frac{-\beta_{1}^{2}}{6 \beta_{2}}+\frac{\beta_{1}^{2}}{12 \beta_{2}}-1\right. \text {. }
 $$

