4. The Definition and Representation of Feed-forward Neural Networks

The layered feed-forward neural network includes one hidden layer, one input layer and one output node. In Figure 3, it is the framework of the feed-forward neural networks. The definition of neural network *f* is composed from the following equations (6) and (7), where $tanh(x) \equiv \frac{e^x - e^{-x}}{e^x + e^{-x}}$, *m* is the number of explanatory variables x_j 's, *p* is the number of adopted hidden nodes, $_2\theta_{i0}$ is the bias value of the *i*th hidden node a_i , $_2w_{ij}$ is the weight between the *j*th explanatory variable x_j and the *i*th hidden node a_i , $_3\theta_0$ is the bias value, $_3w_i$ is the weight between the *i*th hidden node a_i which equals $f(\mathbf{x})$.

Figure 3: The framework of feed-forward neural network.

$$a_i(\mathbf{x}) \equiv tanh \left({}_2\theta_{i0} + \sum_{j=1}^m {}_2w_{ij} x_j \right), \tag{6}$$

$$f(\mathbf{x}) \equiv {}_{3}\theta_{0} + \sum_{i=1}^{p} {}_{3}w_{i} a_{i}(\mathbf{x}) = {}_{3}\theta_{0} + \sum_{i=1}^{p} {}_{3}w_{i} \tanh\left({}_{2}\theta_{i0} + \sum_{j=1}^{m} {}_{2}w_{ij} x_{j}\right).$$
(7)

Let net_i to be the net input of the i^{th} hidden node, and the definition of net_i is defined as follows (8):

$$net_i := {}_2\theta_{i0} + \sum_{j=1}^m {}_2w_{ij} x_j$$
(8)

Then, if tanh(x) is given the b^{th} observation $_b\mathbf{x}$, the corresponding value of the i^{th} hidden node $_ba_i$ is $tanh(net_i)$, and the corresponding value of $f(_b\mathbf{x})$ is $_3\theta_0 + \sum_{i=1}^p {}_3w_i {}_ba_i$.

