

An Ontology Application in B2B Integration

Chapter 3 Research Method

3.1 A Ontology-Based Method

As we mention in section 2.3.6, we need a common approach to build up our
ontologies for different B2B standards. In this chapter, we present a ontology-based
method to model the B2B domain. We develop a system analysis approach for the
B2B initiative. Then, we model the business processes and the business documents in
the ontology language, OWL. There are seven main steps in this method (shown in
Figure 3-1). We analyze the current business process and eCommerce Standard
process (step A and B). After analyze the process , we develop a heuristics based
method to model business process (step C and D). We get the ontologies from step
C and step D. We merge the ontologies (step E) and represent ontologies (step F).
Finally, we test these ontologies (step G).

Standard’s Process Current Process

Final B2B Ontology

G. Test Ontology

F. Represent Ontology

Merged Ontology

Process Ontology and

Document Ontology

D. Capture Ontology

B. EC Standard Process

Analysis

E. Merge Ontology, ”to-be”

Process Ontology

Document Ontology

C. Capture Ontology

A. Current Process

Analysis, ”as-is”

Figure 3-1: The Structure of Ontology-Based B2B Integration Method
(This Research)

 36

An Ontology Application in B2B Integration

3.2 Business Process Modeling – UML-based

3.2.1 UML

The UML is a standard language from the Object Management Group (OMG)
with an associated graphical notation for object-oriented analysis and design (OMG,
2003). The UML is a very important part of developing object oriented software and
software development process. Using the UML helps project teams communicate,
explore potential designs, and validate the architectural design of the software. UML
defines nine types of diagrams: class, object, use case, sequence, collaboration,
statechart, activity, component, and deployment. We introduce the nine diagrams
briefly as follows:

Use Case Diagrams: Use case diagrams model the functionality of system using actors
and use case.

Sequence Diagrams: Sequence diagrams describe interactions among classes in terms
of an exchange of messages over time.

Activity Diagrams: Activity diagrams illustrate the dynamic nature of a system by
modeling the flow of control from activity to activity. An activity represents an
operation on some class in the system that results in a change in the state of the
system. Typically, activity diagrams are used to model workflow or business
processes and internal operation.

Class Diagram: Class diagrams are the backbone of almost every object-oriented
method, including UML. They describe the static structure of a system.

Object Diagram: Object diagrams describe the static structure of a system at a
particular time. They can be used to test class diagrams for accuracy.

Collaboration Diagrams: Collaboration diagrams represent interactions between
objects as a series of sequenced messages. Collaboration diagrams describe both the
static structure and the dynamic behavior of a system.

Statechart Diagrams: Statechart diagrams describe the dynamic behavior of a system

 37

An Ontology Application in B2B Integration

in response to external stimuli. Statechart diagrams are especially useful in modeling
reactive objects whose states are triggered by specific events.

Component Diagrams: Component diagrams describe the organization of physical
software components, including source code, run-time (binary) code, and executables.

Deployment Diagrams: Deployment diagrams depict the physical resources in a
system, including nodes, components, and connections.

Business process is the unique way in which the organization coordinates and
organizes the different working activities and tasks to produce a product or a service.
We model the organization’s business process to show a set of activities and their
relationships. Although, UML has nine diagrams, we only adopt four diagrams here.
They are the use case diagram, sequence diagram, activity diagram and class diagram
to analyze and model the business processes. This is because use case diagram,
sequence diagram and activity diagram are more suitable to describe business process
than other diagrams. Furthermore, class diagram is easier to convert to ontology,
which we will discuss later.

Use case diagram is a convenient way to present business processes in a visual
view. It uses simple notation that is easy to build and easy to understand. In addition,
sequence diagram and activity diagram are the other ways to capture the detailed
business process information and provide more information in order to supplement
use cases. Sequence diagram emphasizes the time ordering of messages. Activity
diagram shows the flow from activity to activity (Booch, 1999). Finally, we convert
the use case diagram, the activity diagram, and the sequence diagram to the class
diagram. The class diagram is the most natural diagram mapping to the ontology
language.

A. To analyze the current business process, “as-is”
 If we want to analyze the current process, we should initiate a meeting to discuss
it. The meeting participants should include the process owners and users, because they
understand the processes the most. Through interviewing users, we can discover
detailed information about the current processes. The detail information includes the
process goal, the process flow, the process user role, the process input, the process
output and others. This information should be minuted. According to the meeting
minutes, we start to draw the UML diagram. If we understand the current processes
more, we will present the process in UML more correctly without losing its semantics.
The final drawn diagrams should be presented to the process owner. The process

 38

An Ontology Application in B2B Integration

owner will verify the diagrams match the actual conditions.

A.1 The use of Use Case Diagram
 Before we draw a use case diagram, we have to gather data. We analyze the
process actors, the process preconditions, and the process flow to fill in a form. We
take the purchase order as an example. There should be two actors in the purchase
order (PO) process: buyer and seller. Before the buyer orders something, he needs
make a request for a quote (RFQ) document from the seller first. Then, if the buyer
accepts the quote, he sends a purchase order to the seller. When the seller receives the
purchase order, he will confirm the order. This scenario is the simplest situation. We
fill in the information in the following table.

Table 3-1: A Use Case Example (This Research)

Name: Request Purchase Order

Actors Buyer, Seller

Preconditions The request for quote document exits

Main flow 1. Send a PO
2. Receive a PO confirmation

Alternative flow None

 We transfer the textual description of use case to the use case diagram. The
translation method has described by many books such as “UML Distilled: A Brief
Guide to the Standard Object Modeling Language” (Fowler, 2002).

Buyer Seller

Request a Purchase Order

Confirm a Purchase Order
Figure 3-2: A Use Case Diagram Example (This Research)

 39

An Ontology Application in B2B Integration

A.2 The use of Sequence Diagram
 In a sequence diagram, we discover all messages that are exchanged in a
business process and their order. It can be extracted from the use case diagram and the
meeting minutes. In the PO example, the PO Request is the first message to be sent
from the buyer to the seller. When the seller receives the order request, he should
check his inventory to determine whether he can fulfill that order or not. Then the PO
Confirmation is the next message to be sent from the seller to the buyer. We draw this
scenario in sequence diagram as follows.

PO Request

:Buyer :Seller

Check

PO Confirmation

Figure 3-3: A Sequence Diagram Example of Purchase Order (This Research)

A.3 The use of Activity Diagram

An activity diagram shows the flow from activity to activity. It can present the
detailed process flow. We should find the information from discussion at the meeting
in order to develop the activity diagram. We need to discover the detailed actions in
the flow, initial state and final state. We continue the PO example and finish the
activity diagram. In this example, we have three actions: request a purchase order,
check inventory for this order and confirm this purchase order.

 40

An Ontology Application in B2B Integration

:Buyer :Seller

Request a Purchase
Order

Check Inventory

Start

[Success] [Fail]

Confirm a Purchase
Order

End Failed

Figure 3-4: An Activity Diagram Example of Purchase Order (This Research)

A.4 The use of Class Diagram
 We try to extract a generic class concept from the use case diagram, sequence
diagram and activity diagram. (As shown in Figure. A Class Diagram Example of
Purchase Order) Again, we continue with the PO example. First, we work on the use
case diagram, the Figure 3-2: An Use Case Diagram Example of Purchase Order. We
discover four components: the two actors (buyer and seller) and the two use cases
(Request a Purchase Order and Confirm a Purchase Order). We take the two major
elements in the use case diagram, Actor and Use Case, to form the two classes: Actor
and Activity. Next, we extract the class Message from the sequence diagram, because
sequence diagram describes the message flow and the order between the objects. Then,
we work on the activity diagram and we find it consists of several actions. We extract
the class Action from the activity diagram. Then, we consider the multiplicity of these
classes. However, this generic class diagram does not present the semantic of this PO
example. We use generalization to link the Buyer, the Seller and the Actor. The class
Buyer and Seller is the subclass of Actor.

 41

An Ontology Application in B2B Integration

OntoClass:
Actor

name

OntoClass:
Activity

name
initial state
finish state

OntoClass:
Action

name

OntoClass:
Message

name
sequence

involve

has11..n 1 1..n

1

1..n

Send

0..n

1

Buyer OrderSeller
1 0..n

PORequest POConfirmation

1 0..n

Figure 3-5: A Class Diagram Example of Purchase Order (This Research)

B. To develop the EC-standard-compliant business process
 We use the four diagrams (use case diagram, sequence diagram, activity diagram
and class diagram) to model an EC-standard-compliant business process. The
mapping methods between the four diagrams are the same as in step A. The difference
between step A and step B is the analytic source. Step A focuses on the existent and

 42

An Ontology Application in B2B Integration

current processes. We have to analyze them through interview and observation.
However, we model processes from B2B standard specifications at step B. Some B2B
standards have the concept of process, but some do not. If not, we should discuss this
with the trading partners to develop a new process based on the B2B standard. In
addition, some B2B standards have adopted UML to present their processes in the
specification. We can directly refer to those.

B.1 To design Use Case Diagram
We develop the use case diagram based on B2B standard specification. A B2B

standard specification often describes the process purpose or the process definition by
the writing. We discover and extract the basic components of a use case from a
process description.

Customer Supplier

Request a Purchase Order

Confirm a Purchase Order

Figure 3-6: A Use Case Diagram Example

B.2 To design Sequence Diagram
 The B2B standards should specify the sequence of exchanged messages. The last
standards often adopt UML to present the sequence. Therefore, we directly use the
diagram (shown in Figure 3-7) provided by standards. If the standards do not use
UML to present but other methods, we still can analyze the sequence of messages.

 43

An Ontology Application in B2B Integration

Figure 3-7: A Sequence Diagram to Describe The Purchase Process From Standard

B.3 To design Activity Diagram
 A B2B standard should formalize the public process flow. Such formalization
allows partners to follow. We do not expect to manage many different process flows
with our trading partners in the real world. A B2B standard provides well-defined
process flows (shown in Figure 3-8). We can discover the defined process flow from
B2B standard specification or else we can discuss it with the trading partners to
develop the new process flow.

 44

An Ontology Application in B2B Integration

Figure 3-8: An Activity Diagram to Describe The Purchase Process from Standard

3.3 Ontology Modeling Heuristics

 In this section, we present the heuristics to model ontologies for B2B process and
message. The method to build process ontology will be described in C.1 and D.1. The
method to build message ontology will be described in C.2 and D.2.

C. To capture current B2B ontologies

We build the ontology to describe the B2B domain knowledge. This ontology
contains the basic classes and properties. Every business process should fit in with the
ontology definition. We have one structure to describe all kinds of process. In order to
fulfill this requirement, we discover the basic B2B components and properties.

C.1 To design current business process ontology

We depict the B2B interaction as Figure 3-9 from the UML analysis in 3.B and
the literature review in section 2.1. To design the process ontology, we should
understand the components of B2B process. We can easily to discover from Figure

 45

An Ontology Application in B2B Integration

3-9.

Buyer Seller

Send a PO request

PO Acknowledge

Network
(Http/ Https, TCP/IP, Signature)

PO Process

Partner

Activity

Transport
binding

message

PO
Request

PO
Confirm
ation

Figure 3-9: The B2B Interaction (This Research)

C.1.1 To design basic B2B components as basic OWL classes

The idea is to identify the basic components in B2B domain and how these
components can be modeled into the OWL classes.

A B2B interaction describes how a business process is performed between
companies. Therefore a business process is the important component when we
mention about the B2B. We need a basic class to record a process’s name and
definition. The information exchanged in a business process we call business
document. A business document contains the message that has pre-defined format.
Without the message, the business process has no meaning. We need a class to
indicate a business document. The document can be sent or received by several
participators. They involve in business process to make process running. These
participators may are the enterprises or the users. Therefore we need a class to
indicate who are the participators. Besides, a business process may be very complex
or simple. The complexity of process flow depends on the business rules that
negotiated by participators. The detail activities in business process will describe how
business documents can be exchanged. We need a class to describe these activities.
We also need a class to describe the technical definitions. It will indicate the technical
transport mechanism. Based on the research described in Christoph, (2001), the EC
standard should have the following constructs: process definition, trading partner,
message definition and syntax, exchange sequence definition, semantics, security,

 46

An Ontology Application in B2B Integration

transport binding. We also base on the Figure 3-9 and other researches in Section 2.1
to design the following classes:

Process definition: The class <owl:Class rdf:ID="B2B_Process"/>is designed to
describe business process. The statement,”<owl:Class rdf:ID="B2B_Process"/>”, in
italic type is the OWL language.

Trading partner: The class <owl:Class rdf:ID="B2B_Partner"/> is designed to
describe partner.

Message definition and syntax: The basic class <owl:Class
rdf:ID="B2B_MessageDocument"/> is designed. We do not discuss the message’s
syntax part. Because the syntax has been defined by XML Schema, DTD or other
ways. We need not redefine the syntax part. However we define the semantic of
business message in detail at next section.

Exchange sequence definition: It describes how business documents can be
exchanged, we design the class <owl:Class rdf:ID="B2B_Activity"/>.

Semantic: We do not design any special class for this component, because the purpose
is designing a semantic B2B ontology.

Security: We can design the class <owl:Class rdf:ID="B2B_Security"/>. It describes
the EC standard’s security mechanism.

Transport Binding: We can design the class <owl:Class
rdf:ID=”B2B_TransportBinding”/>. It describes the EC standard’s network transport
mechanism.

Security and transport binding are technical definitions. We propose to design
another new and more integrated class <owl:Class rdf:ID="B2B_ActionControl"/>
for action control to replace <owl:Class rdf:ID="B2B_Security"/> and <owl:Class
rdf:ID=”B2B_TransportBinding”/> . Properties of security and transport binding will
become the properties of action control.

 47

An Ontology Application in B2B Integration

Figure 3-10: The B2B Basic Classes (This Research)

C.1.2. To design basic B2B properties as OWL object property

 After the classes are defined, we analyze the properties. We create these
properties into OWL object properties.

Process: Basically, a process has these properties: process name, process definition or
purpose, process description, process start state, process end state. In addition, a
process also has a document to exchange, a partner role to play, an activity to conduct,
and an action control to install. We design the properties as follows:

Figure 3-11: The Properties Of B2B Process (This Research)

In OWL language:

<owl:ObjectProperty rdf:ID="hasDocument">

<owl:ObjectProperty rdf:ID="hasPartnerRole">

<owl:ObjectProperty rdf:ID="hasActivity">

 48

An Ontology Application in B2B Integration

<owl:ObjectProperty rdf:ID="hasActionControl">

<owl:ObjectProperty rdf:ID="hasProcessName">

<owl:ObjectProperty rdf:ID="processStartState">

<owl:ObjectProperty rdf:ID="processEndState">

Partner: Partner contains these properties: partner name, partner role in this process,
and the role description.

Figure 3-12: The Properties Of B2B Partner (This Research)

In OWL language:

<owl:ObjectProperty rdf:ID="partnerName">

<owl:ObjectProperty rdf:ID="partnerRole">

MessageDocument: Message contains two properties, document name and document
description.

Figure 3-13: The Properties Of B2B Document (This Research)

In OWL language:

<owl:ObjectProperty rdf:ID="documentName">

<owl:ObjectProperty rdf:ID="documentDescription">

Activity: Activity contains properties: name, description, and which partner acts in
this activity.

Figure 3-14: The Properties Of B2B Activity (This Research)

 49

An Ontology Application in B2B Integration

In OWL language:
<owl:ObjectProperty rdf:ID="activityName">

<owl:ObjectProperty rdf:ID="activityDescription">

<owl:ObjectProperty rdf:ID="involvePartner">

ActionControl: When exchanging a business document, we consider its transport
protocol, the performing time, the retry counts if error occurs, and the security
requirements.

Figure 3-15: The Properties Of B2B Action (This Research)

In OWL language:

<owl:ObjectProperty rdf:ID="actionName">

<owl:ObjectProperty rdf:ID="actionDescription">

<owl:ObjectProperty rdf:ID="byProtocol">

<owl:ObjectProperty rdf:ID="actionTimeToPerform">

<owl:ObjectProperty rdf:ID="actionRetryCounts">

<owl:ObjectProperty rdf:ID="isSSLRequired">

<owl:ObjectProperty rdf:ID="isAuthorizationRequired">

<owl:ObjectProperty rdf:ID="isNonRepudiationRequired">

C.1.3 If the value of a property has been specified; use its value as the restriction.
 We have analyzed the current business process in 3.A. We use the information
from the analysis to restrict the property. For example, we can find that “PO Request”
is one of current business documents in PO process from Figure 3-5. We give the
value to build the following class.

 50

An Ontology Application in B2B Integration

<owl:Class rdf:ID=" PORequest">

 <rdfs:subClassOf>

 <owl:Class rdf:about="#B2B_ MessageDocument" />

 </rdfs:subClassOf>

<rdf:comment>A request to accept a purchase order for fulfillment.</rdf:comment>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty>

 <owl:ObjectProperty rdf:ID="hasDocumentName" />

 </owl:onProperty>

 <owl:hasValue> PORequest </owl:hasValue>

 </owl:Restriction>

</rdfs:subClassOf>

</owl:Class>
<owl:Class rdf:ID=" POConfirmation">

C.1.4 If you find other needed and specialized relationships or properties, you
can add and create its corresponding OWL properties.
 You can create additional properties to describe current business process.
C.1.5 If you find individuals for a class, you can create a corresponding instance
in OWL.

C.2 To model current business document ontology
 We analyze the processes among partners. We focus on the core of B2B process
analysis, that is, message centric analysis. We develop the process ontology based on
the semantics of messages. The semantics refer to the context, the meaning, the
terminology, and the relationship of messages.

C.2.1 To discover the basic data entities

The basic data entity is the field that contains the real data in the message.
Usually, this kind of entity is defined as #PCDATA in DTD. Such a basic data entity
can be defined as a generic OWL class. If the specification has given each data
entity’s metadata, such as entity’s data type, entity’s description, entity data’s
representation. The metadata can be defined as a property of OWL class.

 51

An Ontology Application in B2B Integration

Basic Data Entities

Field Name Description Data Type
PONumber The unique number to identity a purchase number String
Version The version of purchase order Integer

Figure 3-16: An Example of Basic Data Entities (This Research)

For example, in this Figure 3-16, the tag <PONumber> and <Version> are the
basic data entities. We create the class <owl:Class rdf:ID=”PONumber”/>. We may
find there is metadata given to describe this field from database schema. We can
design the corresponding properties according the metadata. From this case, they are
the data type and the field description. We add two properties, “hasDescription” and
“hasDataType”, to complete the class “PONumber”, as follows:

<owl:Class rdf:ID=”PONumber”>
<owl:Restriction>
 <owl:onProperty rdf:resource="#hasDescription"/>
 <owl:hasValue>

<xsd:String rdf:value=" The unique number to identity a purchase number"/>
</owl:hasValue>

</owl:Restriction>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#hasDataType"/>
 <owl:hasValue><xsd:String rdf:value="Integer" /></owl:hasValue>
 </owl:Restriction>
</owl:Class>

C.2.2 To discover the composite data entities

A composite data entity is composed of two or more basic data entities. It groups
a set of related entities based on the message’s XML schema or DTD. For the
composite data entities, you can create an OWL class for the composite data entity,
and group its basic data entities through the <owl:onProperty> link.

 52

An Ontology Application in B2B Integration

composite entity
descriptive entity

Figure 3-17: An Example of Descriptive and Composite Entities (This Research)

For example, we have a composite entity, the tag <Address>, in this Figure 3-17.

We create a class named “Address” and build its all properties. They are
“hasCountryName”, “hasRegineName”, “hasCityName”, “hasPostalCode”, and
“hasAddressLine1”. We group the class and properties as follows:

<owl:class rdf:ID="Address">

 <rdf:comment>The collection of business properties that provide address information for

contacting a person, organization or business.</rdf:comment>

 <owl:Restriction>

 <owl:onProperty rdf:resource="#hasCountryName"/>

 </owl:Restriction>

 <owl:Restriction>

 <owl:Restriction>

 <owl:onProperty rdf:resource="#hasRegineName"/>

 </owl:Restriction>

 <owl:Restriction>

 <owl:onProperty rdf:resource="#hasCityName"/>

 </owl:Restriction>

<owl:Restriction>

 <owl:onProperty rdf:resource="#hasPostalCode"/>

</owl:Restriction>

<owl:Restriction>

 <owl:onProperty rdf:resource="#hasAddressLine1"/>

 53

An Ontology Application in B2B Integration

</owl:Restriction>

</owl:class>

C.2.3 To discover the descriptive entities in the message

Sometimes, there is a descriptive entity that does not contain data. It just
describes a simple business meaning of the data entity. We do not threat it as a class.
We take it as a property that named business property. Therefore we use an OWL
object property to model it.
 There is a descriptive entity, the tag <shipTo>, from the Figure 3-13. We design
an object property named “shipTo” to represent the descriptive entity and give its
domain and range value.

<owl:ObjectProperty rdf:ID="shipTo">

 <rdfs:domain rdf:resource="#PO" />

 <rdfs:range rdf:resource="#Address" />

</owl:ObjectProperty>

C.2.4 To build the business document ontology
 Using the business document name that is defined in the 3.A, we can create an
OWL class. Then, we find all elements under the root element based on DTD or XML
Schema. These elements will be the properties of this class. Next, we need to make
sure all the entities of business document are created and their relations have been
connected.

 54

An Ontology Application in B2B Integration

PO

hasPOnumb
er

hasVerssion shipTo

Class property onProperty mapping

Figure 3-18: To Build The Business Document Ontology (This Research)

C.3 To reconcile current business constraints
 We may have constraints on each entity, each message, and each process. We
design these constraints into OWL.

 After designing current business process and document ontology, we create the
EC standard ontology. The most steps in 3.C and 3.D are alike. We only specify the
different in 3.D.

D. To capture EC standard’s ontologies
 We have built the UML model of B2B standard at 3.B. The next step is building
the B2B standard ontology.
 For building the EC standard’s ontologies, we need the B2B standard
specifications and the definition of business document. The definition of business
document is often encoded as DTD or XML Schema. We use the definition of
document to build message ontology.

D.1 To design EC standard’s process ontology

D.1.1 To design basic EC components as basic OWL classes

 55

An Ontology Application in B2B Integration

We also design five basic classes that are the same in C.1.1.

Notice that not all EC standards implement these components. Only the

description and discussion above are designed as the basic owl classes. The first set of
heuristics is mainly one-to-one class creation because this is the first step and starts
from the basics. If the EC standard specifies other special components that we do not
mention above, you can design your own class.

D.1.2. To design basic properties in EC standard into OWL object property

 We have designed the basic properties in C.1.2, but if we find more properties
in the EC standard specification. We create these properties into OWL object
properties.

D.1.3 If the value of a property has been specified in the standard, use its value as
the restriction.

The following is an example showing a table that lists the business document
information in the purchase order process. There are two business documents in this
table. They are “Purchase Order Request” and “Purchase Order Confirmation”. There
is a description to correspond with each document.

 56

An Ontology Application in B2B Integration

Table 3-2: An Example of Business Document Information Provided by Standard

Business Documents

Business Document Description

Purchase Order Request A request to accept a purchase order for fulfillment.

Purchase Order Confirmation

Formally confirms the status of line item(s) in a
Purchase Order. A Purchase Order line item may
have one of the following states: accepted, rejected,
or pending.

We extract this information to form the following class in OWL.

<owl:Class rdf:ID="BusinessDocument">

<owl:oneOf rdf:parseType="Collection">

 <owl:Thing rdf:about="#PurchaseOrderRequest">

 <rdf:comment>A request to accept a purchase order for fulfillment.</rdf:comment>

 </owl:Thing>

 <owl:Thing rdf:about="#PurchaseOrderConfirmation">

 <rdf:comment>Formally confirms the status of line item(s) in a Purchase Order.

 </owl:Thing>

 </owl:oneOf>

</owl:Class>

 57

An Ontology Application in B2B Integration

D.1.4 If you find other needed and specialized relationships or properties, you
can add and create its corresponding OWL properties.

1. Request A New Quote

4. Confirm A Purchase Order

Buyer Seller

3. Request A New Purchase Order

5. Shipping Notice

6. Invoice Notice

2. Send Quote

Figure 3-19: An Example of The Sequence of Processes (This Research)

If EC standard defines the sequence of processes, we can know the order of

processes (shown in Figure 3-19). For example, the “Request A New Purchase Order”
process must be executed after “Request A New Quota” and before “Shipping Notice”.
Thus we have a special relationship between processes. We design these relationships
into the properties "preProcessName" and "followedProcessName" for the class
“process”.

<owl:Class rdf:ID=”Process”>

<owl:ObjectProperty rdf:ID="preProcessName">

 <rdf:type rdf:resource="&owl;TransitiveProperty" />

 <rdfs:domain rdf:resource="#Process"/>

 <rdfs:range rdf:resource="#Process"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="followedProcessName">

 <rdf:type rdf:resource="&owl;TransitiveProperty" />

 <rdfs:domain rdf:resource="#Process"/>

 <rdfs:range rdf:resource="#Process"/>

 <owl:inverseOf rdf:resource="#preProcessName"/>

</owl:ObjectProperty>

 58

An Ontology Application in B2B Integration

</owl:Class>

D.1.5 If you find individuals for a class in the specification, you can create a
corresponding instance in OWL.

D.2 To model EC standard’s document ontology per partner
 The method to model EC standard’s document ontology is the same with C.2.We
can find the required data definition in EC specification.

D.2.1 To discover the basic data entities

D.2.2 To discover the composite data entities

D.2.3 To discover the descriptive entities in the message

D.2.4 To build the business document ontology

D.3 To reconcile EC standard’s constraints

A B2B standard may have constraints on each entity, each message, and each
process. In addition, the trading partners may define their own special constraints on
the process ontology. We design these constraints into OWL.

3.5 The Merge, Representation and Testing of Ontologies
 When we initiate and implement a new B2B initiative each time, we are dealing
with different B2B standards, different business partners and different situations.
However, we have the existing ontology in our ontology repository. These differences
cause the ontology mismatch. The mismatch may not keep ontology consistency. In
this section, we discuss the mergence of ontology in order to get a better ontology that
is more suitable the real environment.

The ontologies can be represented through several tools and ways. However, in
order to merge the ontologies, the facility to display the differentia between ontologies
is a key function that we need to consider. The most important functions of such tools
are considered as follows (Klein et al., 2002):
 Read in ontologies, ontology updates, adaptations or mappings
 View a specific version or variant of an ontology
 Differentiate ontologies:
 Show changed formal definitions

 59

An Ontology Application in B2B Integration

 Show changed comments
 Show type of change: conceptualization or explication

 Automatic inconsistency checks of ontology combinations

E. To merge ontologies

We develop two process ontologies in 3.C and 3.D. The two ontologies are with
the same domain. The mergence of ontology is a critical issue. The ontology should
remain in consistent state after merging. The keys of merging are discovering the
differences and developing the corresponding rules between the ontologies. The
differences between ontologies include: the changes of class name, the addition or
deletion of classes, the addition or deletion of properties, and the mergence or split of
classes. The ontology tool should provide the function to display the differences
between two ontologies. It highlights the differences such that we can adjust these
differences to merge our ontology.

We want to merge two ontologies into a final ontology. It is normal to find
conflicts and differences between the two. At the same time, there are the similar parts
between the two, too. The more differences between two ontologies, the more and
larger extent of change between the old and new processes. This analysis helps us to
know which parts of the process will be changed and different at the project
implementation phase. Then we can tune the changed parts of the process.

How do we reconcile the conflicting parts? First, we adopt the ontology of the
process proposed by B2B standard as our base ontology. Because the process
proposed by B2B standard is the process we what to be. We tune the B2B standard
ontology directly according the correspondence rules (shown in Table 3-6) that we
develop as follows:

Table 3-3: The Correspondence Rules Of Merging Ontology (This Research)

Level
Conflict

Type
Current
(Old)

Standard
(New)

Condition Description Rules

Class
Level

Schematic
conflicts

None New
Standard has a new class,
which doest not exist in
current process.

We keep the new class in the
ontology. All the properties of the
new class should be retained, too.

 60

An Ontology Application in B2B Integration

Existed None

The current process exist
an old class, which does
not appear in standard
process.

If the old class will no longer exist
in the future, we discard them. Else
we should add the old class from
the old ontology to the new
ontology.

Existed
Class A

New
Class B

They are with the
different class names but
the same meaning

We reserve the old class A and add
it to new ontology. Then, we use
the owl:sameAs to state the two
classes are equivalent. However,
we use the class B usually.

Semantic
conflicts

Existed
Class A

New
Class A

They are with the same
class name but different
meanings.

We keep the name of the new class.
However we change the name of
old class to another new name.

None New
There are additional
properties in a class.

We use and adopt these properties
in the new ontology.

Schematic
conflicts

Existed None

There are deletion
properties in a class.

We have to determine whether the
properties are no longer useful. If
we do not use these properties any
more, we discard them. If we still
need these properties, we should
reserve them and add them to new
class.
We adjust the minimum cardinality
of these old properties to 0.
Because, they are not necessary
properties in the new class.

Existed
Property

A

New
Property

B

They are with the
different property names
but the same meaning

We reserve the old property A and
add it to new ontology. Then, we
use the owl:equivalentProperty to
state the two properties are
equivalent. We use the property B
usually.

Property
Level

Semantic
conflicts

Existed
Property

A

New
Property

A

They are with the same
property name but
different meanings.

We keep the name of the new
property. However we change the
name of old property to another
new name.

 61

An Ontology Application in B2B Integration

F. To represent ontologies
 We have discussed the functions of ontology representation at the beginning in
3.5. The representation of ontologies should clear and easy to understand.

G. To test ontologies

To verify the ontologies merged in 3.E, we consider two aspects, the syntactic
and semantic. We test the syntactic of ontology through the tool. The tool can present
the ontology and validate the inconsistency of syntax.

Next, we consider another respect, semantic. The newly designed ontology may
not be consistent with the real environment. The inconsistency exists between the
database schema, the real business processes and the old version of ontology. We can
ask the process owners to verify the new ontology. We extract the database schema or
the E-R diagram to compare the consistency between the business message ontology.
We can also compare the consistency through the trading partner agreements that
specify the business rules between companies. We record the differences between the
new ontology and the real environment. This information helps us to adjust our
business process and refine the next version of ontology.

We can use many internal or external documents in the company to verify the
developed ontology. If we find a new concept from the ontology and the new concept
does not exist in the original environment, we should consider adopting the new
concept into our process. We can consider a possibility of business process
reengineering through the validation of ontology.

3.6 Discussion

We have described the steps from 3.A to 3.G above. These steps help us to
develop the ontology of B2B domain. We review these steps and correspond to Figure
3-1 to explain the whole framework.

 In 3.A, we analyze the current business process by the UML approach. In 3.B,
we analyze and develop the future business process by the UML approach, according
to the process flow recommended by EC standards or the process flow expected from
trading partner.

In 3.C, we provide a heuristics-based method to model the ontology of a business

process. First, we create the current business process ontology in 3.C.1. Then, we
model the current business document ontology in 3.C.2. Next, we reconcile the B2B
standard’s constraint.

 62

An Ontology Application in B2B Integration

 The Step 3.D is most the same with 3.C. The different is Step 3.D model the B2B
standard’s process and document.
 Now, we have two process ontologies that are outputted from 3.C and 3.D. We
merge these ontologies in 3.E. After merging the ontologies, we select a tool to
represent the ontologies in 3.F. Next, we test and verify the ontologies in 3.G.

Finally, we list these steps as follows:
A To analyze current business process, “as-is”
B To develop EC-standard-compliant business process”
C Ontology modeling－heuristics based

C.1 To create current business process ontology
C.2 To model current business document ontology
C.3 To reconcile with current business constraints

D Ontology modeling－heuristics based
D.1 To create B2B standard’s process ontology
D.2 To model B2B standard’s message ontology per partner
D.3 To reconcile with B2B standard’s constraints

E To merge ontologies
F To represent ontologies
G To test ontologies

The concept of ontology evolution process is proposed by Stojanovic et al. (2002).
It has six phases of evolution (Figure 3-20). The process captures the changes and
presents the changes to user. Then, it deals with the changes to form a new ontology
and verify the new ontology at last.

Figure 3-20: Ontology Evolution Process (Stojanovic et al., 2002)

 63

An Ontology Application in B2B Integration

For our research method, we store the ontologies in a repository. However, when

each new B2B project is initiated, we build a new ontology. The existing ontologies in
a repository should evolve into the new ontologies. We present another ontological
evolution process in Figure 3-21 according to our methods. We discover the ontology
requirements from method 3.A and 3.B. Then, we capture the ontology from 3.C and
3.D. We provide the method to merge ontologies in 3.E. We represent the ontologies
in 3.F and verify it in 3.G.

Figure 3-21: A B2B Integration Ontology Evolvement Cycle (This Research)

 64

