Appendix A. Counting strategy

To determine the optimal sequence to count itemset, we evaluate the information gain after counting of each itemset. We definition some symbols in table 4 first.

Table 4. Symbol definitions

\mathbf{N}	Number of items (default value $=1 \mathrm{k})$
\mathbf{X}	An itemset
$K(\mathbf{X})$	$\|\mathbf{X}\|$, the number of items in \mathbf{X}
$P_{f}(\mathbf{X})$	The probability that \mathbf{X} is a large itemset
$P_{i}(\mathbf{X})$	The probability that \mathbf{X} is not a large itemset
T	The average number of items in a transaction (default value = 5)
$E(\mathbf{X})$	The expectation number of itemsets which can be determined frequency or not after counting \mathbf{X}

For any itemset \mathbf{X}, there are $2^{K(\mathbf{X})}-2$ subsets of \mathbf{X} and $2^{(\mathbf{N}-K(\mathbf{X}))}$ supersets which contain \mathbf{X}. So, the expectation number of itemsets which can be determined frequency or not after counting $\mathbf{X} E(\mathbf{X})$ is:
$P_{f}\left(2^{K}-1\right)+P_{i}\left(2^{(\mathrm{N}-K)}+1\right)$
$=P_{f}\left(2^{k}-1\right)+P_{i}\left(2^{(1000-K)}+1\right)$, where $\mathbf{N}=1000$
$K(\mathbf{X})=1:$
$E(\mathbf{X})=P_{f}(2-1)+P_{i}\left(2^{(1000-1)}+1\right)$
$=P_{f}+2{ }^{999} P_{i}+P_{i} \fallingdotseq 2{ }^{999} P_{i}$
$K(\mathbf{X})=2:$
$E(\mathbf{X})=P_{f}(4-1)+P_{i}\left(2^{(1000-2)}+1\right)$
$=3 P_{f}+2{ }^{998} P_{i}+P_{i} \fallingdotseq 2{ }^{998} P_{i}$

The probability of a transaction contains a 1-itemset is:
$C_{4}^{999} / C_{5}^{1000}=0.005$

The probability of a transaction contains a 2-itemset is:
$C_{3}^{998} / C_{5}^{1000} \fallingdotseq 0.00002$

Since $P_{f}(\mathbf{X}) \rightarrow 0$ when $K(\mathbf{X})>1$, we begin a level-wise searching from 1-itemset.

Appendix B. Proof sketches

Proof of Lemma 2. $\left(G_{j}, r\right)$ is a multi-dimension association rule w.r.t full match in MD, that means r is an association rule hold in every element segmentation belong to $T\left[G_{j}\right]$. Suppose $T\left[G_{j}\right]$ is composed of n element segmentations : $T\left[E_{1}\right], T\left[E_{2}\right], \ldots$. $T\left[E_{n}\right], r$ can be represented as $\mathbf{X} \rightarrow \mathbf{Y}$, where \mathbf{X} and \mathbf{Y} are two disjoint itemset. The counts of $\mathbf{X} \cup \mathbf{Y}$ in $T\left[E_{1}\right], T\left[E_{2}\right], \ldots, T\left[E_{n}\right]$ is $C\left(\mathrm{r}, T\left[E_{1}\right]\right), C\left(\mathrm{r}, T\left[E_{2}\right]\right), \ldots, C\left(T\left[E_{n}\right]\right)$ respectively, and the support of r in $T\left[E_{1}\right], T\left[E_{2}\right], \ldots, T\left[E_{n}\right]$ is $S\left(r, T\left[E_{1}\right]\right)$, $S\left(r, T\left[E_{2}\right]\right), \ldots, S\left(r, T\left[E_{n}\right]\right)$ respectively. Since r is holds in $T\left[E_{1}\right], T\left[E_{2}\right], \ldots, T\left[E_{n}\right]$, for all $i(i=1$ to $n) \operatorname{minsup}\left(\mid T\left[E_{i}\right]\right) \leq C\left(r, T\left[E_{i}\right]\right)$
So, the support of $\mathbf{X} \cup \mathbf{Y}$ in $T\left[G_{j}\right]=\frac{\sum_{i} C\left(r, T\left[E_{i}\right]\right)}{\sum_{i} \mid T\left[E_{i}\right]} \geq \frac{\sum_{i} \operatorname{minsup}\left(\mid T\left[E_{i}\right]\right)}{\sum_{i} \mid T\left[E_{i}\right]}=\operatorname{minsup}$. So, $\mathbf{X} \cup \mathbf{Y}$ is a large itemset in $T\left[G_{j}\right]$, the proof of the confidence is similar.

Proof of Lemma 3. Since $\left(G_{j}, r\right)$ is a multi-dimension association rule w.r.t full match in MD, and $T\left[G_{j}\right]=\mathbf{M D}, r$ must be an association rule in every element segmentation of MD. Thus, $\left(G_{j}, r\right)$ is a multi-dimension association rule w.r.t full match in MD for any generalized patterns of MD. According to Lemma 2, r must be an association rule in $T\left[G_{j}\right]$ for any G_{j} of $\mathbf{M D}$.

