

 14

2. Literature review

Production rule is an important element in the expert system. By interview with

the domain experts, we can induce the rules and store them in a truth maintenance

system. An assumption-based TMS has carried out by de Kleer in [16][17][18][19].

After that, the discovery of association rules has been extensively studied with the

conception of ATMS in 90’s such as [11][22][23][27]. Many extensions were also

proposed in recent years, such as: multi-level and generalized rules in [13][24],

inter-transaction association rules in [8], Periodic Patterns in [9][10], temporal

association rules in [30][33], Mutually Dependent Patterns in [28], and fuzzy rules in

[7]. The study in [32] takes that some products may not be on shelf in some stores

during some period into considered. Mining association rules with multiple minimum

supports was discussed in [3], Applications of association rules were presented in

[2][5][29], and the privacy preserving issue has also studied in [1] .

In the section, we will introduce the formal definition and mining process of

association rules first, and then we will review some approaches of multi-dimension

rules, and a method of mining calendar-based temporal association rules in [33].

Concept hierarchy, which is an important element of our method, will also be

discussed at last in this section.

2.1. Association rule

Association rule is one of the major forms of data mining and is perhaps the most

common form of knowledge discovery in unsupervised learning systems. The notion

of association rule was proposed to capture the co-occurrence of items in transactions.

A typical application of association rule is market basket analysis; this process

analyzes customer buying habits by finding association between the different items

 15

that customers place in their “shopping baskets” [14] .

2.1.1. Definition of association rules

Suppose we have a transaction database D (as Fig. 2.1). A transaction is a tuple

in D which is consist of a set of items and is identified by its T_ID.

Figure 2.1 transaction database D

Let I = {i1, i2, …, in}, is the set of all n different items in D. Each transaction in

D is a subset of I. An itemset is also defined as a subset of I. An association rule

usually has this form : A→B, where A and B are two disjoint itemsets. The

association rule A→B implies that among transactions in D, the occurrences of B

have high correlation with the occurrences of A. There are two important factors with

association rules. One is support, the other is conference. Support means how often

the rule applies. The support of an itemset X is the fraction of transactions containing

X in D. Given a thresholdσ as minimum support, X is a large itemset in D if the

support of X in D exceedσ . Confidence means how often the rule is correct. The

confidence of A→B is the fraction of transactions containing A and B simultaneously

in transactions containing A. The equations are shown below:

Juice, Tomato, Orange
Beer, Diaper
Candy, Juice
Bread, Milk

Transaction content

004
003
002
001

T_ID

Juice, Tomato, Orange
Beer, Diaper
Candy, Juice
Bread, Milk

Transaction content

004
003
002
001

T_ID

| Transactions in D containing X |

| Transactions in D |
Support(X) =

| Transactions in D containing both A and B |

| Transactions in D containing A |
Confidence(A→B) =

 16

2.1.2. Mining association rules

Mining association rules can be decomposed into two sub-problems: (1) finding

all large itemsets, and (2) generating association rules using this large itemsets. The

search task in step1 is the crux of discovering association rule, and most algorithms of

mining association rules focus on the front one. The simplest search strategy is

exponential: Enumerate all the possibilities and try each one until a solution is found

[16]. That is, there are n binary selections giving 2n itemsets which is exponentially

with the number of items into consider. For example, if there are 5 items, there will be

25 = 32 candidates as in fig.2.2.

Figure 2.2 Initial candidate space for the circuit example

A concept carried out in [16] can help us with pruning the search space quickly.

That is: “If an environment is nogood, then all of its superset environments are

nogood as well.”[16]. The definition of large itemsets also indicates a similar property:

X is a large itemset in D, if and only if all subsets of X are also large itemsets in D.

[]

[C][B][A] [D] [E]

[B,C][A,D][A,B] [B,E] [C,E][B,D][A,E][A,C] [C,D] [D,E]

[A,C,E][A,B,E][A,B,C] [B,C,D] [B,D,E][A,D,E][A,C,D][A,B,D] [B,C,E] [C,D,E]

[A,B,D,E][A,B,C,E][A,B,C,D] [A,C,D,E] [B,C,D,E]

[A,B,C,D,E]

 17

Thus when an itemset X is verified to be a large itemset, all the subsets of X can be

verified as large itemsets also. On the other hand, if an itemset X is verified to be not

large, all the superset of X can be verified to be not large at the same time. We can

reduce the candidate space quickly with this property.

2.1.3. Entropy function & application

In order to reduce the set of remaining candidates efficiently, we help to measure

the itemsets that we can gain the most of information after measuring them. By

cascade evaluating the consequences of a hypothetical measurement, we could

evaluate the consequences of any sequence of measurements to determine the optimal

next measurement. The method proposed in [19] uses a one-step lookahead strategy

based on Shannon entropy. From decision and information theory we know that a very

good cost function is the entropy (H) of the candidate probabilities:

H = -Σpi log pi

Where pi is the probability that candidate Xi is the actual candidate given the

hypothesized measurement outcome, and the cost of locating a candidate of

probability pi is proportional to log pi
-1. The best measurement is the one which

minimum the expected entropy of candidate probabilities resulting from the

measurement. The expected entropy He(Xi) after measuring quantity is given by:

He(Xi) = Σ(k = 1 to m) p(xi = vik) H(xi = vik).

Where vi1, …, vim are all possible values for xi, and H(xi = vik) is the entropy resulting

if xi is measured to be vik.

With Shannon entropy, we can deduce that the itemset which contains smaller

items we count, the more information we get (a prove is given in Appendix A).

 18

According to above results, we begin the counting from 1-itemsets and develop an

efficiency level-wise searching algorithm with downward closure property to discover

all large itemsets.

2.1.4. Mining association algorithm

Given a set of transactions D, the problem of mining association rules is to

generate all association rules that have support and confidence greater than the

user-specified minimum support (called minsup) and minimum confidence (called

minconf) respectively.[23]

According to the results deduced above, we can develop an efficiency level-wise

searching algorithm with downward closure property to discover all large itemsets.

The outline of this algorithm is shown in Fig. 2.3.

Figure 2.3 Association rules mining algorithm

In Fig. 2.3, the first pass of the algorithm simply counts item occurrences to

discover the frequent 1-itemsets. A subsequent pass, pass k, consists of two phases.

First, use the frequent itemset Lk-1 found in the (k-1)th pass to generate the candidate

itemsets Ck by using the candidate generation procedure(described below). Next, scan

the database to count the support of candidate in Ck.

The intuition behind the candidate generation procedure is that if an itemset X

1) L1 = {large 1-itemsets};
2) for (k = 2; Lk-1≠ψ; k++) do begin
3) Ck = Apriori-gen(Lk-1); // New candidates
4) forall transactions t in D do begin
5) Ct = subset(Ck, t); // Candidate contained in t
6) forall candidates c in Ct do
7) c.count++;
8) end
9) Lk = {c in Ck | c.count≧minsup}
10) end
11) Answer = ∪k Lk;

 19

has minimum support, so do all subsets of X. Given Lk-1, the set of all frequent

(k-1)-itemsets, assume the items in each itemset are in lexicographic order for

simplicity, candidate generation takes two steps. First, in the join step, join Lk-1 with

Lk-1 as below:

Next, in the prune step, delete all itemsets c∈Ck such that some (k-1)-subset of c is

not in Lk-1. For example, let L2 be {{ab}, {ac}, {ad}, {bc}, {cd}}. After the join step,

C3 will be {{abc}, {abd}. {acd}}. The prune step will delete the itemset {abd}

because the itemset {bd}is not in L2. We will then be left with {abc} and {acd} in C3.

For fast counting, we need to efficiently determine the candidates in Ck contained in a

given transaction t. A hash-tree data structure is used for this purpose.

Many variations of this algorithm have been proposed that focus on improving

the efficiency of the original algorithm, such as: “Hash-based technique (hashing

itemset counts)”, “Transaction reduction (reducing the number of transactions scanned

in future iterations)”, “Partitioning (portioning the data to find candidate itemsets)”,

“Sampling (mining on a subset of the given data)” and “Dynamic itemset counting

(adding candidate itemsets at different points during a scan).

insert into Ck
select p.item1, p.item2, …, p.itemk-1, q.itemk-1
from Lk-1 p, Lk-1 q
where p.item1 = q.item1, …, p.itemk-2 = q.itemk-2, p.itemk-1 < q.itemk-1 ;

 20

2.2. Multi-dimension association rule

Association rules that involve two or more dimensions or predicates can be

referred to as multi-dimensional association rules [14]. Informally, we refer to the

association rules along with other attributes as multi-dimension association rules in

this paper. We will introduce some approach: “Quantitative Association Rules”,

“Relationship graph” and “ARCS, association rule clustering system” in this section.

2.2.1. Quantitative association rules

The problem of traditional association rule mining can be viewed as finding

associations between the “1” values in a relational table where all the attributes are

Boolean [25]. However, an attribute in a relational table can be quantitative or

categorical. If we want to discover association rules in a relational table, how to

handle the quantitative attributes will be a critical problem. We will introduce the

method proposed in [25], which apply the concept proposed in [20].

Categorical attributes also called nominal attributes, which have a finite number

of possible values and with no ordering among the values, such as occupation, brand

and color. Quantitative attributes are numeric and have an implicit ordering among

values, such as age, income and price. An example of this table is shown in fig. 2.4.

Fig. 2.4 shows a customer table with a primary key customer ID (C_ID). The attribute

“Age” and “NumCars” are quantitative attributes and the “Married” is a categorical

one. The value of a Boolean field corresponding to <attribute1, value1> would be “1”

if attribute1 had value1 in the original record, and “0” otherwise. If the domain of

values for a quantitative approach is large, an obvious approach will be to first

partition the values into intervals and then map each <attribute, interval> pair to a

Boolean attribute.

 21

fig. 2.5 shows this mapping for the non-key attributes of the customer table given

in Fig.2.4. The quantitative attribute “age” is partitioned into two intervals: 30~39 and

40~49, while another quantitative “NumCars” with small number of values is not

partitioned into intervals. The categorical attribute “Married” has two Boolean

attributes “Married = Yes” and “Married = No”. We can now use any algorithm for

finding traditional association rules to find quantitative association rules, and the part

of result is shown in Fig.2.6.

Figure 2.4 Example of a customer table

Figure 2.5 Mapping to Boolean association rules problem

Figure 2.6 Part of quantitative association mining result

1
1
0
2
2

NumCars

No
Yes
No
Yes
Yes

Married

34
38
33
47
42

Age

001
002
003
004
005

C_ID

1
1
0
2
2

NumCars

No
Yes
No
Yes
Yes

Married

34
38
33
47
42

Age

001
002
003
004
005

C_ID

0
0
0
1
1

NumCars=2

1
1
0
0
0

NumCars=1

0
0
1
0
0

NumCars=0

1
0
1
0
0

Married=No

0
1
0
1
1

Married=Yes

0
0
0
1
1

Age=40~49

1
1
1
0
0

Age=30~39

001
002
003
004
005

C_ID

0
0
0
1
1

NumCars=2

1
1
0
0
0

NumCars=1

0
0
1
0
0

NumCars=0

1
0
1
0
0

Married=No

0
1
0
1
1

Married=Yes

0
0
0
1
1

Age=40~49

1
1
1
0
0

Age=30~39

001
002
003
004
005

C_ID

100%
66.6%

Confidence

40%
40%

Support

<Age = 40~49> and <Married = Yes> → <NumCars = 2>
<NumCars = 0~1> → <Married = no>

Rules (Sample)

100%
66.6%

Confidence

40%
40%

Support

<Age = 40~49> and <Married = Yes> → <NumCars = 2>
<NumCars = 0~1> → <Married = no>

Rules (Sample)

(Minimum support = 40%, minimum confidence = 66.6%)

 22

2.2.2. Relationship graph

Previous researches on mining association rules only focus on discovering the

relationships among items in the transaction database. The relationships between

items in the transaction database and attribute values in the customer database have

not been explored in the literature yet [21]. The method proposing in [21] discovers

all large itemsets first, and then assigns them attributes according to the priority of

each attribute. An example of such an association rule might be “80% of customers

whose degree are PHD buy itemset X”. Example for the transaction database and the

customer database are shown in Fig. 2.7.

Figure 2.7 Example of transaction and customer database

Let CDB(CID, CA1, CA2, …, CAn) be the customer database and TDB(CID,

itemset) the transaction database where CID represents the identification number of a

customer. The rules discovered in [16] consist of the antecedent and the consequent.

The antecedent is a conjunction of “CAi = vi,” where CAi is a condition attribute from

the customer database and vi the associated value, the consequent is a large itemset.

Let pr(CAi) be the priority associated with the condition attribute CAi, 1≤ i≤ n. Fig.

2.8 shows the relationship graph that is constructed according to the priorities of

attributes and large itemsets.

.

.

.

.

.

.

011, 203, 002

003, 006, 027

003, 015

001, 003, 013

005, 001, 015

itemset

5

3

4

2

1

CID

.

.

.

.

.

.

011, 203, 002

003, 006, 027

003, 015

001, 003, 013

005, 001, 015

itemset

5

3

4

2

1

CID

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

spatial-database

data-mining

spatial-database

distributed-database

data-mining

specialty

MS

MS

BS

PhD

BS

degree

F

F

M

F

M

gender

Jill

Jane

Joe

Mary

John

name

5

3

4

2

1

CID

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

spatial-database

data-mining

spatial-database

distributed-database

data-mining

specialty

MS

MS

BS

PhD

BS

degree

F

F

M

F

M

gender

Jill

Jane

Joe

Mary

John

name

5

3

4

2

1

CID

 23

Figure 2.8 Example of relationship graph

Let stage(CAi) be the stage number for attribute CAi in the relationship graph,

where stage(large itemset) is 0, and stage(CAi)<stage(CAj) if pr(CAi)<pr(CAj). There

is an edge from vi to vk, if stage(CAj) = stage(CAk)-1 and there is a tuple with vj for

attribute CAj and vk for attribute CAk. An edge is connected from LSi to v1j if there is a

customer who has v1j for attribute CA1 and bought all the items in LSi. The algorithm

in [16] is shown in Fig. 2.9. This algorithm first considering the relationship between

a large itemset LSi and a value, v1, of CA1, if there is an edge from LSi to v1 in the

relationship graph. The algorithm will add rule “IF CA1 = v1 THEN itemset = LSi” to

the rule set, if the confidence = |L(LSi,v1)| / |T(v1)| satisfies the minimum confidence.

This algorithm continues to consider the relationship between LSi and the values v1

and v2 for attributes CA1 and CA2 if needed.

M

F

stage3 stage1stage2 stage0
gender degree specialty Large itemset

BS

MS

PhD

DM

DD

SD

OD

MD

A

C
E

F

A, F

C, F

B

 24

Figure 2.9 Algorithm of relationship graph

This method may lose some important rules hold in parts of database, since it

discovers all large itemsets based on whole database first. The different priority of

each condition attribute will induce different rule produced. That is, except the

priority of each attribute is definite, user may need to try every possible priority to

discover all possible rules.

2.2.3. Association rule clustering system (ARCS)

ARCS, association rule clustering system, was proposed in [4]. The method in [4]

focus specifically on how to mine quantitative association rules having two

quantitative attributes on the left-hand side (LHS) of the rule, and one categorical

attributes on the right-hand side (RHS) of the rule. This method considers association

BEGIN
S =
for i = 1 to m do
/* m is the number of large itemsets. */

for all edges <LSi,v1> do
/* LSi is one of the large itemsets. */
/* v1 is a value for CA1. */

T’ = T(v1) – L(LSi,v1);
/* T’ represents the set of CIDs for customers who did not buy all
the items in the large itemset LSi but have the value v1
for condition attribute CA1. */
if T’ = then

adding the rule “IF CA1 = v THEN itemset = LSi [condidence = 1]”
to the rule set S.

else
LIST= <v>; /* LIST is an ordered list. */
TS = L(LSi,v1);
j = 1; /* j represents the present considered stage number. */
conf = |TS| / |T(v1)|;
if conf minimum confidence then
adding the rule “IF CA1 = v1 THEN itemset = LSi [confidence = conf]”
to the rule set S.
end if
Next Stage (TS, v1, j, LIST, T’, T(v), LSi);

end if
end for

end for
END

φ

≥

φ

 25

rule clustering in a two-dimensional space, where each axis represents one attribute

from the database used on the RHS of a rule. For example, if we want to discover the

relationship between salary, age of a person and if owning a house, we will partition

the two quantitative “salary” and “age” into intervals to form a BinArray such as Fig.

2.10 first.

Figure 2.10 An example of BinArray

Every cell in Fig. 2.10 can be represented by an association rule: (X = i) and (Y =

j) → Gk, where X is “age”, Y is “salary”, Gk is the Boolean attribute “own a house =

yes” or “own a house = No”. The support and the confidence of this rule are defined

as follow:

Support:
N

)Gji k |,,(| confidence:
|),(|

|,,(|
ji

)Gji k

Where N is the total number of tuples in the source data, |(i, j)|is the total number of

tuples mapped into the BinArray at location (i, j), and |(i, j, Gk)| is the number of

tuples mapped into the BinArray at location (i, j) with criterion attribute value Gk. We

check each of the occupied cells in the BinArray to see if the above conditions hold. If

the thresholds are met, we give the cells a mark to locate clusters of association rules.

The marked BinArray is shown in Fig. 2.11.

$60-$65k

$55-$60k

$50-$55k

$45-$50k

$40-$45k

$35-$40k

$30-$35k

$25-$30k

$20-$25k

$15-$20k

$10-$15k

$0-$10k

Salary

<20 21 22 23 24 25 26 27 28 29 30 31
Age

$60-$65k

$55-$60k

$50-$55k

$45-$50k

$40-$45k

$35-$40k

$30-$35k

$25-$30k

$20-$25k

$15-$20k

$10-$15k

$0-$10k

Salary

<20 21 22 23 24 25 26 27 28 29 30 31
Age

own_house

 26

Figure 2.11 An example of marked BinArray

At last, we cluster the marked cells. The result of cluster and the output rules are

shown in Fig. 2.12.

Figure 2.12 Result and output rules

The restriction of ARCS is that the categorical attributes may not be suitable to

cluster, only quantitative attributes can be the left-hand side of the rule. On the other

hand, only one kind of rules which have the same right-hand side can produce in once

cluster, thus we need mass redundancy database scan or huge memory and a lot of

cluster process to discover all the rules.

X
$60-$65k

$55-$60k

$50-$55k

$45-$50k

$40-$45k

$35-$40k

$30-$35k

$25-$30k

$20-$25k

$15-$20k

$10-$15k

$0-$10k

Salary

<20 21 22 23 24 25 26 27 28 29 30 31
Age

X X X X
X X X X X
X X X X X
X X X X X
X X X X X

X X X
X X X
X X X
X X X

X X
X X
X X
X X

X
$60-$65k

$55-$60k

$50-$55k

$45-$50k

$40-$45k

$35-$40k

$30-$35k

$25-$30k

$20-$25k

$15-$20k

$10-$15k

$0-$10k

Salary

<20 21 22 23 24 25 26 27 28 29 30 31
Age

X X X X
X X X X X
X X X X X
X X X X X
X X X X X

X X X
X X X
X X X
X X X

X X
X X
X X
X X

X : own_house=yes

X
$60-$65k

$55-$60k

$50-$55k

$45-$50k

$40-$45k

$35-$40k

$30-$35k

$25-$30k

$20-$25k

$15-$20k

$10-$15k

$0-$10k

Salary

<20 21 22 23 24 25 26 27 28 29 30 31
Age

X X X X
X X X X X
X X X X X
X X X X X
X X X X X

X X X
X X X
X X X
X X X

X X
X X
X X
X X

X
$60-$65k

$55-$60k

$50-$55k

$45-$50k

$40-$45k

$35-$40k

$30-$35k

$25-$30k

$20-$25k

$15-$20k

$10-$15k

$0-$10k

Salary

<20 21 22 23 24 25 26 27 28 29 30 31
Age

X X X X
X X X X X
X X X X X
X X X X X
X X X X X

X X X
X X X
X X X
X X X

X X
X X
X X
X X

X : own_home=yes

(20≤Age<22) ∧ (20k≤Salary<40k)
→(own_home=yes)

(22≤Age<27) ∧ (35k≤Salary<60k)
→(own_home=yes)

(27≤Age<30) ∧ (30k≤Salary<50k)
→(own_home=yes)

 27

2.3. Calendar-based temporal association rules

The calendar-based temporal association rules was proposed in [33]. The works

in [33] develop a calendar schema to produce calendar-based patterns in different time

granularities. The method finds all large itemsets for each element pattern first, and

then uses the output of every element pattern to update other calendar-based patterns

which cover them.

2.3.1. Calendar schema and calendar pattern

A calendar schema is a relational schema R = (fn:Dn, fn-1:Dn-1, …, f1:D1). Each

attribute fi is a time granularity name like year, month, and week etc. and domain Di is

a finite subset of the positive integers. For example, R = (year:{1995,1996},month:{1,

2, …, 12}, day:{1, 2, …, 31}).

A simple calendar-based pattern on the calendar schema R is a tuple on R of the

form <dn, dn-1, …, d1>, where each di is in Di or the wild-card symbol ‘*’. For

example, with the above calendar schema R, a calendar-based pattern <2005, 1, *>

means every day of January of 2005, and <*, 8, 16> means every 16th day of August

of every year.

A calendar pattern with exactly k wild-card symbols is a k-star calendar pattern

(denoted ek), and a calendar pattern with at least one wild-card symbol is a star

calendar pattern. In addition, a calendar pattern with no wild-card symbol is a basic

time interval under the calendar schema. A simplified example of the calendar schema

and calendar patterns is shown in Fig. 2.13.

 28

Figure 2.13 An example of calendar schema and calendar patterns

2.3.2. Calendar-based temporal association rules

Given a basic time interval t (or a calendar pattern e) under a given calendar

schema, the set of transactions whose time-stamps are covered by t (or e) are denoted

as T[t] (or T[e]). A temporal association rule over a calendar schema R is a pair (r, e),

where r is an association rule and e is a calendar pattern on R. Given a calendar

schema R, a set T of time-stamped transactions, a temporal association rule (r, e)

holds in T if and only if the association rule r holds in T[t] for enough basic time

interval t covered by e.

The algorithm proposed in [33] is shown in Fig. 2.14. This algorithm works in

pass as in [23]. In each pass, the basic time intervals in the calendar schema are

processed one by one. During the processing of basic time interval e0 in pass k, the set

of large k-itemsets Lk(e0) is first computed and then Lk(e0) is used to update the large

k-itemsets for all the calendar patterns that cover e0.

R=(year: {2003,2004}, month: {1,2}, day: {1,2,3})

e0：<2003,1,1>,<2003,1,2>,<2003,1,3>,
<2003,2,1>,<2003,2,2>,<2003,2,3>,
<2004,1,1>,<2004,1,2>,<2004,1,3>,
<2004,2,1>,<2004,2,2>,<2004,2,3>,

e1：<*,1,1>,<*,1,2>,<*,1,3>,
<*,2,1>,<*,2,2>,<*,2,3>,
<2003,*,1>,<2003,*,2>,<2003,*,3>,
<2004,*,1>,<2004,*,2>,<2004,*,3>,
<2003,1,*>,<2003,2,*>
<2004,1,*>,<2003,4,*>

e2：<2004,*,*>,<*,2,*>,<*,*,3>
<2004,*,*>,<*,2,*>,<*,*,3>
<2004,*,*>,<*,2,*>,<*,*,3>

 29

Figure 2.14 Outline of algorithm in calendar-based temporal association rules.

The method in [33] proposing an appropriate strategy to discover association rules

in every part of database enclosed by calendar-based patterns, but the method only

addresses the time dimension to discover temporal association rules. The star pattern is

meaningful in temporal dimension, but may be not suitable in other dimensions. In

this paper, we use a concept hierarchy to represent the intervals at varying levels of

abstraction in each dimension and the belonging relationship between them.

2.4. Concept hierarchy

Concept hierarchy is a simple yet powerful form of background knowledge,

which allows the user to view the data at more meaningful and explicit abstractions,

and makes the discovered patterns easier to understand [14]. A concept hierarchy

defines a sequence of mappings from a set of low-level concepts to higher-level, more

general concepts [14], which helps expressing knowledge and data relationships in

databases in concise high level terms, and thus, plays an important role in knowledge

1) forall basic time intervals e0 do
2) L1(e0) = { large 1-itemsets in T[e0] }
3) forall star patterns e that cover e0 do
4) update L1(e) using L1(e0);
5) end
6) for (k = 2; a star calendar pattern e such that Lk-1(e)≠ψ; k ++) do
7) forall basic time intervals e0 do
8) // Phase I : generate candidates
9) generate candidates Ck(e0);
10) // Phase II : scan the transactions
11) forall transactions T T[e0] do
12) subset (Ck(e0), T);
13) // c.count ++ if c Ck(e0) is contained in T
14) Lk(e0) = { c Ck(e0) | c.count ≧ minsupport};
15) // Phase III : update for star calendar patterns
16) forall star patterns e that cover e0 do
17) update Lk(e) using Lk(e0);
18) end
19) output <Lk(e),e> for all star calendar pattern e.
20) end

∈

∃

∈
∈

1) forall basic time intervals e0 do
2) L1(e0) = { large 1-itemsets in T[e0] }
3) forall star patterns e that cover e0 do
4) update L1(e) using L1(e0);
5) end
6) for (k = 2; a star calendar pattern e such that Lk-1(e)≠ψ; k ++) do
7) forall basic time intervals e0 do
8) // Phase I : generate candidates
9) generate candidates Ck(e0);
10) // Phase II : scan the transactions
11) forall transactions T T[e0] do
12) subset (Ck(e0), T);
13) // c.count ++ if c Ck(e0) is contained in T
14) Lk(e0) = { c Ck(e0) | c.count ≧ minsupport};
15) // Phase III : update for star calendar patterns
16) forall star patterns e that cover e0 do
17) update Lk(e) using Lk(e0);
18) end
19) output <Lk(e),e> for all star calendar pattern e.
20) end

∈

∃

∈
∈

 30

discovery processes [12]. The concept hierarchy is usually partially ordered according

to a general-to-specific ordering, and often defines a taxonomy or lattice represented.

Consider a concept hierarchy for the dimension temporal in fig. 2.15, the most

specific concept is month, where the month values for temporal include form January

to December. Each month, however, can be mapped to the season which they belong

to. The most general concept is the null description (“ANY”).

Figure 2.15 An example of temporal hierarchy

Concept hierarchies could be provided manually by users, knowledge engineers,

domain experts, embedded in some data relations, or automatic generated based on

statistical analysis of the data distribution. Different concept hierarchies can be

constructed on the same attribute(s) based on different viewpoints or preferences [12].

There are four major types of concept hierarchies: schema hierarchies,

set-grouping hierarchies, operation-derived hierarchies and rule-based hierarchies. A

schema hierarchy is a total or partial order among attributes in the database schema.

Typically, a schema hierarchy specifies a data warehouse dimension [14]. An example

of hierarchical and lattice structures of attributes in warehouse dimensions is shown in

fig. 2.16. A set-grouping hierarchy organizes values for a given attribute or dimension

into groups of constants or range values [14]. An example of a set-grouping hierarchy

for the dimension salary is shown in fig. 2.17. An operation-derived hierarchy is

based on operations specified by users, experts, or the data mining system, and a

Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Spring

Jan Feb

ANY

Summer Fall Winter

Month

Season

All

Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Spring

Jan Feb

ANY

Summer Fall Winter

Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Spring

Jan Feb

ANY

Summer Fall Winter

Month

Season

All

 31

rule-based hierarchy occurs when either a whole concept hierarchy or a portion of it

is defined by a set of rules and is evaluated dynamically based on the current database

data and the rule definition [14].

Figure 2.16 Hierarchical and lattice structures of attributes in warehouse dimensions

Figure 2.17 An example of salary hierarchy

Low

ANY

Medium High

($1000k –
$1200k]

($800k –
$1000k]

($600k –
$800k]- $600k] ($1400k –($ 1200k –

$1400k]

Low

ANY

Medium High

($1000k –
$1200k]

($800k –
$1000k]

($600k –
$800k]- $600k] ($1400k –($ 1200k –

$1400k]

country

province_or_state

city

street day

weekmonth

quarter

year

Hierarchical structures Lattice structures

