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2. Literature review 

Production rule is an important element in the expert system. By interview with 

the domain experts, we can induce the rules and store them in a truth maintenance 

system. An assumption-based TMS has carried out by de Kleer in [16][17][18][19]. 

After that, the discovery of association rules has been extensively studied with the 

conception of ATMS in 90’s such as [11][22][23][27]. Many extensions were also 

proposed in recent years, such as: multi-level and generalized rules in [13][24], 

inter-transaction association rules in [8], Periodic Patterns in [9][10], temporal 

association rules in [30][33], Mutually Dependent Patterns in [28], and fuzzy rules in 

[7]. The study in [32] takes that some products may not be on shelf in some stores 

during some period into considered. Mining association rules with multiple minimum 

supports was discussed in [3], Applications of association rules were presented in 

[2][5][29], and the privacy preserving issue has also studied in [1] . 

In the section, we will introduce the formal definition and mining process of 

association rules first, and then we will review some approaches of multi-dimension 

rules, and a method of mining calendar-based temporal association rules in [33]. 

Concept hierarchy, which is an important element of our method, will also be 

discussed at last in this section. 

2.1. Association rule 

Association rule is one of the major forms of data mining and is perhaps the most 

common form of knowledge discovery in unsupervised learning systems. The notion 

of association rule was proposed to capture the co-occurrence of items in transactions. 

A typical application of association rule is market basket analysis; this process 

analyzes customer buying habits by finding association between the different items 
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that customers place in their “shopping baskets” [14] . 

2.1.1. Definition of association rules 

Suppose we have a transaction database D (as Fig. 2.1). A transaction is a tuple 

in D which is consist of a set of items and is identified by its T_ID. 

 
Figure 2.1 transaction database D 

Let I = {i1, i2, …, in}, is the set of all n different items in D. Each transaction in 

D is a subset of I. An itemset is also defined as a subset of I. An association rule 

usually has this form : A→B, where A and B are two disjoint itemsets. The 

association rule A→B implies that among transactions in D, the occurrences of B 

have high correlation with the occurrences of A. There are two important factors with 

association rules. One is support, the other is conference. Support means how often 

the rule applies. The support of an itemset X is the fraction of transactions containing 

X in D. Given a thresholdσ as minimum support, X is a large itemset in D if the 

support of X in D exceedσ . Confidence means how often the rule is correct. The 

confidence of A→B is the fraction of transactions containing A and B simultaneously 

in transactions containing A. The equations are shown below: 
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2.1.2. Mining association rules 

Mining association rules can be decomposed into two sub-problems: (1) finding 

all large itemsets, and (2) generating association rules using this large itemsets. The 

search task in step1 is the crux of discovering association rule, and most algorithms of 

mining association rules focus on the front one. The simplest search strategy is 

exponential: Enumerate all the possibilities and try each one until a solution is found 

[16]. That is, there are n binary selections giving 2n itemsets which is exponentially 

with the number of items into consider. For example, if there are 5 items, there will be 

25 = 32 candidates as in fig.2.2.  

 
Figure 2.2 Initial candidate space for the circuit example 

A concept carried out in [16] can help us with pruning the search space quickly. 

That is: “If an environment is nogood, then all of its superset environments are 

nogood as well.”[16]. The definition of large itemsets also indicates a similar property: 

X is a large itemset in D, if and only if all subsets of X are also large itemsets in D. 

[]

[C][B][A] [D] [E]

[B,C][A,D][A,B] [B,E] [C,E][B,D][A,E][A,C] [C,D] [D,E]

[A,C,E][A,B,E][A,B,C] [B,C,D] [B,D,E][A,D,E][A,C,D][A,B,D] [B,C,E] [C,D,E]

[A,B,D,E][A,B,C,E][A,B,C,D] [A,C,D,E] [B,C,D,E]

[A,B,C,D,E]
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Thus when an itemset X is verified to be a large itemset, all the subsets of X can be 

verified as large itemsets also. On the other hand, if an itemset X is verified to be not 

large, all the superset of X can be verified to be not large at the same time. We can 

reduce the candidate space quickly with this property. 

2.1.3. Entropy function & application 

In order to reduce the set of remaining candidates efficiently, we help to measure 

the itemsets that we can gain the most of information after measuring them. By 

cascade evaluating the consequences of a hypothetical measurement, we could 

evaluate the consequences of any sequence of measurements to determine the optimal 

next measurement. The method proposed in [19] uses a one-step lookahead strategy 

based on Shannon entropy. From decision and information theory we know that a very 

good cost function is the entropy (H) of the candidate probabilities: 

H = -Σpi log pi 

Where pi is the probability that candidate Xi is the actual candidate given the 

hypothesized measurement outcome, and the cost of locating a candidate of 

probability pi is proportional to log pi
-1. The best measurement is the one which 

minimum the expected entropy of candidate probabilities resulting from the 

measurement. The expected entropy He(Xi) after measuring quantity is given by: 

He(Xi) = Σ(k = 1 to m) p(xi = vik) H(xi = vik). 

Where vi1, …, vim are all possible values for xi, and H(xi = vik) is the entropy resulting 

if xi is measured to be vik. 

With Shannon entropy, we can deduce that the itemset which contains smaller 

items we count, the more information we get (a prove is given in Appendix A). 
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According to above results, we begin the counting from 1-itemsets and develop an 

efficiency level-wise searching algorithm with downward closure property to discover 

all large itemsets. 

2.1.4. Mining association algorithm 

Given a set of transactions D, the problem of mining association rules is to 

generate all association rules that have support and confidence greater than the 

user-specified minimum support (called minsup) and minimum confidence (called 

minconf) respectively.[23] 

According to the results deduced above, we can develop an efficiency level-wise 

searching algorithm with downward closure property to discover all large itemsets. 

The outline of this algorithm is shown in Fig. 2.3. 

 
Figure 2.3 Association rules mining algorithm 

In Fig. 2.3, the first pass of the algorithm simply counts item occurrences to 

discover the frequent 1-itemsets. A subsequent pass, pass k, consists of two phases. 

First, use the frequent itemset Lk-1 found in the (k-1)th pass to generate the candidate 

itemsets Ck by using the candidate generation procedure(described below). Next, scan 

the database to count the support of candidate in Ck. 

The intuition behind the candidate generation procedure is that if an itemset X 

1)   L1 = {large 1-itemsets};
2) for (k = 2; Lk-1≠ψ; k++) do begin
3)         Ck = Apriori-gen(Lk-1); // New candidates
4)         forall transactions t in D do begin
5)             Ct = subset(Ck, t); // Candidate contained in t
6)             forall candidates c in Ct do
7)                 c.count++;
8)         end
9)         Lk = {c in Ck | c.count≧minsup}
10) end
11) Answer = ∪k Lk; 
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has minimum support, so do all subsets of X. Given Lk-1, the set of all frequent 

(k-1)-itemsets, assume the items in each itemset are in lexicographic order for 

simplicity, candidate generation takes two steps. First, in the join step, join Lk-1 with 

Lk-1 as below: 

 

Next, in the prune step, delete all itemsets c∈Ck such that some (k-1)-subset of c is 

not in Lk-1. For example, let L2 be {{ab}, {ac}, {ad}, {bc}, {cd}}. After the join step, 

C3 will be {{abc}, {abd}. {acd}}. The prune step will delete the itemset {abd} 

because the itemset {bd}is not in L2. We will then be left with {abc} and {acd} in C3. 

For fast counting, we need to efficiently determine the candidates in Ck contained in a 

given transaction t. A hash-tree data structure is used for this purpose. 

Many variations of this algorithm have been proposed that focus on improving 

the efficiency of the original algorithm, such as: “Hash-based technique (hashing 

itemset counts)”, “Transaction reduction (reducing the number of transactions scanned 

in future iterations)”, “Partitioning (portioning the data to find candidate itemsets)”, 

“Sampling (mining on a subset of the given data)” and “Dynamic itemset counting 

(adding candidate itemsets at different points during a scan). 

 

 

 

 

insert into Ck
select p.item1, p.item2, …, p.itemk-1, q.itemk-1
from Lk-1 p, Lk-1 q
where p.item1 = q.item1, …, p.itemk-2 = q.itemk-2, p.itemk-1 < q.itemk-1 ;
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2.2. Multi-dimension association rule 

Association rules that involve two or more dimensions or predicates can be 

referred to as multi-dimensional association rules [14]. Informally, we refer to the 

association rules along with other attributes as multi-dimension association rules in 

this paper. We will introduce some approach: “Quantitative Association Rules”, 

“Relationship graph” and “ARCS, association rule clustering system” in this section. 

2.2.1. Quantitative association rules 

The problem of traditional association rule mining can be viewed as finding 

associations between the “1” values in a relational table where all the attributes are 

Boolean [25]. However, an attribute in a relational table can be quantitative or 

categorical. If we want to discover association rules in a relational table, how to 

handle the quantitative attributes will be a critical problem. We will introduce the 

method proposed in [25], which apply the concept proposed in [20].  

Categorical attributes also called nominal attributes, which have a finite number 

of possible values and with no ordering among the values, such as occupation, brand 

and color. Quantitative attributes are numeric and have an implicit ordering among 

values, such as age, income and price. An example of this table is shown in fig. 2.4. 

Fig. 2.4 shows a customer table with a primary key customer ID (C_ID). The attribute 

“Age” and “NumCars” are quantitative attributes and the “Married” is a categorical 

one. The value of a Boolean field corresponding to <attribute1, value1> would be “1” 

if attribute1 had value1 in the original record, and “0” otherwise. If the domain of 

values for a quantitative approach is large, an obvious approach will be to first 

partition the values into intervals and then map each <attribute, interval> pair to a 

Boolean attribute.  
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fig. 2.5 shows this mapping for the non-key attributes of the customer table given 

in Fig.2.4. The quantitative attribute “age” is partitioned into two intervals: 30~39 and 

40~49, while another quantitative “NumCars” with small number of values is not 

partitioned into intervals. The categorical attribute “Married” has two Boolean 

attributes “Married = Yes” and “Married = No”. We can now use any algorithm for 

finding traditional association rules to find quantitative association rules, and the part 

of result is shown in Fig.2.6. 

 
Figure 2.4 Example of a customer table 

 
Figure 2.5 Mapping to Boolean association rules problem 

 
Figure 2.6 Part of quantitative association mining result 
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2.2.2. Relationship graph 

Previous researches on mining association rules only focus on discovering the 

relationships among items in the transaction database. The relationships between 

items in the transaction database and attribute values in the customer database have 

not been explored in the literature yet [21]. The method proposing in [21] discovers 

all large itemsets first, and then assigns them attributes according to the priority of 

each attribute. An example of such an association rule might be “80% of customers 

whose degree are PHD buy itemset X”. Example for the transaction database and the 

customer database are shown in Fig. 2.7.  

 
Figure 2.7 Example of transaction and customer database 

Let CDB(CID, CA1, CA2, …, CAn) be the customer database and TDB(CID, 

itemset) the transaction database where CID represents the identification number of a 

customer. The rules discovered in [16] consist of the antecedent and the consequent. 

The antecedent is a conjunction of “CAi = vi,” where CAi is a condition attribute from 

the customer database and vi the associated value, the consequent is a large itemset. 

Let pr(CAi) be the priority associated with the condition attribute CAi, 1≤ i≤ n. Fig. 

2.8 shows the relationship graph that is constructed according to the priorities of 

attributes and large itemsets.  
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Figure 2.8 Example of relationship graph 

Let stage(CAi) be the stage number for attribute CAi in the relationship graph, 

where stage(large itemset) is 0, and stage(CAi)<stage(CAj) if pr(CAi)<pr(CAj). There 

is an edge from vi to vk, if stage(CAj) = stage(CAk)-1 and there is a tuple with vj for 

attribute CAj and vk for attribute CAk. An edge is connected from LSi to v1j if there is a 

customer who has v1j for attribute CA1 and bought all the items in LSi. The algorithm 

in [16] is shown in Fig. 2.9. This algorithm first considering the relationship between 

a large itemset LSi and a value, v1, of CA1, if there is an edge from LSi to v1 in the 

relationship graph. The algorithm will add rule “IF CA1 = v1 THEN itemset = LSi” to 

the rule set, if the confidence = |L(LSi,v1)| / |T(v1)| satisfies the minimum confidence. 

This algorithm continues to consider the relationship between LSi and the values v1 

and v2 for attributes CA1 and CA2 if needed. 
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Figure 2.9 Algorithm of relationship graph 

This method may lose some important rules hold in parts of database, since it 

discovers all large itemsets based on whole database first. The different priority of 

each condition attribute will induce different rule produced. That is, except the 

priority of each attribute is definite, user may need to try every possible priority to 

discover all possible rules. 

2.2.3. Association rule clustering system (ARCS) 

ARCS, association rule clustering system, was proposed in [4]. The method in [4] 

focus specifically on how to mine quantitative association rules having two 

quantitative attributes on the left-hand side (LHS) of the rule, and one categorical 

attributes on the right-hand side (RHS) of the rule. This method considers association 

BEGIN
S =  
for i = 1 to m do
/* m is the number of large itemsets. */

for all edges <LSi,v1> do
/* LSi is one of the large itemsets. */
/* v1 is a value for CA1. */

T’ = T(v1) – L(LSi,v1);
/* T’ represents the set of CIDs for customers who did not buy all
the items in the large itemset LSi but have the value v1
for condition attribute CA1. */
if T’ =     then

adding the rule “IF CA1 = v THEN itemset = LSi [condidence = 1]”
to the rule set S.

else
LIST= <v>; /* LIST is an ordered list. */
TS = L(LSi,v1);
j = 1; /* j represents the present considered stage number. */
conf = |TS| / |T(v1)|;
if conf minimum confidence then
adding the rule “IF CA1 = v1 THEN itemset = LSi [confidence = conf]”
to the rule set S.
end if
Next Stage (TS, v1, j, LIST, T’, T(v), LSi);

end if
end for

end for
END

φ

≥

φ
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rule clustering in a two-dimensional space, where each axis represents one attribute 

from the database used on the RHS of a rule. For example, if we want to discover the 

relationship between salary, age of a person and if owning a house, we will partition 

the two quantitative “salary” and “age” into intervals to form a BinArray such as Fig.  

2.10 first.  

 
Figure 2.10 An example of BinArray 

Every cell in Fig. 2.10 can be represented by an association rule: (X = i) and (Y = 

j) → Gk, where X is “age”, Y is “salary”, Gk is the Boolean attribute “own a house = 

yes” or “own a house = No”. The support and the confidence of this rule are defined 

as follow:  

Support:
N

)Gji k |,,(|   confidence: 
|),(|

|,,(|
ji

)Gji k  

Where N is the total number of tuples in the source data, |(i, j)|is the total number of 

tuples mapped into the BinArray at location (i, j), and |(i, j, Gk)| is the number of 

tuples mapped into the BinArray at location (i, j) with criterion attribute value Gk. We 

check each of the occupied cells in the BinArray to see if the above conditions hold. If 

the thresholds are met, we give the cells a mark to locate clusters of association rules. 

The marked BinArray is shown in Fig. 2.11. 
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Figure 2.11 An example of marked BinArray 

At last, we cluster the marked cells. The result of cluster and the output rules are 

shown in Fig. 2.12. 

 
Figure 2.12 Result and output rules 

 

The restriction of ARCS is that the categorical attributes may not be suitable to 

cluster, only quantitative attributes can be the left-hand side of the rule. On the other 

hand, only one kind of rules which have the same right-hand side can produce in once 

cluster, thus we need mass redundancy database scan or huge memory and a lot of 

cluster process to discover all the rules. 
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2.3. Calendar-based temporal association rules 

The calendar-based temporal association rules was proposed in [33]. The works 

in [33] develop a calendar schema to produce calendar-based patterns in different time 

granularities. The method finds all large itemsets for each element pattern first, and 

then uses the output of every element pattern to update other calendar-based patterns 

which cover them. 

2.3.1. Calendar schema and calendar pattern 

A calendar schema is a relational schema R = (fn:Dn, fn-1:Dn-1, …, f1:D1). Each 

attribute fi is a time granularity name like year, month, and week etc. and domain Di is 

a finite subset of the positive integers. For example, R = (year:{1995,1996},month:{1, 

2, …, 12}, day:{1, 2, …, 31}). 

A simple calendar-based pattern on the calendar schema R is a tuple on R of the 

form <dn, dn-1, …, d1>, where each di is in Di or the wild-card symbol ‘*’. For 

example, with the above calendar schema R, a calendar-based pattern <2005, 1, *> 

means every day of January of 2005, and <*, 8, 16> means every 16th day of August 

of every year. 

A calendar pattern with exactly k wild-card symbols is a k-star calendar pattern 

(denoted ek), and a calendar pattern with at least one wild-card symbol is a star 

calendar pattern. In addition, a calendar pattern with no wild-card symbol is a basic 

time interval under the calendar schema. A simplified example of the calendar schema 

and calendar patterns is shown in Fig. 2.13. 
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Figure 2.13 An example of calendar schema and calendar patterns 

2.3.2. Calendar-based temporal association rules 

Given a basic time interval t (or a calendar pattern e) under a given calendar 

schema, the set of transactions whose time-stamps are covered by t (or e) are denoted 

as T[t] (or T[e]). A temporal association rule over a calendar schema R is a pair (r, e), 

where r is an association rule and e is a calendar pattern on R. Given a calendar 

schema R, a set T of time-stamped transactions, a temporal association rule (r, e) 

holds in T if and only if the association rule r holds in T[t] for enough basic time 

interval t covered by e. 

The algorithm proposed in [33] is shown in Fig. 2.14. This algorithm works in 

pass as in [23]. In each pass, the basic time intervals in the calendar schema are 

processed one by one. During the processing of basic time interval e0 in pass k, the set 

of large k-itemsets Lk(e0) is first computed and then Lk(e0) is used to update the large 

k-itemsets for all the calendar patterns that cover e0. 

R=(year: {2003,2004}, month: {1,2}, day: {1,2,3})

e0：<2003,1,1>,<2003,1,2>,<2003,1,3>, 
<2003,2,1>,<2003,2,2>,<2003,2,3>, 
<2004,1,1>,<2004,1,2>,<2004,1,3>, 
<2004,2,1>,<2004,2,2>,<2004,2,3>, 

e1：<*,1,1>,<*,1,2>,<*,1,3>, 
<*,2,1>,<*,2,2>,<*,2,3>, 
<2003,*,1>,<2003,*,2>,<2003,*,3>, 
<2004,*,1>,<2004,*,2>,<2004,*,3>, 
<2003,1,*>,<2003,2,*> 
<2004,1,*>,<2003,4,*> 

e2：<2004,*,*>,<*,2,*>,<*,*,3>           
<2004,*,*>,<*,2,*>,<*,*,3>           
<2004,*,*>,<*,2,*>,<*,*,3>           
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Figure 2.14 Outline of algorithm in calendar-based temporal association rules. 

The method in [33] proposing an appropriate strategy to discover association rules 

in every part of database enclosed by calendar-based patterns, but the method only 

addresses the time dimension to discover temporal association rules. The star pattern is 

meaningful in temporal dimension, but may be not suitable in other dimensions. In 

this paper, we use a concept hierarchy to represent the intervals at varying levels of 

abstraction in each dimension and the belonging relationship between them. 

2.4. Concept hierarchy 

Concept hierarchy is a simple yet powerful form of background knowledge, 

which allows the user to view the data at more meaningful and explicit abstractions, 

and makes the discovered patterns easier to understand [14]. A concept hierarchy 

defines a sequence of mappings from a set of low-level concepts to higher-level, more 

general concepts [14], which helps expressing knowledge and data relationships in 

databases in concise high level terms, and thus, plays an important role in knowledge 
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discovery processes [12]. The concept hierarchy is usually partially ordered according 

to a general-to-specific ordering, and often defines a taxonomy or lattice represented. 

Consider a concept hierarchy for the dimension temporal in fig. 2.15, the most 

specific concept is month, where the month values for temporal include form January 

to December. Each month, however, can be mapped to the season which they belong 

to. The most general concept is the null description (“ANY”).  

 
Figure 2.15 An example of temporal hierarchy 

Concept hierarchies could be provided manually by users, knowledge engineers, 

domain experts, embedded in some data relations, or automatic generated based on 

statistical analysis of the data distribution. Different concept hierarchies can be 

constructed on the same attribute(s) based on different viewpoints or preferences [12].  

There are four major types of concept hierarchies: schema hierarchies, 

set-grouping hierarchies, operation-derived hierarchies and rule-based hierarchies. A 

schema hierarchy is a total or partial order among attributes in the database schema. 

Typically, a schema hierarchy specifies a data warehouse dimension [14]. An example 

of hierarchical and lattice structures of attributes in warehouse dimensions is shown in 

fig. 2.16. A set-grouping hierarchy organizes values for a given attribute or dimension 

into groups of constants or range values [14]. An example of a set-grouping hierarchy 

for the dimension salary is shown in fig. 2.17. An operation-derived hierarchy is 

based on operations specified by users, experts, or the data mining system, and a 
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rule-based hierarchy occurs when either a whole concept hierarchy or a portion of it 

is defined by a set of rules and is evaluated dynamically based on the current database 

data and the rule definition [14]. 

 

Figure 2.16 Hierarchical and lattice structures of attributes in warehouse dimensions 

 

 
Figure 2.17 An example of salary hierarchy 
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