

 42

4. Algorithm

The outline of our algorithm is shown in Fig. 4.1. The input of our algorithm

consists of a multi-dimension transaction database MD, a set of concept hierarchies for

each dimension CHx(x = 1 to n), a minimal support minsup, a minimal confidence

minconf, and a match ratio m (in relaxed match case). The output of our algorithm is

all the multi-dimension rules w.r.t full (or relaxed match) in MD. Instead of modifying

the algorithm in [33] intuitively, we decompose our algorithm into two independent

steps: (1) finding all association rules in each element segmentation, and (2) updating

all combination segmentations by the output of step1. We can adopt any available

algorithms (such as [11][23][27]) in step1, and segregating the two steps will make

our mining task more flexible in a distribution environment.

Figure 4.1 Outline of our algorithm.

1) Input:
2) Multi-dimension transaction database: MD;
3) concept hierarchies for each dimension: CHx (x = 1 to n);
4) user define threshold: minsup, minconf, match ratio m;
5) Procedure:
6) Phase0:
7) generate all Ei and Gj by CHx (x = 1 to n);
8) build the pattern table;
9) Phase1:
10) for all Ei
11) discover all association rules r in T[Ei] as REi;
12) Phase2:
13) for all Ei
14) for all Gj that Ei Gj
15) update RGj using REi;
16) Phase3:
17) for all Gj
18) for all r (which satisfy m) in RGj
19) output (Gj, r);
20) Output:
21) All multi-dimension association rules (p, r);

⊂

1) Input:
2) Multi-dimension transaction database: MD;
3) concept hierarchies for each dimension: CHx (x = 1 to n);
4) user define threshold: minsup, minconf, match ratio m;
5) Procedure:
6) Phase0:
7) generate all Ei and Gj by CHx (x = 1 to n);
8) build the pattern table;
9) Phase1:
10) for all Ei
11) discover all association rules r in T[Ei] as REi;
12) Phase2:
13) for all Ei
14) for all Gj that Ei Gj
15) update RGj using REi;
16) Phase3:
17) for all Gj
18) for all r (which satisfy m) in RGj
19) output (Gj, r);
20) Output:
21) All multi-dimension association rules (p, r);

⊂

 43

In our algorithm, we discover all association rules REi in element segmentation

T[Ei] for each element pattern Ei, and then use REi to update RGj, a set of

multi-dimension association rules, for every generalized pattern Gj which covers Ei.

The tasks of each element pattern are mining large itemsets within them and tell their

super generalized patterns “I support these rules to be multi-dimension association

rules”. The task of each generalized pattern is deciding which rules hold within it

according to the opinion coming from the element patterns which belong to them.

Note that, instead of mining association rules in every segmentation, we only

implement mining process in each element segmentation and use the output of them to

determine which rules hold in the combination segmentations they belong to.

Consider two multi-dimension patterns: <2004 spring, Branch01, Student> and <2004

spring, Branch01, Male>, where the two patterns have an overlapping element pattern

<2004 spring, Branch01, Student, Male>. In our algorithm, we use the association

rules in segmentation enclosed by <2004 spring, Branch01, Student, Male> (and by

other related element patterns) to derive the multi-dimension association rules in

segmentations enclosed by <2004 spring, Branch01, Student> and by <2004 spring,

Branch01, Male> to avoid the duplicate database scans. Following, we will discuss

some important elements of our algorithm.

4.1. Generate all patterns and pattern table

Before starting the mining process, we generate all element and generalized

patterns by the input set of concept hierarchies first, and then build a pattern table to

store the belonging relationship between the element and generalized patterns. Given

a set of concept hierarchies, we can generate a multi-dimension pattern by choosing a

node in each concept hierarchy. The combination of different choices can form all the

 44

multi-dimension patterns. For example, given two concept hierarchies as Fig. 4.2,

there are six element patterns: (Mar, Male), (Mar, Female), (Apr, Male), (Apr,

Female), (May, Male), (May, Female), and six generalized patterns: (Spring), (Spring,

Male), (Spring, Female), (Mar), (Apr), (May), twelve multi-dimension patterns

produced from them totally.

Figure 4.2 Two given concept hierarchy.

The belonging relationships between patterns can be presented in a lattice

structure as in Fig. 4.3. We store the relationships in a bit map in which there are

element patterns and generalized patterns, and “1” indicate that the corresponding

element pattern belong to the corresponding generalized pattern, and “0” otherwise.

Such bit map which stores the relationships in Fig. 4.3 is shown in Fig. 4.4. This kind

of bit map which stores the belonging relationships between patterns called a pattern

table in our algorithm.

Figure 4.3 belonging relationships between patterns.

FemaleMale

Any

AprMar May

Spring (Any)

Spring, Female

Spring (Any)

Spring, MaleAprMar May

Mar, Male Mar, Female Apr, Male Apr, Female May, Male May, Female

Spring, Female

Spring (Any)

Spring, MaleAprMar May

Mar, Male Mar, Female Apr, Male Apr, Female May, Male May, Female

 45

Figure 4.4 A pattern table for concept hierarchies in Fig. 4.2.

4.2. Update process

After all the patterns and pattern table be generated, we begin to read the

transactions in each element segmentation to discover all the association rules in

phase1. We adopt the algorithm carried out by [23] in this step. The detail of this

algorithm has been discussed in section 2 and the outline of this algorithm has shown

in Fig. 2.2. The output of phase1 is all the REi for element pattern Ei, which will be the

input in phase2.

In the following phase, we update each RGj using the REi come from phase1. The

outline of the update algorithm for full match is shown in Figure 4.5.

Figure 4.5 Update algorithm for full match

For full match, this is done by intersection the set RGj with the set REi where Ei

belongs to Gj (if RGj is updated for the first time, we let RGj = REi). After all the

intersection process, the association rule r left in RGj hold in all element segmentations

covered by T[Gj]. There is an example shown in Fig. 4.6.

1
1
1
1
1
1

(Spring)

1
0
1
0
1
0

(Spring, Female)

0
1
0
1
0
1

(Spring, Male)

1
1
0
0
0
0

(May)

0
0
1
1
0
0

(Apr)

0
0
0
0
1
1

(Mar)

(May, Female)
(May, Male)
(Apr, Female)
(Apr, Male)
(Mar, Female)
(Mar, Male)

1
1
1
1
1
1

(Spring)

1
0
1
0
1
0

(Spring, Female)

0
1
0
1
0
1

(Spring, Male)

1
1
0
0
0
0

(May)

0
0
1
1
0
0

(Apr)

0
0
0
0
1
1

(Mar)

(May, Female)
(May, Male)
(Apr, Female)
(Apr, Male)
(Mar, Female)
(Mar, Male)

1) for all REi
2) for all Gj Ei
3) if (RGj never be updated)
4) RGj = REi;
5) else
6) RGj = RGj REi;

⊃

I

1) for all REi
2) for all Gj Ei
3) if (RGj never be updated)
4) RGj = REi;
5) else
6) RGj = RGj REi;

⊃

I

 46

Figure 4.6 An example of update for full match

The outline of the update algorithm for relaxed match is shown in Figure 4.7. For

relaxed match, we associate a counter with each rule in RGj. When REi is used to

update RGj, the counters of the rules that are in both RGj and REi are incremented by 1,

and the rules that are in REi but not in RGj are added to RGj with the counter set to 1.

After all the update process, the association rule r in RGj whose count exceed m|T[Gj]|

holds in at least 100m% of the element segmentations T[Ei] which are covered by

T[Gj], and thus (Gj, r) is a multi-dimension association rule w.r.t. relaxed match in

MD. There is an example shown in Fig. 4.8.

Figure 4.7 Update algorithm for relaxed match

A→B
A→C
D→C

AB→C
AD→C
BC→A

(May, Male)

A→B
A→C
B→A
C→D

AC→B
BC→A

(Apr, Male)

A→B
A→C
C→A
B→C

AB→C
AC→B
BC→A

(Mar, Male)(Spring, Male)

A→B
A→C
D→C

AB→C
AD→C
BC→A

(May, Male)

A→B
A→C
B→A
C→D

AC→B
BC→A

(Apr, Male)

A→B
A→C
C→A
B→C

AB→C
AC→B
BC→A

(Mar, Male)(Spring, Male)

A→B
A→C

BC→A

After update by (May, Male)

A→B
A→C

AC→B
BC→A

After update by (Apr, Male)

A→B
A→C
C→A
B→C

AB→C
AC→B
BC→A

After update by (Mar, Male)

A→B
A→C

BC→A

After update by (May, Male)

A→B
A→C

AC→B
BC→A

After update by (Apr, Male)

A→B
A→C
C→A
B→C

AB→C
AC→B
BC→A

After update by (Mar, Male)

(Spring, Male) :

1) for all REi
2) for all Gj Ei
3) for all r in REi
4) if (r RGj)
5) add r to RGj;
6) RGj.r.count = 1;
7) else
8) RGj.r.count++;

⊃

∉

 47

Figure 4.8 An example of update for relaxed match.

4.3. Rules output

For full match, we output all the (Gj, r) pair for every r left in each RGj. For

relaxed match, we output all the (Gj, r) pair for every r in each RGj whose count

exceed m|T[Gj]|. Our algorithm above can avoid losing interesting rules which only

hold in several segmentations, and avoid the output multi-dimension association rules

not really hold in all the range of their domain. For example, suppose we have a

generalized pattern <2004 spring, Branch001, Student, Female, Youth> which covers

three element patterns <2004 Mar, Branch001, Student, Female, Youth>, <2004 Apr,

Branch001, Student, Female, Youth>, and <2004 May, Branch001, Student, Female,

Youth>. Suppose that the minsup is 10%, and the minconf is 70%. For the full match

case, we can be sure that the rules which hold in only two months of spring but fail in

the other will never be rules with respect to whole spring (under the conditions of

other pattern items).

A→B : 3
A→C : 3
B→A : 1
C→D : 1
C→A : 1
B→C : 1
D→C : 1

AB→C : 2
AC→B : 2
BC→A : 3
AD→C : 1

After update by (May, Male)

A→B : 2
A→C : 2
B→A : 1
C→D : 1
C→A : 1
B→C : 1

AB→C : 1
AC→B : 2
BC→A : 2

After update by (Apr, Male)

A→B : 1
A→C : 1
C→A : 1
B→C : 1

AB→C : 1
AC→B : 1
BC→A : 1

After update by (Mar, Male)

A→B : 3
A→C : 3
B→A : 1
C→D : 1
C→A : 1
B→C : 1
D→C : 1

AB→C : 2
AC→B : 2
BC→A : 3
AD→C : 1

After update by (May, Male)

A→B : 2
A→C : 2
B→A : 1
C→D : 1
C→A : 1
B→C : 1

AB→C : 1
AC→B : 2
BC→A : 2

After update by (Apr, Male)

A→B : 1
A→C : 1
C→A : 1
B→C : 1

AB→C : 1
AC→B : 1
BC→A : 1

After update by (Mar, Male)

(Spring, Male) : match ratio m = 0.667

A→B
A→C
D→C

AB→C
AD→C
BC→A

(May, Male)

A→B
A→C
B→A
C→D

AC→B
BC→A

(Apr, Male)

A→B
A→C
C→A
B→C

AB→C
AC→B
BC→A

(Mar, Male)(Spring, Male)

A→B
A→C
D→C

AB→C
AD→C
BC→A

(May, Male)

A→B
A→C
B→A
C→D

AC→B
BC→A

(Apr, Male)

A→B
A→C
C→A
B→C

AB→C
AC→B
BC→A

(Mar, Male)(Spring, Male)

