2 Preliminary

For completeness, we state some fundamental definitions and results concerning time scales that we will use in the sequel. More details can be found in [11], [12], and [13]. In this section, we assume that \mathbb{T} is an arbitrary time scale.

Definition 2.1 The mappings $\sigma, \rho : \mathbb{T} \to \mathbb{T}$ defined by

$$\sigma(t) := \inf\{s \in \mathbb{T} | s > t\}, \qquad \rho(t) := \sup\{s \in \mathbb{T} | s < t\}$$

are called the forward and backward jump operators respectively. In this definition, we put $inf \emptyset = sup\mathbb{T}$ and $sup\emptyset = inf\mathbb{T}$. Graininess function $\mu : \mathbb{T} \to [0,\infty)$ is defined by $\mu(t) := \sigma(t) - t$.

Definition 2.2 A point t in \mathbb{T} is said to be right-dense if $t < \sup \mathbb{T}$ and $\sigma(t) = t$, and left-dense if $t > \inf \mathbb{T}$ and $\rho(t) = t$.

Definition 2.3 A function $p : \mathbb{T} \to \mathbb{R}$ is called regressive provided that $1 + \mu(t)p(t) \neq 0$ for all $t \in \mathbb{T}^k$.

The set of all regressive and rd-continuous functions will be denoted by \mathcal{R} .

Definition 2.4 We define the set \mathcal{R}^+ of all positively regressive elements of \mathcal{R} by

$$\mathcal{R}^+ = \{ p \in \mathcal{R} : 1 + \mu(t)p(t) > 0 \text{ for all } t \in \mathbb{T} \}.$$

Definition 2.5 A function on \mathbb{T} is called rd-continuous if it is continuous at all right-dense points in \mathbb{T} and its left-sided limits exist at all left-dense points in \mathbb{T} . The set of all rd-continuous functions on \mathbb{T} is denoted by $C_{rd}(\mathbb{T})$.

Definition 2.6 If $p \in \mathcal{R}$, then the delta exponential function is given by

$$e_p(t,s) = exp(\int_s^t g(\tau)\Delta\tau),$$

where

$$g(\tau) = \begin{cases} p(\tau), & \text{if } \mu(\tau) = 0, \\ \\ \frac{1}{\mu(\tau)} Log(1 + p(\tau)\mu(\tau)), & \text{if } \mu(\tau) \neq 0. \end{cases}$$

Lemma 2.7 If $p \in \mathcal{R}$, then

(1) $e_p(t,t) \equiv 1;$ (2) $e_p(t,s) = \frac{1}{e_p(s,t)};$ (3) $e_p(t,u)e_p(u,s) = e_p(t,s);$ (4) $e_p^{\Delta}(t,t_0) = p(t)e_p(t,t_0), \text{ for } t \in \mathbb{T}^k \text{ and } t_0 \in \mathbb{T}.$ Lemma 2.8 If $p \in \mathcal{R}^+$ and $t_0 \in \mathbb{T}$, then $e_p(t,t_0) > 0$ for all $t \in \mathbb{T}.$

Lemma 2.9 If f is continuous, then f is rd-continuous.

We shall apply the well-known Banach's fixed point theorem and Schaefer's theorem to estabish the existence and uniqueness theorem for (NP). For readers' convenience, we provide these two theorems here.

Lemma 2.10 (Banach's fixed point theorem [14]) A contraction f of a complete metric space S has a unique fixed point $p \in S$.

Lemma 2.11 (Schaefer's theorem [14]) Let S ba a normed linear space, and let operator $F: S \to S$ be compact. If the set

 $H(F) = \{x \in S : x = \mu F(x), \text{ for some } \mu \in (0,1)\}$

is bounded, then F has a fixed point.