第四章 實證分析

本章先從問卷收集到的投入、產出數據說明 2007 年台灣工具機 廠商的教育訓練概況,再使用這些數據進行模糊資料包絡分析,研究 工具機廠商從事教育訓練活動的效率,並找出各廠商可以改善的空 間。

第一節:廠商教育訓練概況

以下就本研究所回收的 85 份問卷中,說明台灣工具機廠商從事 教育訓練的概況。

一、 投入面概況

表 4-1 為這 85 家台灣工具機廠商各種訓練課程投入數與總訓練投入數的敘述統計量:

表 4-1:訓練投入數敘述統計量

	「研發創新與	「專業技能」	「全國性或國	「策略、經營	總訓練投入數
	製程改善」	訓練投入數	際性認證」	與其他」	
	訓練投入數		訓練投入數	訓練投入數	
平均數	307.4	613.1	154.6	185.7	1260.8
標準差	593.32	819.44	470.27	447.64	1646.90
中位數	86	192	0	56	400
最大值	3665	3084	2910	3458	8730
最小值	0	0	0	0	32

由上表可看出「專業技能」類的課程投入最多,多了第二 名「研發創新與製程改善」類一倍,顯示工具機產業的訓練內 容以專業技能為主,佔總訓練投入的一半,而「全國性或國際 性認證」與「策略、經營與其他」訓練加起來僅佔總訓練投入 的 27%。

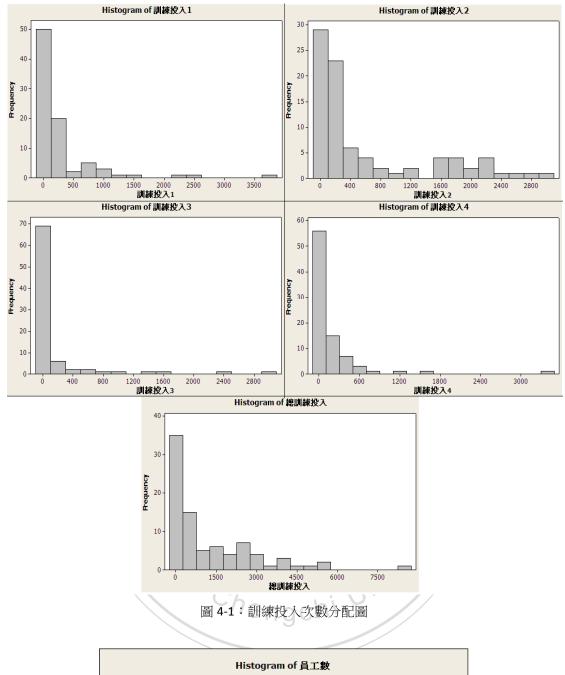
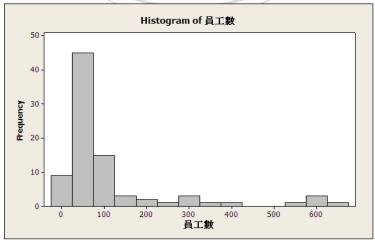

這85家廠商中有54家沒有投入「全國性或國際性認證」方面的訓練,因此該種類訓練投入數的中位數等於零,然而其平均投入數僅比「策略、經營與其他」少雨成,31家有舉辦的廠商中,有接近三成「全國性或國際性認證」訓練投入數超過500,16%超過1000,顯示雖然大部分的廠商沒有投入「全國性或國際性認證」的課程,但是只要有投入,就會投入很多,主要是因為這類課程是為了通過認證而辦,若是大型的國際認證如 ISO 9001、TS 16949等,需要大規模投入人力與時間訓練,一旦認證通過,基本上就不需要再訓練,所以沒投入這類訓練的廠商,包括已經通過認證、以及沒有動機要認證的廠商。

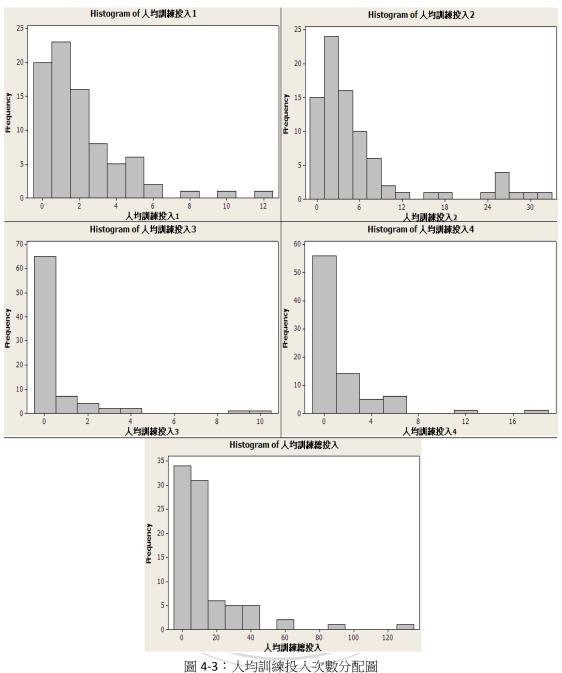
圖 4-1 為各種類訓練投入數與總訓練投入數的次數分配 圖,由圖可見所有訓練投入呈現絕壁型的右偏分配,而且除了 「專業技能」類訓練投入外,第一組的次數皆超過總次數的 50%,顯示大多數廠商的訓練投入數都是在偏低的水平。 因訓練投入數是受訓員工數的函數,所以員工數越多的廠商,投入於教育訓練的人數可能會越多,而我們從這85間廠商員工數的次數分配圖(圖4-2)可以看到員工數與各訓練投入的分配趨勢相似,同樣呈現右偏分配,進一步檢驗員工數與總訓練投入數的相關性,此二變數的皮爾森相關係數為0.709,屬於高度相關,若再將這兩項變數做線性迴歸,分析員工數對廠商投入教育訓練數的影響,迴歸分析之統計量結果如下表:

表 4-2:以員工數解釋總訓練投入量之迴歸統計量

	係數	係數標準差	T值	P值						
常數項	381.6	159.0	2.40	0.019						
員工數	8.0017	0.8740	9.16	0.000						
R-Sq = 0.502										
R-Sq(adj.) = 0.496										

在信賴水準為 0.05 之下,常數項與解釋項的係數都顯著。由迴歸分析的結果顯示:每間廠商在 2007 年平均基本總教育訓練投入為 381.6 單位,每增加一名員工,平均會增加 8 單位的訓練投入。




圖 4-2: 員工數次數分配圖

由上述分析我們可以看出廠商在各種類教育訓練投入數的概況,以及員工數與總訓練投入的關係,接下來以人均訓練投入數的角度來看廠商投入教育訓練的概況,各種類人均訓練投入數的敘述統計量與次數分配圖¹展示如表 4-3 與圖 4-3:

表 4-3:人均訓練投入數敘述統計量

	人均	人均	人均	人均	人均
	「研發創新與	「專業技能」	「全國性或國	「策略、經營	總訓練投入數
	製程改善」	訓練投入數	際性認證」	與其他」	
	訓練投入數		訓練投入數	訓練投入數	
平均數	3.54	6.84	1.38	2.22	13.99
標準差	10.44	10.85	4.46	5.68	20.31
中位數	1.44	3.43	0	0.63	7.04
最大值	89.46	77.86	28.75	40.00	132.86
最小值	0	0		0	0.41

¹ 為了讓人均訓練投入數的主要分布狀況更為清楚,本次數分配圖先將離群值刪除,刪除的數據分別為:人均訓練投入數 1 (研發創新與製程改善)的 37.86、89.46;人均訓練投入數 2 (專業技能)的 77.86;人均訓練投入數 3 (全國性或國際性認證)的 28.75、17.28、21.43;人均訓練投入數 4 (策略、經營與其他管理)的 40、27.47,單位為「小時」。

本研究定義的訓練投入數為「訓練人數乘以訓練時數之總 和」,單位為「人時」,因此人均訓練投入數的意義為「平均每 位員工受訓時數」,單位為「小時」。以人均訓練投入數的角度, 各種類訓練投入多寡的相對關係沒有太大的變動,同樣以「專 業技能」的訓練最多,在2007年平均每間廠商在每位員工身上 投入 6.84 個小時的訓練,大約是一個工作天的時間。管理雜誌 統計 2003 年台灣企業教育訓練的狀況,每年每人訓練時數平均 為 30.14 小時(王為勤, 2003),而工具機產業在 2007 年只有 13.99 小時,從中位數 7.04 小時來看,幾乎有一半的廠商是低 於 7 小時的,訓練最多的「專業技能」類,也有半數的廠商未 滿 3.5 小時,其他種類的訓練就更少了,再次顯示台灣工具機 產業在教育訓練的投入方面,是處於比較低的水平。

二、 產出面概況

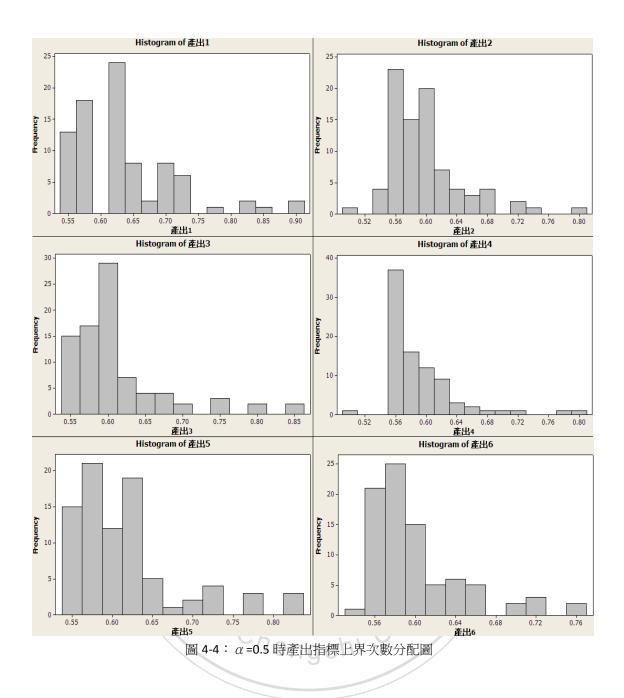
本研究使用語意變數衡量各項產出,因此產出數值皆為模糊數,必須藉由 α -截集的概念,將模糊產出指標轉換成明確數值來表達,然而在不同的 α -水準下,產出值上下界也會不同,但是不會影響廠商與廠商,或產出與產出之間的相對關係,所以在此僅以展示 α =0.5時的產出上下界敘述統計量,並以此數值來闡述產出面概況。

依本研究所設定的模糊語意變數, $\alpha=0.5$ 時各語意變數的 α -截集上下界如下表:

表 4-4: α =0.5時,各模糊語意變數之 α 截集

明顯變差	變差	稍微變差	不變	稍微改善	改善	明顯改善
[0,0.1]	[0.1,0.3]	[0.35,0.45]	[0.45,0.55]	[0.55,0.65]	[0.7,0.9]	[0.9,1]

各產出指標之敘述統計量如表 4-5 與表 4-6:


表 4-5: α =0.5 時產出指標下界敘述統計量

	「生產能	「週轉能	「工作態	「工作表	「個人成	「工作環
	力」指標	力」指標	度」指標	現」指標	長」指標	境」指標
平均數	0.5292	0.4914	0.4959	0.4931	0.5093	0.4876
標準差	0.0705	0.0585	0.0659	0.0464	0.0525	0.0446
中位數	0.5	0.483333	0.45	0.475	0.5	0.483333
最大值	0.81	0.683333	0.7	0.6625	0.6625	0.6
最小值	0.45	0.366667	0.45	0.4	0.45	0.45

表 4-6: α =0.5 時產出指標上界敘述統計量

	「生產能	「週轉能	「工作態	「工作表	「個人成	「工作環
	力」指標	力」指標	度」指標	現」指標	長」指標	境」指標
平均數	0.6359	0.5891	0.6111	0.5899	0.6160	0.5982
標準差	0.0787	0.0504	0.0672	0.0467	0.0675	0.0498
中位數	0.625	0.583	0.55	0.575	0.6	0.583
最大值	0.9	0.8	0.85	0.8	0.8375	0.76111
最小值	0.55	0.5	0.55	0.50833	0.55	0.55

以表 4-4 對照表 4-5 與 4-6,可看出所有產出都是介於不變到 稍微改善之間。除了「週轉能力」與「工作表現」有廠商接近 「稍微變差」的水準,其他產出最差的情況都只有到「不變」 的水準,翻查問卷時,的確部分有關「週轉能力」與「工作表現」的問項被勾選到變差的一端,代表教育訓練並非總是帶來 正面的效果,或是受到其他因素影響而變差。再次訪問填卷人 時,發現因為這些廠商在實施某些訓練課程的新方法之後,雖 然會在該訓練課程所要改善的標的達到改善的效果,但同時也 增加了作業上的步驟或難度,使部分員工完成工作、執行專案 的時間延長,或是成本的增加,可以視為該訓練課程的副作用。

上圖是 α = 0.5 時各產出的上界次數分配圖,同樣呈現右偏分配,多數廠商的產出都是在比較低的水準,顯示工具機產業的教育訓練大多沒有帶來非常顯著的成果,在所有產出指標中,0.65 (稍微改善)以下的廠商家數都超過一半,而這六項產出中,成果最顯著的是產出1(生產能力),平均為0.6359,幾乎要達到介於「稍微改善」到「改善」之間的水準,高於「稍微改善」水準的廠商,也有38家。

三、 投入、產出相關性檢定

下表為本研究四項投入與六項產出的相關係數與相關性檢定之P值,左下半部為相關係數,右上半部為相關性檢定之P值,投入 $1\sim4$ 分別為「研發創新與製程改善」、「專業技能」、「全國性或國際性認證」、「策略、經營與其他」人均訓練投入數;產出 $1\sim6$ 分別為「生產能力」、「週轉能力」、「工作態度」、「工作表現」、「個人成長」、「工作環境」在 $\alpha=0.5$ 之上界產出指標:

	投入1	投入2	投入3	投入4	產出1	產出2	產出3	產出4	產出5	產出6
投入1		0.000	0.000	0.010	0.000	0.000	0.000	0.000	0.000	0.000
投入2	0.600	<i></i>	0.280	0.020	0.000	0.001	0.000	0.000	0.000	0.001
投入3	0.387	0.119		0.350	0.563	0.007	0.016	0.289	0.026	0.004
投入4	0.277	0.253	0.103		0.026	0.000	0.001	0.062	0.043	0.001
產出1	0.402	0.609	0.064	0.241	-/	0.014	0.000	0.000	0.000	0.034
產出2	0.378	0.353	0.293	0.411	0.267		0.000	0.010	0.000	0.000
產出3	0.500	0.641	0.043	0.347	0.572	0.402		0.000	0.000	0.000
產出4	0.416	0.514	0.260	0.203	0.399	0.278	0.530		0.000	0.000
產出5	0.516	0.582	0.244	0.220	0.379	0.470	0.741	0.525		0.000
產出6	0.395	0.356	0.311	0.361	0.230	0.394	0.482	0.452	0.636	

表 4-7:各投入、產出之間相關係數與相關性檢定 P 值

由上表右上半部的P值可以看到:在信賴水準 0.05之下,只有投入 3(全國性或國際性認證)與產出1(生產能力)、產出4(工作表現) 相關性不顯著,投入4(策略、經營與其他)與產出4(工作表現) 相關性不顯著,而其他投入與產出的相關係數皆顯著不等於零,並且皆為正相關,因此接下來的資料包絡分析研究將使用上述的四項投入、六項產出變數來進行分析。

第二節:模糊資料包絡分析研究

為了分析台灣工具機廠商從事教育訓練活動的效率,本節使用第三章所介紹, Kao 與 Liu(2000a)提出的模糊資料包絡分析模型,以投入導向的角度²,進行效率分析。

一、 效率值分析

因為產出為模糊數,所以在不同的 α -水準下,分析的結果也會不同。 α -水準越高,模糊數之間大小關係的確定性越高,同時要忍受較高的出錯風險 3 ,如 α =0 時,模糊數的區間會是最寬,出錯的風險最低,相對地,計算出來的效率值區間也是最寬、最模糊,因此 α -水準性質類似統計檢定中的信賴水準,選擇適當的 α -水準如同在風險與解析度之間找到最佳的平衡點。首先以表 4-8 展示在 α -水準等於 0.1、0.5、0.9 時 4 ,各廠商 5 從事教育訓練活動之整體技術效率、純技術效率與規模效率值。

² 採投入導向的原因為:本研究中投入相對於產出是比較具體的資料,由差額分析所得到的結果可以提供廠商具體的改善方向。

這裡的出錯風險指的是錯誤判別模糊數之間的大小關係。

 $^{^4}$ 因考慮版面的限制, α -水準等於 $0 \cdot 0.3 \cdot 0.7 \cdot 1$ 時的效率值請見<mark>附件二</mark>。

⁵ DMU1~DMU85 所代表的廠商請參照<mark>附件三。</mark>

表 4-8: 各廠商在 α -水準為 $0.1 \times 0.5 \times 0.9$ 時之效率值

		整體	技術	-		同任の	<i>t</i> -/ <u>/</u> /	<u> </u>	1、0.5 支術效			产阻		規	模效	·率(S)	. (E)	
水準	0.			5		9	0.		0.			9	0.			5		9
		上界			下界						下界			上界		上界		
DMU1	• • •	- //	0.036						0.036		0.504		0.031		0.036			0.088
DMU2	0.243								0.596	1	1		0.243		0.286			0.364
DMU3	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
DMU4	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
DMU5	0.165	0.353	0.197	0.299	0.233	0.254	0.177	1	0.671	1	1	1	0.165	1	0.197	0.446	0.233	0.254
DMU6	0.248	0.479	0.286	0.411	0.329	0.354	0.31	1	0.31	1	1	1	0.248	1	0.286	1	0.329	0.354
DMU7	0.366	0.737	0.426	0.628	0.497	0.537	0.436	1	0.436	1/	1	1	0.366	1	0.426	1	0.497	0.537
DMU8	0.415	0.796	0.479	0.686	0.553	0.594	0.499	1	0.499	7	0.947	1	0.415	1	0.479	1	0.553	0.627
DMU9	0.683	1	0.8	1	0.936	1	0.926	1 /	0.926	1	1	1	0.683	1	8.0	1	0.936	1
DMU10	0.655	1	0.773	1	0.909	0.985	0.788	1	0.788	1	1	1	0.655	1	0.773	1	0.909	0.985
DMU11	0.786	1	0.926	1	1	1 /	1	1	1	1	1	1	0.786	1	0.926	1	1	1
DMU12	0.475	0.915	0.549	0.787	0.634	0.681	0.617	1	0.617	1	0.773	1	0.475	1	0.549	1	0.634	0.881
DMU13	0.093	0.178	0.107	0.154	0.123	0.133	0.109	, Έ	0.109	1	0.338	0.647	0.093	1	0.107	1	0.191	0.392
DMU14	0.007	0.015	0.008	0.013	0.01	0.011	0.007	1	0.032	1	1	1	0.007	1	0.008	0.394	0.01	0.011
DMU15	0.521	1	0.61	0.906	0.714	0.773	0.674	1	0.674	1	1	1	0.521	1	0.61	1	0.714	0.773
DMU16	0.173		\	7					0.903	1	1	1	0.173	1	0.204	0.339		
DMU17	0.172		\ \						0.212		1	9	0.172		0.198			0.244
DMU18	0.237				2				0.315		0.469		0.237		0.277			0.744
DMU19	0.073								0.095	111			0.073		0.086			0.809
	0.197						(5	0.274				0.197		0.229		0.457	
DMU21	0.278								0.689		1		0.278					0.421
DMU22	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
DMU23	0.052								0.061		1		0.052		0.061			0.075
DMU24	0.211								0.254				0.211		0.243			0.857
DMU25 DMU26	0.437 0.77		0.512					1	0.63	1			0.437		0.512 0.901		0.797 1	1
DMU20			0.901		1	1	1	1	1	1	1 0.328	1	0.77		0.901			0.215
DMU27	0.05							-	0.06 0.225		0.3∠8 1		0.05			0.104		
DMU28	0.013								0.225	1			0.013		0.103			0.02
DMU29	0.037							1	0.089		1		0.088					0.054
DMU31			0.458					-	0.541		0.541		0.037		0.458		0.523	
DMU32	0.307								0.409		1		0.4		0.36			0.454
DMOOL	0.507	J.UZZ	0.50	0.00	U.72	J.7J4	J.7U3		J.7U3		<u>'</u>	<u>'</u>	5.507		0.50	'	U.72	J.7J4

(承上表)

T.W. L.W. L	- &)
DMU33	. 9
DMU34 0.117 0.258 0.14 0.217 0.167 0.182 0.126 1 1 1 1 1 1 1 0.117 1 0.14 0.217 0.167	上界
DMU35 0.021 0.043 0.025 0.037 0.03 0.032 0.031 1 0.207 1 1 1 1 0.021 1 0.025 0.179 0.03 DMU36 0.073 0.159 0.087 0.134 0.103 0.113 0.074 1 0.918 1 1 1 0.073 1 0.087 0.145 0.103 DMU37 0.185 0.357 0.213 0.306 0.245 0.263 0.226 1 0.226 1 0.588 1 0.185 1 0.213 1 0.245 DMU38 0.399 0.777 0.457 0.66 0.522 0.562 0.54 1 0.54 1 0.54 1 0.399 1 0.457 1 0.522 DMU39 0.094 0.199 0.112 0.169 0.133 0.144 0.104 1 0.288 1 1 1 0.094 1 0.112 0.589 0.133 DMU40 0.076 0.155 0.089 0.132 0.104 0.113 0.1 1 0.1 1 0.128 0.398 0.076 1 0.089 1 0.265 DMU41 0.032 0.065 0.038 0.056 0.046 0.049 0.097 1 0.484 1 1 1 0.052 1 0.062 0.038 0.116 0.046 DMU42 0.052 0.111 0.062 0.095 0.074 0.08 0.057 1 0.242 1 1 1 0.809 1 0.947 1 1 DMU44 0.343 0.711 0.404 0.604 0.475 0.514 0.495 1 0.495 1 0.495 1 0.343 1 0.404 1 0.72 1 0.854 DMU46 0.218 0.414 0.251 0.358 0.289 0.31 0.266 1 0.268 1 0.462 1 0.218 1 0.251 1 0.285 DMU47 0.126 0.241 0.145 0.208 0.167 0.18 0.15 1 0.15 1 0.249 1 0.126 1 0.145 1 0.167 DMU48 0.75 1 0.878 1 1 1 1 1 1 1 1 1 1 1 0.52 1 0.135 1 0.261 DMU50 0.033 0.184 0.10 0.156 0.12 0.114 0.085 1 0.095 1 0.038 1 0.177 1 0.204 1 0.236 DMU50 0.033 0.184 0.10 1.056 0.12 0.114 0.095 1 0.095 1 0.155 0.318 0.077 1 0.089 1 0.325 DMU50 0.033 0.184 0.10 1.056 0.12 0.114 0.095 1 0.095 1 0.155 0.318 0.077 1 0.089 1 0.325 DMU50 0.033 0.184 0.10 1.056 0.12 0.114 0.095 1 0.095 1 0.155 0.318 0.077 1 0.089 1 0.325 DMU50 0.033 0.184 0.10 1.056 0.12 0.114 0.095 1 0.095 1 0.155 0.318 0.077 1 0.089 1 0.325 DMU50 0.033 0.184 0.10 1.056 0.12 0.114 0.095 1 0.095 1 0.155 0.318 0.077 1 0.089 1 0.325 DMU50 0.135 0.285 0.158 0.241 0.188 0.204 0.161 1 0.095 1 0.095 1 0.155 0.318 0.077 1 0.089 1 0.325 DMU50 0.033 0.184 0.10 1.056 0.12 0.114 0.095 1 0.095 1 0.155 0.318 0.077 1 0.089 1 0.325 DMU50 0.135 0.335 0.197 0.287 0.229 0.247 0.211 1 0.211 1 1 1 1 0.169 1 0.197 1 0.226 DMU50 0.169 0.335 0.197 0.287 0.229 0.247 0.211 1 0.211 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.618
DMU36 0.073 0.159 0.087 0.134 0.103 0.113 0.074 1 0.918 1 1 1 0.073 1 0.087 0.145 0.103 0.103 0.103 0.185 0.357 0.213 0.306 0.245 0.263 0.226 1 0.226 1 0.588 1 0.185 1 0.213 1 0.245 0.103 0.399 0.777 0.457 0.66 0.522 0.562 0.54 1 0.54 1 0.54 1 0.399 1 0.457 1 0.522 0.500 0.094 0.199 0.112 0.169 0.133 0.144 0.104 1 0.288 1 1 1 0.094 1 0.112 0.589 0.133 0.144 0.104 1 0.288 1 1 1 0.094 1 0.112 0.589 0.133 0.144 0.104 1 0.288 1 1 1 0.094 1 0.112 0.589 0.133 0.104 0.113 0.1 1 0.1 1 0.128 0.398 0.076 1 0.089 1 0.263 0.004 0.0076 0.155 0.089 0.132 0.104 0.113 0.1 1 0.1 1 0.128 0.398 0.076 1 0.089 1 0.263 0.004 0.005 0.038 0.056 0.046 0.049 0.097 1 0.484 1 1 0.032 0.669 0.038 0.116 0.046 0.044 0.005 0.052 0.111 0.062 0.095 0.074 0.08 0.057 1 0.242 1 1 1 0.052 1 0.062 0.391 0.074 0.08 0.057 1 0.242 1 1 1 0.052 1 0.062 0.391 0.074 0.040 0	0.182
DMU37 0.185 0.357 0.213 0.306 0.245 0.263 0.226 1 0.226 1 0.588 1 0.185 1 0.213 1 0.245 DMU38 0.399 0.777 0.457 0.66 0.522 0.562 0.54 1 0.54 1 0.54 1 0.399 1 0.457 1 0.523 1 0.523 1 DMU39 0.094 0.199 0.112 0.169 0.133 0.144 0.104 1 1 0.288 1 1 1 0.094 1 0.112 0.589 0.133 0.144 0.104 1 1 0.288 1 1 1 0.094 1 0.112 0.589 0.133 0.144 0.104 1 1 0.288 1 1 1 0.094 1 0.112 0.589 0.133 0.144 0.104 1 1 0.288 0.398 0.076 1 0.089 1 0.263 0.046 0.049 0.097 1 0.484 1 1 1 0.032 0.669 0.038 0.116 0.046 0.049 0.097 1 0.484 1 1 1 0.032 0.669 0.038 0.116 0.046 0.049 0.097 1 0.484 1 1 1 0.052 1 0.062 0.391 0.074 0.08 0.057 1 0.242 1 1 1 0.052 1 0.062 0.391 0.074 0.08 0.057 1 0.242 1 1 1 0.052 1 0.062 0.391 0.074 0.08 0.057 1 0.495 1 0.495 1 0.343 1 0.404 1 0.475 0.514 0.495 1 0.495 1 0.495 1 0.343 1 0.404 1 0.475 0.514 0.495 1 0.495 1 0.495 1 0.343 1 0.404 1 0.475 0.514 0.495 1 0.495 1 0.495 1 0.343 1 0.404 1 0.475 0.514 0.495 1 0.495 1 0.495 1 0.343 1 0.404 1 0.72 1 0.854 0.929 0.742 1 0.742 1 1 1 0.604 1 0.72 1 0.854 0.929 0.742 1 0.742 1 1 1 0.604 1 0.72 1 0.854 0.929 0.742 1 0.742 1 1 1 0.604 1 0.218 1 0.251 1 0.285 0.158 0.249 0.358 0.289 0.31 0.268 1 0.268 1 0.462 1 0.248 1 0.126 1 0.145 1 0.167 0.044 0.	0.032
DMU38 0.399 0.777 0.457 0.66 0.522 0.562 0.54 1 0.54 1 0.54 1 0.399 1 0.457 1 0.522 DMU39 0.094 0.199 0.112 0.169 0.133 0.144 0.104 1 0.288 1 1 1 0.094 1 0.112 0.589 0.133 DMU40 0.076 0.155 0.089 0.132 0.104 0.113 0.1 1 0.1 1 0.128 0.398 0.076 1 0.089 1 0.263 DMU41 0.032 0.065 0.038 0.056 0.046 0.049 0.097 1 0.484 1 1 1 0.032 0.669 0.038 0.116 0.046 DMU42 0.052 0.111 0.062 0.095 0.074 0.08 0.057 1 0.242 1 1 1 0.052 1 0.062 0.391 0.074 DMU43 0.809 1 0.947 1 1 1 1 1 1 1 1 1 1 0.809 1 0.947 1 1 DMU44 0.343 0.711 0.404 0.604 0.475 0.514 0.495 1 0.495 1 0.495 1 0.343 1 0.404 1 0.475 DMU45 0.604 1 0.72 1 0.854 0.929 0.742 1 0.742 1 1 1 0.604 1 0.72 1 0.854 DMU46 0.218 0.414 0.251 0.358 0.289 0.31 0.268 1 0.268 1 0.462 1 0.218 1 0.251 1 0.285 DMU47 0.126 0.241 0.145 0.208 0.167 0.18 0.15 1 0.15 1 0.249 1 0.126 1 0.145 1 0.167 DMU48 0.75 1 0.878 1 1 1 1 1 1 1 1 1 0.050 1 0.177 1 0.204 1 0.236 DMU50 0.135 0.285 0.158 0.241 0.188 0.204 0.161 1 0.161 1 0.512 1 0.135 1 0.158 1 0.188 DMU51 0.045 0.094 0.053 0.08 0.062 0.068 0.051 1 0.066 1 0.382 0.64 0.045 1 0.053 1 0.096 DMU52 0.031 0.059 0.036 0.051 0.041 0.044 0.038 1 0.035 1 0.155 0.318 0.077 1 0.089 1 0.321 DMU54 0.083 0.184 0.101 0.156 0.12 0.131 0.085 1 0.395 1 1 0.155 0.318 0.077 1 0.089 1 0.322 DMU55 0.236 0.483 0.276 0.41 0.323 0.35 0.305 1 0.305 1 0.426 1 0.236 1 0.236 1 0.276 1 0.325 DMU56 0.169 0.335 0.197 0.287 0.229 0.247 0.211 1 0.211 1 1 1 0.698 1 0.197 1 0.225 DMU57 0.183 0.349 0.211 0.301 0.243 0.261 0.224 1 0.224 1 0.228 1 0.183 1 0.191 1 0.211 1 0.245	0.113
DMU39	0.447
DMU40 0.076 0.155 0.089 0.132 0.104 0.113 0.1 1 0.1 1 0.128 0.398 0.076 1 0.089 1 0.263 0.046 DMU41 0.032 0.065 0.038 0.056 0.046 0.049 0.097 1 0.484 1 1 1 0.032 0.669 0.038 0.116 0.046 DMU42 0.052 0.111 0.062 0.095 0.074 0.08 0.057 1 0.242 1 1 1 0.052 1 0.062 0.391 0.072 DMU43 0.809 1 0.947 1 1 1 1 1 1 1 0.495 1 0.495 1 0.497 1 1 DMU44 0.343 0.711 0.404 0.604 0.475 0.514 0.495 1 0.495 1 0.495 1 0.343 1 0.404 1 0.475 0.475 0.514 0.495 1 DMU45 0.604 1 0.72 1 0.854 0.929 0.742 1 0.742 1 1 1 0.405 1 0.495 1 0.343 1 0.404 1 0.475 0.854 0.929 0.742 1 0.742 1 1 1 0.604 1 0.72 1 0.854 0.929 0.742 1 0.742 1 1 1 0.462 1 0.218 1 0.251 1 0.285 0.024 0.241 0.024	1
DMU41 0.032 0.065 0.038 0.056 0.046 0.049 0.097 1 0.484 1 1 1 0.032 0.669 0.038 0.116 0.046 DMU42 0.052 0.111 0.062 0.095 0.074 0.08 0.057 1 0.242 1 1 1 0.052 1 0.062 0.391 0.074 DMU43 0.809 1 0.947 1 1 1 1 1 1 1 1 1 0.809 1 0.947 1 1 DMU44 0.343 0.711 0.404 0.604 0.475 0.514 0.495 1 0.495 1 0.495 1 0.343 1 0.404 1 0.475 DMU45 0.604 1 0.72 1 0.854 0.929 0.742 1 0.742 1 1 1 0.604 1 0.72 1 0.854 DMU46 0.218 0.414 0.251 0.358 0.289 0.31 0.268 1 0.268 1 0.462 1 0.218 1 0.251 1 0.251 1 0.285 DMU47 0.126 0.241 0.145 0.208 0.167 0.18 0.15 1 0.15 1 0.249 1 0.126 1 0.145 1 0.167 DMU48 0.75 1 0.878 1 1 1 1 1 1 1 1 1 1 1 0.603 1 0.177 1 0.204 1 0.236 DMU49 0.177 0.339 0.204 0.293 0.236 0.253 0.21 1 0.21 1 0.603 1 0.177 1 0.204 1 0.236 DMU50 0.135 0.285 0.158 0.241 0.188 0.204 0.161 1 0.161 1 0.512 1 0.135 1 0.158 1 0.188 DMU51 0.045 0.094 0.053 0.08 0.062 0.068 0.051 1 0.066 1 0.382 0.64 0.045 1 0.053 1 0.096 DMU52 0.031 0.059 0.036 0.051 0.041 0.044 0.038 1 0.038 1 0.222 0.427 0.031 1 0.036 1 0.096 DMU52 0.031 0.059 0.036 0.051 0.041 0.044 0.038 1 0.038 1 0.222 0.427 0.031 1 0.036 1 0.096 DMU53 0.077 0.146 0.089 0.126 0.102 0.11 0.095 1 0.095 1 0.155 0.318 0.077 1 0.089 1 0.321 DMU54 0.083 0.184 0.101 0.156 0.12 0.131 0.085 1 0.395 1 1 1 0.266 1 0.236 1 0.276 1 0.323 DMU55 0.236 0.483 0.276 0.41 0.323 0.35 0.305 1 0.305 1 0.426 1 0.236 1 0.276 1 0.325 DMU56 0.169 0.335 0.197 0.287 0.229 0.247 0.211 1 0.211 1 1 1 1 0.169 1 0.197 1 0.225 DMU57 0.183 0.349 0.211 0.301 0.243 0.261 0.224 1 0.224 1 0.223 1 0.183 1 0.113 1 0.211 1 0.243	0.144
DMU42 0.052 0.111 0.062 0.095 0.074 0.08 0.057 1 0.242 1 1 1 0.052 1 0.062 0.391 0.074 DMU43 0.809 1 0.947 1 1 1 1 1 1 1 1 1 1 1 0.809 1 0.947 1 1 1 DMU44 0.343 0.711 0.404 0.604 0.475 0.514 0.495 1 0.495 1 0.495 1 0.343 1 0.404 1 0.475 DMU45 0.604 1 0.72 1 0.854 0.929 0.742 1 0.742 1 1 1 0.604 1 0.72 1 0.854 DMU46 0.218 0.414 0.251 0.358 0.289 0.31 0.268 1 0.268 1 0.462 1 0.218 1 0.251 1 0.255 DMU47 0.126 0.241 0.145 0.208 0.167 0.18 0.15 1 0.15 1 0.495 1 0.249 1 0.126 1 0.145 1 0.165 DMU48 0.75 1 0.878 1 1 1 1 1 1 1 1 1 1 0.75 1 0.878 1 1 DMU49 0.177 0.339 0.204 0.293 0.236 0.253 0.21 1 0.21 1 0.603 1 0.177 1 0.204 1 0.236 DMU50 0.135 0.285 0.158 0.241 0.188 0.204 0.161 1 0.161 1 0.512 1 0.135 1 0.158 1 0.186 DMU51 0.045 0.094 0.053 0.08 0.062 0.068 0.051 1 0.066 1 0.382 0.64 0.045 1 0.053 1 0.096 DMU52 0.031 0.059 0.036 0.051 0.041 0.044 0.038 1 0.038 1 0.222 0.427 0.031 1 0.036 1 0.096 DMU53 0.077 0.146 0.089 0.126 0.102 0.11 0.095 1 0.095 1 0.155 0.318 0.077 1 0.089 1 0.321 DMU54 0.083 0.184 0.101 0.156 0.12 0.131 0.085 1 0.395 1 1 1 0.222 0.427 0.031 1 0.236 1 0.276 1 0.323 DMU55 0.236 0.483 0.276 0.41 0.323 0.35 0.305 1 0.305 1 0.426 1 0.236 1 0.276 1 0.325 DMU56 0.169 0.335 0.197 0.287 0.229 0.247 0.211 1 0.211 1 1 1 1 0.169 1 0.197 1 0.225 DMU57 0.183 0.349 0.211 0.301 0.243 0.261 0.224 1 0.224 1 0.283 1 0.183 1 0.211 1 0.241	0.881
DMU43 0.809 1 0.947 1 1 1 1 1 1 1 1 0.495 1 0.809 1 0.947 1 1 DMU44 0.343 0.711 0.404 0.604 0.475 0.514 0.495 1 0.495 1 0.343 1 0.404 1 0.475 DMU45 0.604 1 0.72 1 0.854 0.929 0.742 1 0.742 1 1 1 0.604 1 0.72 1 0.854 0.929 0.742 1 0.742 1 1 1 0.604 1 0.72 1 0.854 0.929 0.742 1 0.742 1 1 1 0.604 1 0.72 1 0.854 DMU47 0.126 0.241 0.145 0.208 0.167 0.18 0.15 1 0.15 1 0.15 1 0.249 1 0.126 1 0.145 1 0.167 DMU48 0.75 1 0.878 1 1 1 1 1 1 1 1 1 1 0.15 0.126 1 <	0.049
DMU44 0.343 0.711 0.404 0.604 0.475 0.514 0.495 1 0.495 1 0.495 1 0.343 1 0.404 1 0.475 DMU45 0.604 1 0.72 1 0.854 0.929 0.742 1 0.742 1 1 1 0.604 1 0.72 1 0.854 DMU46 0.218 0.414 0.251 0.358 0.289 0.31 0.268 1 0.268 1 0.462 1 0.218 1 0.251 1 0.285 DMU47 0.126 0.241 0.145 0.208 0.167 0.18 0.15 1 0.15 1 0.249 1 0.126 1 0.145 1 0.167 DMU48 0.75 1 0.878 1 1 1 1 1 1 1 1 1 0.75 1 0.878 1 1 DMU49 0.177 0.339 0.204 0.293 0.236 0.253 0.21 1 0.21 1 0.603 1 0.177 1 0.204 1 0.236 DMU50 0.135 0.285 0.158 0.241 0.188 0.204 0.161 1 0.161 1 0.512 1 0.135 1 0.158 1 0.188 DMU51 0.045 0.094 0.053 0.08 0.062 0.068 0.051 1 0.066 1 0.382 0.64 0.045 1 0.053 1 0.095 DMU52 0.031 0.059 0.036 0.051 0.041 0.044 0.038 1 0.038 1 0.222 0.427 0.031 1 0.036 1 0.096	0.08
DMU45 0.604 1 0.72 1 0.854 0.929 0.742 1 0.742 1 1 0.604 1 0.72 1 0.854 DMU46 0.218 0.414 0.251 0.358 0.289 0.31 0.268 1 0.268 1 0.462 1 0.218 1 0.251 1 0.289 DMU47 0.126 0.241 0.145 0.208 0.167 0.18 0.15 1 0.15 1 0.249 1 0.126 1 0.145 1 0.167 DMU48 0.75 1 0.878 1 1 1 1 1 1 1 1 0.15 1 0.249 1 0.126 1 0.145 1 0.167 DMU49 0.177 0.339 0.204 0.293 0.236 0.253 0.21 1 0.21 1 0.603 1 0.177 1 0.204 1 0.236 DMU50 0.135 0.285 0.158 0.241 0.188 0.204 0.161 1 0.161 1 0.512 1 0.135 1 0.158 1 0.188 <	1
DMU46 0.218 0.414 0.251 0.358 0.289 0.31 0.268 1 0.268 1 0.462 1 0.218 1 0.251 1 0.289 DMU47 0.126 0.241 0.145 0.208 0.167 0.18 0.15 1 0.15 1 0.249 1 0.126 1 0.145 1 0.165 DMU48 0.75 1 0.878 1 1 1 1 1 1 1 1 1 1 0.75 1 0.878 1 1 DMU49 0.177 0.339 0.204 0.293 0.236 0.253 0.21 1 0.21 1 0.603 1 0.177 1 0.204 1 0.204 DMU50 0.135 0.285 0.158 0.241 0.188 0.204 0.161 1 0.161 1 0.512 1 0.135 1 0.158 1 0.158 DMU51 0.045 0.094 0.053 0.08 0.062 0.068 0.051 1 0.066 1 0.382 0.64 0.045 1 0.053 1 0.095 DMU52 0.031 0.059 0.036 0.051 0.041 0.044 0.038 1 0.038 1 0.222 0.427 0.031 1 0.036 1 0.096 DMU53 0.077 0.146 0.089 0.126 0.102 0.11 0.095 1 0.095 1 0.155 0.318 0.077 1 0.089 1 0.321 DMU54 0.083 0.184 0.101 0.156 0.12 0.131 0.085 1 0.395 1 1 0.426 1 0.236 1 0.276 1 0.323 DMU55 0.169 0.335 0.197 0.287 0.229 0.247 0.211 1 0.211 1 1 1 0.169 1 0.197 1 0.225 DMU56 0.169 0.335 0.197 0.287 0.229 0.247 0.211 1 0.224 1 0.283 1 0.183 1 0.211 1 0.211 1 0.243	
DMU47 0.126 0.241 0.145 0.208 0.167 0.18 0.15 1 0.15 1 0.249 1 0.126 1 0.145 1 0.167 DMU48 0.75 1 0.878 1 1 1 1 1 1 1 1 1 1 1 0.75 1 0.878 1 1 DMU49 0.177 0.339 0.204 0.293 0.236 0.253 0.21 1 0.21 1 0.603 1 0.177 1 0.204 1 0.204 1 0.236 DMU50 0.135 0.285 0.158 0.241 0.188 0.204 0.161 1 0.161 1 0.512 1 0.135 1 0.158 1 0.188 DMU51 0.045 0.094 0.053 0.08 0.062 0.068 0.051 1 0.066 1 0.382 0.64 0.045 1 0.053 1 0.098 DMU52 0.031 0.059 0.036 0.051 0.041 0.044 0.038 1 0.038 1 0.222 0.427 0.031 1 0.036 1 0.096 DMU53 0.077 0.146 0.089 0.126 0.102 0.11 0.095 1 0.095 1 0.155 0.318 0.077 1 0.089 1 0.321 DMU54 0.083 0.184 0.101 0.156 0.12 0.131 0.085 1 0.395 1 1 1 0.083 1 0.101 0.394 0.12 DMU55 0.236 0.483 0.276 0.41 0.323 0.35 0.305 1 0.305 1 0.426 1 0.236 1 0.276 1 0.323 DMU56 0.169 0.335 0.197 0.287 0.229 0.247 0.211 1 0.211 1 1 1 0.183 1 0.183 1 0.211 1 0.211 1 0.243	
DMU48 0.75 1 0.878 1 1 1 1 1 1 1 1 1 0.075 1 0.878 1 1 DMU49 0.177 0.339 0.204 0.293 0.236 0.253 0.21 1 0.21 1 0.603 1 0.177 1 0.204 1 0.236 DMU50 0.135 0.285 0.158 0.241 0.188 0.204 0.161 1 0.161 1 0.512 1 0.135 1 0.158 1 0.188 DMU51 0.045 0.094 0.053 0.08 0.062 0.068 0.051 1 0.066 1 0.382 0.64 0.045 1 0.053 1 0.098 DMU52 0.031 0.059 0.036 0.051 0.041 0.044 0.038 1 0.038 1 0.222 0.427 0.031 1 0.036 1 0.096 DMU53 0.077 0.146 0.089 0.126 0.102 0.11 0.095 1 0.095 1 0.155 0.318 0.077 1 0.089 1 0.321 DMU54 0.083 0.184 0.101 0.156 0.12 0.131 0.085 1 0.395 1 1 1 1 0.083 1 0.101 0.394 0.12 DMU55 0.236 0.483 0.276 0.41 0.323 0.35 0.305 1 0.305 1 0.426 1 0.236 1 0.236 1 0.276 1 0.323 1 0.276 1 0.226 1 0.224 1	
DMU49 0.177 0.339 0.204 0.293 0.236 0.253 0.21 1 0.21 1 0.603 1 0.177 1 0.204 1 0.236 DMU50 0.135 0.285 0.158 0.241 0.188 0.204 0.161 1 0.161 1 0.512 1 0.135 1 0.158 1 0.188 DMU51 0.045 0.094 0.053 0.08 0.062 0.068 0.051 1 0.066 1 0.382 0.64 0.045 1 0.053 1 0.098 DMU52 0.031 0.059 0.036 0.051 0.041 0.044 0.038 1 0.038 1 0.222 0.427 0.031 1 0.036 1 0.096 DMU53 0.077 0.146 0.089 0.126 0.102 0.11 0.095 1 0.095 1 0.155 0.318 0.077 1 0.089 1 0.321 DMU54 0.083 0.184 0.101 0.156 0.12 0.131 0.085 1 0.395 1 1 1 0.083 1 0.101 0.394 0.12 DMU55 0.236 0.483 0.276 0.41 0.323 0.35 0.305 1 0.305 1 0.426 1 0.236 1 0.236 1 0.276 1 0.323 DMU56 0.169 0.335 0.197 0.287 0.229 0.247 0.211 1 0.211 1 1 1 0.169 1 0.197 1 0.223 DMU57 0.183 0.349 0.211 0.301 0.243 0.261 0.224 1 0.224 1 0.283 1 0.183 1 0.211 1 0.211 1 0.243	
DMU50 0.135 0.285 0.158 0.241 0.188 0.204 0.161 1 0.161 1 0.512 1 0.135 1 0.158 1 0.188 DMU51 0.045 0.094 0.053 0.08 0.062 0.068 0.051 1 0.066 1 0.382 0.64 0.045 1 0.053 1 1 0.098 DMU52 0.031 0.059 0.036 0.051 0.041 0.044 0.038 1 1 0.038 1 0.222 0.427 0.031 1 1 0.036 1 0.096 DMU53 0.077 0.146 0.089 0.126 0.102 0.11 0.095 1 0.095 1 0.155 0.318 0.077 1 0.089 1 0.321 DMU54 0.083 0.184 0.101 0.156 0.12 0.131 0.085 1 0.395 1 1 1 0.083 1 0.101 0.394 0.12 DMU55 0.236 0.483 0.276 0.41 0.323 0.35 0.305 1 0.305 1 0.426 1 0.236 1 0.276 1 0.323 0.349 0.211 0.301 0.243 0.261 0.224 1 0.211 1 1 1 0.169 1 0.197 1 0.225 0.247 0.211 1 DMU57 0.183 0.349 0.211 0.301 0.243 0.261 0.224 1 0.224 1 0.283 1 0.183 1 0.211 1 0.213 1 0.243 1	1
DMU51 0.045 0.094 0.053 0.08 0.062 0.068 0.051 1 0.066 1 0.382 0.64 0.045 1 0.053 1 0.098 DMU52 0.031 0.059 0.036 0.051 0.044 0.038 1 0.022 0.427 0.031 1 0.036 1 0.096 DMU53 0.077 0.146 0.089 0.126 0.102 0.11 0.095 1 0.155 0.318 0.077 1 0.089 1 0.321 DMU54 0.083 0.184 0.101 0.156 0.12 0.131 0.085 1 0.395 1 1 1 0.083 1 0.101 0.394 0.12 DMU55 0.236 0.483 0.276 0.41 0.323 0.305 1 0.326 1 0.276 1 0.323 DMU56 0.169 0.335 0.243 0.247 0.221 1 0.243 <th></th>	
DMU52 0.031 0.059 0.036 0.051 0.041 0.044 0.038 1 0.038 1 0.222 0.427 0.031 1 0.036 1 0.096 DMU53 0.077 0.146 0.089 0.126 0.102 0.11 0.095 1 0.095 1 0.155 0.318 0.077 1 0.089 1 0.321 DMU54 0.083 0.184 0.101 0.156 0.12 0.131 0.085 1 0.395 1 1 0.083 1 0.101 0.394 0.12 DMU55 0.236 0.483 0.276 0.41 0.323 0.35 0.305 1 0.305 1 0.426 1 0.236 1 0.276 1 0.323 DMU56 0.169 0.335 0.197 0.287 0.229 0.247 0.211 1 0.211 1 1 0.169 1 0.197 1 0.225 DMU57 0.183 0.349 0.211 0.301 0.243 0.261 0.224 1 0.224 1 0.283 1 0.183 1 0.211 1 0.243	
DMU53 0.077 0.146 0.089 0.126 0.102 0.11 0.095 1 0.095 1 0.155 0.318 0.077 1 0.089 1 0.321 DMU54 0.083 0.184 0.101 0.156 0.12 0.131 0.085 1 0.395 1 1 0.083 1 0.101 0.394 0.12 DMU55 0.236 0.483 0.276 0.41 0.323 0.35 0.305 1 0.305 1 0.426 1 0.236 1 0.276 1 0.323 DMU56 0.169 0.335 0.197 0.287 0.229 0.247 0.211 1 0.211 1 1 0.169 1 0.197 1 0.229 DMU57 0.183 0.349 0.211 0.301 0.243 0.261 0.224 1 0.224 1 0.283 1 0.183 1 0.211 1 0.211 1 0.243	
DMU54 0.083 0.184 0.101 0.156 0.12 0.131 0.085 1 0.395 1 1 1 0.083 1 0.101 0.394 0.12 DMU55 0.236 0.483 0.276 0.41 0.323 0.35 0.305 1 0.426 1 0.236 1 0.276 1 0.323 DMU56 0.169 0.335 0.197 0.287 0.229 0.247 0.211 1 0.211 1 1 0.169 1 0.197 1 0.229 DMU57 0.183 0.349 0.211 0.301 0.243 0.261 0.224 1 0.283 1 0.183 1 0.211 1 0.243	
DMU55 0.236 0.483 0.276 0.41 0.323 0.35 0.305 1 0.305 1 0.426 1 0.236 1 0.276 1 0.323 DMU56 0.169 0.335 0.197 0.287 0.229 0.247 0.211 1 0.211 1 1 0.169 1 0.197 1 0.229 DMU57 0.183 0.349 0.211 0.301 0.243 0.261 0.224 1 0.224 1 0.283 1 0.183 1 0.211 1 0.243	
DMU56 0.169 0.335 0.197 0.287 0.229 0.247 0.211 1 0.211 1 1 0.169 1 0.197 1 0.229 DMU57 0.183 0.349 0.211 0.301 0.243 0.261 0.224 1 0.224 1 0.283 1 0.183 1 0.211 1 0.243	
DMU57 0.183 0.349 0.211 0.301 0.243 0.261 0.224 1 0.224 1 0.283 1 0.183 1 0.211 1 0.243	
	0.923
	0.881
DMU59 0.338 0.7 0.398 0.595 0.431 0.506 0.486 1 0.486 1 0.486 1 0.338 1 0.398 1 0.431	
	0.52
DMU61 0.35 0.716 0.408 0.606 0.475 0.515 0.48 1 0.48 1 0.48 1 0.35 1 0.408 1 0.475	
	0.609
	0.897
DMU64 0.11 0.223 0.156 0.19 0.151 0.163 0.147 1 0.319 1 0.199 1 0.11 1 0.156 0.596 0.151	

(承上表)

		整體技術效率(OTE)							支術效	×率(F	PTE)			規	人模效	率(SI	Ξ)	
α-水準	0.	1	0.	5	0.	9	0.	1	0.	5	0.	9	0.	1	0.	5	0.	9
	下界	上界	下界	上界	下界	上界	下界	上界	下界	上界	下界	上界	下界	上界	下界	上界	下界	上界
DMU65	0.933	1	1	1	1	1	1	1	1	1	1	1	0.933	1	1	1	1	1
DMU66	0.201	0.378	0.231	0.328	0.265	0.285	0.245	1	0.245	1	0.295	0.563	0.201	1	0.231	1	0.472	0.966
DMU67	0.04	0.084	0.048	0.072	0.056	0.061	0.051	1	0.051	1	0.146	0.552	0.04	1	0.048	1	0.102	0.417
DMU68	0.035	0.069	0.041	0.06	0.047	0.051	0.043	1	0.043	1	0.09	0.214	0.035	1	0.041	1	0.221	0.569
DMU69	0.05	0.097	0.058	0.083	0.067	0.072	0.059	1	0.059	1	0.25	0.743	0.05	1	0.058	1	0.09	0.288
DMU70	0.02	0.045	0.025	0.038	0.029	0.032	0.021	1	0.067	1	0.255	0.806	0.02	1	0.025	0.56	0.036	0.125
DMU71	0.072	0.145	0.085	0.125	0.099	0.107	0.085	1	0.085	٦/	0.45	0.89	0.072	1	0.085	1	0.111	0.238
DMU72	0.118	0.243	0.139	0.208	0.164	0.177	0.131	1	0.153	1	0.628	1	0.118	1	0.139	1	0.164	0.282
DMU73	0.179	0.375	0.212	0.319	0.25	0.271	0.195	1	0.311	1	1	1	0.179	1	0.212	1	0.25	0.271
DMU74	0.09	0.179	0.105	0.153	0.122	0.131	0.115	f	0.115	1	0.17	0.36	0.09	1	0.105	1	0.338	0.772
DMU75	0.206	0.42	0.24	0.356	0.28	0.303	0.258	1	0.258	1	0.579	1	0.206	1	0.24	1	0.28	0.523
DMU76	0.567	1	0.667	0.997	0.784	0.849	0.816	4	0.816	1	0.816	1	0.567	1	0.667	1	0.784	1
DMU77	0.098	0.185	0.113	0.161	0.13	0.139	0.12	L	0.12	1	0.145	0.279	0.098	1	0.113	1	0.466	0.963
DMU78	0.099	0.222	0.12	0.187	0.144	0.157	0.101	(L)	0.662	1	1	1	0.099	1	0.12	0.282	0.144	0.157
DMU79	0.15	0.31	0.176	0.263	0.207	0.224	0.215	1	0.215	1	0.215	1	0.15	1	0.176	1	0.207	1
DMU80	0.054	0.108	0.063	0.093	0.073	0.079	0.072	1	0.072	1	0.078	0.178	0.054	1	0.063	1	0.411	1
DMU81	0.112	0.228	0.132	0.195	0.155	0.167	0.131	1	0.134	1	1	175	0.112	1	0.132	1	0.155	0.167
DMU82	0.125	0.241	0.15	0.212	0.175	0.188	0.235	1	0.854	1	10	1	0.125	1	0.15	0.249	0.175	0.188
DMU83	0.063	0.132	0.074	0.112	0.087	0.095	0.067	1	0.152	1	0.458	0.823	0.063	1	0.074	0.733	0.106	0.207
DMU84	1	1	1	1	1	+	7er	1	/N	7	1	/1	1	1	1	1	1	1
DMU85	0.209	0.42	0.243	0.356	0.282	0.304	0.281	1	0.281	1	0.285	0.487	0.209	1	0.243	1	0.58	1
平均效率	0.266	0.436	0.302	0.395	0.339	0.358	0.324	1	0.404	1	0.658	0.876	0.266	0.996	0.302	0.869	0.375	0.585

由上表可以看到,隨著 α -水準上升,各效率值的下界漸增,這是因為在計算各效率值下界時,受評決策單位的產出下界隨 α -水準上升而增加,同時其他決策單位的產出上界減少;而上界相對地漸減。因此高 α -水準的模糊效率值 α -截集會包含於低 α -水準的模糊效率值 α -截集,這是必然的結果。

當 α -水準在 0.5 以下,純技術效率的上界都是 1 , α -水準等於 0.7 才開始出現純技術效率上界小於 1 的案例,這是因為低 α -水準下模糊產出的區間很大,不確定性很高,進行模糊資料包絡分析計算純技術效率上界時,受評廠商產出指標的上界與其他廠商產出指標下界相差較多,所以在這種情形下受評廠商在純技術效率的表現會有很高的評價。也因此當 α -水準在 0.5 以下計算規模效率值下界,也就是用整體技術效率下界除以純技術效率上界 (等於 1) 時,規模效率與整體技術效率的下界值都是相等的。

以上述方法求出之模糊效率值很難比較其大小關係,因此本研究使用 Chen 與 Klein (1997) 提出的模糊數排序法對模糊效率值進行排序,其排序指標計算公式如下所示:

$$I_{j} = \sum_{i=0}^{p} \left[\left(E_{j} \right)_{\alpha_{i}}^{U} - c \right] / \left\{ \sum_{i=0}^{p} \left[\left(E_{j} \right)_{\alpha_{i}}^{U} - c \right] - \sum_{i=0}^{p} \left[\left(E_{j} \right)_{\alpha_{i}}^{L} - d \right] \right\}$$

其中 $\left(E_{j} \right)_{\alpha_{i}}^{L}$ 為受評單位 j 在 $\alpha = \alpha_{i}$ 時的效率下界, $\left(E_{j} \right)_{\alpha_{i}}^{U}$ 則為上界, $c = \min_{i,j} \left\{ \left(E_{j} \right)_{\alpha_{i}}^{L} \right\}$ 代表整體最差的效率表現, $d = \max_{i,j} \left\{ \left(E_{j} \right)_{\alpha_{i}}^{U} \right\}$ 代表整體最佳的效率表現, p 為 α -水準的數量,算出來的排序指標值越高者,表示越有效率。以直覺來解釋各項的意義,分子與分母左項為:對受評單位 j 最樂觀的情況下,其效率勝過其他廠商的程度;相對地,分母右項表示在最悲觀的情況下受評單位 j 效率劣於其他廠商的

程度。本研究代入 α -水準等於0、0.1、0.3、0.5、0.7、0.9 之下 6 各 廠商的效率值上下界計算排序指標並排名,如表 4-9。例如要計算 DMU1 的純技術效率排序指標,其模糊純技術效率如表 4-8 所示,另 外分別由表 4-7 與附件三的純技術效率下、上界可以找出 $c=(E_{14})_0^L=0.00691^7,\ d=1$,因此分子與分母左項為: (1-0.00691)+(1-0.00691)+(1-0.00691)+(1-0.00691)+(1-0.00691)=5.95854 分母右項為:

(0.036144 - 1) + (0.0361 - 1) + (0.0361 - 1) + (0.0361 - 1) + (0.118163 - 1) + (0.503942 - 1) = -5.233451

DMU1 的純技術效率排序指標為5.95854/(5.95854+5.233451) = 0.532393 ≈ 0.532

純技術效率(PTE) α-水準 0.1 0.5 0.7 0.9 0.3 上界 下界 下界 上界 下界 上界 上界 上界 下界 下界 上界 下界 DMU1 0.0361 1 0.036144 1 0.0361 1 0.0361 0.118163 0.503942

表 4-9: DMU1 的模糊純技術效率值

表 4-10: 各廠商效率排序指標與效率排名

	整體技	術效率	純技術		規模	效率
	排序指標	排名	排序指標	排名	排序指標	排名
DMU1	0.046	79	0.532	69	0.435	70
DMU2	0.377	29	0.698	23	0.506	55
DMU3	1	1	1	1	1	1
DMU4	1	1	1	1	1	1
DMU5	0.274	44	0.682	27	0.448	67
DMU6	0.382	28	0.633	36	0.551	37
DMU7	0.525	20	0.693	24	0.608	23
DMU8	0.573	17	0.702	21	0.636	19
DMU9	0.819	10	0.942	10	0.819	10

⁶ 因此本研究 p=6 · Chen 與 Klein 在其研究中表示:p=3 或 4 就已經有足夠的資訊對模糊數排名,故本研究滿足這項條件。

-

⁷表 4-9 與附錄皆為取概數後的結果,運算以實際數字為準。

(承上表)

	整體技	術效率	純技術	· 一 · · · · · · · · · · · · · · · · · · ·	規模	(水上表) 效率
	排序指標	排名	排序指標	排名	排序指標	排名
DMU10	0.8	11	0.875	11	0.8	11
DMU11	0.898	7	1	1	0.898	7
DMU12	0.637	15	0.735	15	0.677	16
DMU13	0.146	61	0.525	70	0.499	56
DMU14	0.007	85	0.55	64	0.374	80
DMU15	0.691	14	0.785	14	0.701	14
DMU16	0.281	42	0.703	20	0.444	69
DMU17	0.261	47	0.602	43	0.518	50
DMU18	0.365	31	0.601	45	0.566	32
DMU19	0.119	66	0.475	83	0.526	46
DMU20	0.306	38	0.56	60	0.572	28
DMU21	0.43	27	0.717	18	0.528	43
DMU22	// [1]	1	1	1		1
DMU23	0.082	71	0.571	56	0.434	72
DMU24	0.317	37	0.573	55	0.562	33
DMU25	0.612	16	0.72	17	0.68	15
DMU26	0.884	8	1	1	0.884	8
DMU27	0.077	73	0.515	73	0.479	62
DMU28	0.018	84	0.615	41	0.345	82
DMU29	0.147	59	0.52	71	0.509	53
DMU30	0.059	76	0.577	54	0.403	76
DMU31	0.553	18	0.684	25	0.643	17
DMU32	0.457	26	0.669	29	0.582	26
DMU33	0.481	24	0.658	32	0.595	25
DMU34	0.203	50	0.702	21	0.407	74
DMU35	0.032	83	0.582	52	0.313	84
DMU36	0.127	63	0.705	19	0.327	83
DMU37	0.283	41	0.583	51	0.532	42
DMU38	0.552	19	0.683	26	0.642	18
DMU39	0.16	57	0.621	40	0.422	73
DMU40	0.126	64	0.489	79	0.525	47
DMU41	0.051	78	0.64	35	0.266	85
DMU42	0.089	69	0.598	46	0.389	78
DMU43	0.91	6	1	1	0.91	6

(承上表)

	整體技	術效率	純技術	 뜃效率	規模	(水上表) 效率
	排序指標	排名	排序指標	排名	排序指標	排名
DMU44	0.507	22	0.663	30	0.621	21
DMU45	0.766	12	0.832	13	0.766	12
DMU46	0.326	34	0.587	50	0.554	35
DMU47	0.196	52	0.545	66	0.525	47
DMU48	0.87	9	1	1	0.87	9
DMU49	0.27	45	0.582	52	0.528	43
DMU50	0.225	49	0.563	59	0.513	52
DMU51	0.075	74	0.517	72	0.446	68
DMU52	0.046	79	0.491	77	0.473	64
DMU53	0.12	65	0.478	81	0.521	49
DMU54	0.147	59	0.628	39	0.405	75
DMU55	0.366	30	0.595	47	0.568	31
DMU56	0.266	46	0.602	43	0.518	50
DMU57	0.279	43	0.565	58	0.553	36
DMU58	0.468	25	0.633	36	0.602	24
DMU59	0.498	23	0.659	31	0.616	22
DMU60	0.034	81	0.47	84	0.486	60
DMU61	0.51	21	0.656	34	0.623	20
DMU62	0.362	32	0.604	42	0.562	33
DMU63	0.36	33	0.593	48	0.57	30
DMU64	0.181	9/ 55	0.549	65	0.507	54
DMU65	0.973	5/	leng4	ni Via	0.973	5
DMU66	0.301	39	0.552	63	0.572	28
DMU67	0.067	75	0.496	76	0.487	58
DMU68	0.055	77	0.476	82	0.497	57
DMU69	0.078	72	0.512	75	0.478	63
DMU70	0.033	82	0.513	74	0.401	77
DMU71	0.118	67	0.537	68	0.469	65
DMU72	0.195	53	0.568	57	0.486	60
DMU73	0.291	40	0.658	32	0.487	58
DMU74	0.146	61	0.491	77	0.528	43
DMU75	0.323	36	0.591	49	0.544	40
DMU76	0.732	13	0.843	12	0.74	13
DMU77	0.153	58	0.483	80	0.545	38

(承上表)

	整體技	術效率	純技術		規模	效率
	排序指標	排名	排序指標	排名	排序指標	排名
DMU78	0.176	56	0.677	28	0.381	79
DMU79	0.245	48	0.559	61	0.545	38
DMU80	0.087	70	0.45	85	0.534	41
DMU81	0.184	54	0.632	38	0.452	66
DMU82	0.199	51	0.722	16	0.374	80
DMU83	0.106	68	0.541	67	0.435	70
DMU84	1	1	1	1	1	1
DMU85	0.324	35	0.558	62	0.582	26

綜觀表 4-8 與 4-10 可以得到以下結論:

- (一) DMU3、4、22、84 整體而言是有效率的,因此在純技術效率與 規模效率上的表現,也是處於有效率的狀態。這四間廠商的人 均訓練總投入介於 0.41 到 1.8 小時,都是在很低的水準,但 是除了 DMU3 之外,員工數都在 100 人以上,DMU4 甚至達到 600 人;產出方面除了 DMU84 之外,都有四項以上的產出是超過「不 變」的水準,也至少有一項產出是介於「稍微改善」到「改善」 之間。
- (二)積極投入教育訓練的廠商如 DMU1、14、28、30、35、…等廠商,至少有一項人均訓練投入超過 25 小時,人均總訓練投入超過 30 小時,產出至少有三項是介於「稍微改善」到「改善」之間的水準,這些廠商在進行模糊資料包絡分析時,低α-水

準下純技術效率、規模效率值的α-截集區間很大,下界小於 0.1,上界接近或等於1,高α-水準下,規模效率值上下界都 小於 0.1,因此規模效率的排名都在 70 名以後,但純技術效率排名大都還在 50 名以前,顯示這些廠商在規模效率方面進步空間比較大。整體而言,這些廠商的整體技術效率表現也是 最差的。

二、 差額分析

此模糊資料包絡分析法,在不同的 α -水準下,還有計算上界或下界的差異,因此代入模型中的投入、產出值不同,計算出來的效率值自然不盡相同,而有不同的射線、非射線差額。Kao 與Liu(2000b)應用其模糊資料包絡分析模型,研究台灣 24 間大學圖書館的效率,其中有三筆產出為模糊數據,該研究展示出 α =1、以及 α =0的上下界分析下,各大學圖書館達到 Farrell(1957)效率的目標產出與射線成分(radial component)、非射線差額, α =0的上界分析在受評廠商產出值最大、其他廠商產出值最小的情況下進行分析,為最樂觀的結果; α =0的下界分析在受評廠商產出值最小、其他廠商產出值最大的情況下進行分析,為最悲觀的結果; α =1的分析則為與實際狀況最近似(most likely)的估計。因此本研究參考 Kao 與Liu(2000b)差

額分析的方法,列出各廠商達到 Koopmans(1951)效率各投入總差額 與射線、非射線差額於附件六:各廠商總差額與射線、非射線差額表, 其中 M 為 α = 1 的分析,L 為 α = 0 的下界分析,U 為 α = 0 的上界分析; 表格中各元素,上為總差額,左為射線差額,右為非射線差額。

不同於 Kao 與 Liu(2000b),本研究採投入導向,故上表陳述的內容為投入面的改善:各廠商有機會減少上述所列之各訓練總人均訓練投入差額,以更少的投入量,卻仍能達到相同的產出水準,因此廠商可參考上表所列各種類人均教育訓練投入差額,當作改進的目標。

各廠商在「研發創新與製程改善」、「專業技能」兩類的人均訓練投入,僅有射線差額,而無非射線差額,可能的原因為廠商在這兩類訓練投入差異較大,由表 4-3 可以看出這兩類訓練投入的標準差明顯大於「全國性或國際性認證」與「策略、經營與其他」兩類,因此效率廠商所圍成的強效率前緣較廣,涵蓋了所有廠商。另外 DMU8、11、12、15、45、48、61 部分分析出現非射線差額大於射線差額的情形,只發生在「全國性或國際性認證」與「策略、經營與其他」兩類訓練的人均投入上,顯示這些生產活動與弱生產效率前緣的射線距離很近,而投影點與強生產效率前緣的距離較遠,代表這些廠商在這兩類訓練投入過多,相對地「研發創新與製程改善」、「專業技能」兩類的訓練投入過多,相對地「研發創新與製程改善」、「專業技能」兩類的訓練則呈現投入較少的情況,這些廠商若將部分投入於前兩類訓練的

資源移轉到後兩類,會有明顯的效率改善!

至於各投入的總差額,也就是因效率不佳而造成的浪費,整理如表 4-118:

DIA THE LEAD WELL AND THE TOTAL THE											
	研發創新與製程改善	專業技能	全國性或國際性認證	策略、經營與其他							
總投入	301.199	581.739	117.302	188.674							
M	269.317 / 0.8941	504.143 / 0.8666	111.407 / 0.9497	170.788 / 0.9052							
L	279.147 / 0.9268	528.248 / 0.9080	114.13 / 0.9730	178.753 / 0.9474							
IJ	256.178 / 0.8505	471.924 / 0.8112	106.339 / 0.9065	160.446 / 0.8504							

表 4-11: 各投入總差額與總差額 - 總投入比的比較

首先可以看到各投入浪費的比率非常高,都在八成以上,顯示無效率的廠商普遍投入太多,與訓練成效不成比例,導致資源的浪費。 再來比較各投入的浪費情況,因「專業技能」類訓練總投入最多,而 且總差額主要來自於射線差額(如表 4-12 所示⁹),因此這類訓練的 總浪費數量最多;以總差額佔總投入的比例而言,「全國性或國際性 認證」類最高,顯示廠商在這類課程所浪費的資源相對最多,同樣地 表示在這類訓練投入過多的廠商,可以將部分投入於此的資源轉移到 其他類別的訓練以提升效率。

表 4-12: 各投入射線差額與非射線差額的比較

	研發創新與製程改善	專業技能	全國性或國際性認證	策略、經營與其他		
總投入	301.199	301.199 581.739		188.674		
M	269.317 / 0	504.143 / 0	100.888 / 10.519	158.229 / 12.559		
L	279.147 / 0	528.248 / 0	106.258 / 7.872	168.156 / 10.597		
U	256.178 / 0	471.924 / 0	94.693 / 11.646	149.356 / 11.089		

⁸ 同附件六,M 為 α = 1 的分析,L 為 α = 0 的下界分析,U 為 α = 0 的上界分析。表格中"/"左為各投入在上述分析下的總差額,右為總差額佔總投入的比率。表格內的數字,投入數以四捨五入法取概數到小數點第三位,比率數則取到小數點第四位。

⁹ M、L、U 列中"/"左為射線差額,右為非射線差額。

第三節:模糊數與精確數於資料包絡分析之比較

由第三章第三節第一段的敘述,我們可以瞭解直接以Likert 衡量尺度所計算出來的數據,會有數據之間大小關係客觀與否的問題,然而此問題實際上會對資料包絡分析法造成多大的影響,是眾多使用問卷來衡量投入、產出變數的研究者所關心的議題,因此本節要闡述的重點為:以模糊數來衡量變數,會在哪些方面比直接以Likert 尺度做為精確數值有更合理的結果。本節先以Likert 尺度衡量的產出量視為精確數值,進行資料包絡分析¹⁰,然後再與第二節的模糊資料包絡分析結果做比較。

表 4-13 展示以精確法算出的效率值與排名,並且與表 4-10 以模糊法求得的效率排序指標做比較:

表 4-13:精確法與模糊法效率值與排名的比較

	精確法								模料	射法		
	07	ГЕ	P'.	ТЕ	S	Е	07	ГЕ	P'	ГЕ	S	Е
	效率	排名	效率	排名	效率	排名	效率	排名	效率	排名	效率	排名
DMU1	0.042	78	0.89	38	0.047	83	0.046	79	0.532	69	0.435	70
DMU2	0.339	29	1	1	0.339	48	0.377	29	0.698	23	0.506	55
DMU3	1	1	1	1	1	1	1	1	1	1	1	1
DMU4	1	1	1	1	1	1	1	1	1	1	1	1
DMU5	0.222	46	1	1	0.222	63	0.274	44	0.682	27	0.448	67
DMU6	0.339	30	1	1	0.339	49	0.382	28	0.633	36	0.551	37
DMU7	0.513	21	1	1	0.513	40	0.525	20	0.693	24	0.608	23
DMU8	0.564	17	1	1	0.564	39	0.573	17	0.702	21	0.636	19
DMU9	0.984	10	1	1	0.984	15	0.819	10	0.942	10	0.819	10

¹⁰ 以下內容將此方法簡稱「精確法」、模糊資料包絡分析法簡稱「模糊法」。

(承上表)

			精研	在法					模料	朔法		上衣)
	07	ſΈ	PI	ГЕ	S	E	07	ГЕ	PI	ſΈ	S	E
	效率	排名	效率	排名	效率	排名	效率	排名	效率	排名	效率	排名
DMU10	0.847	11	1	1	0.847	25	0.8	11	0.875	11	0.8	11
DMU11	1	1	1	1	1	1	0.898	7	1	1	0.898	7
DMU12	0.69	15	1	1	0.69	35	0.637	15	0.735	15	0.677	16
DMU13	0.124	60	0.541	56	0.23	60	0.146	61	0.525	70	0.499	56
DMU14	0.009	85	1	1	0.009	85	0.007	85	0.55	64	0.374	80
DMU15	0.725	14	1	1	0.725	33	0.691	14	0.785	14	0.701	14
DMU16	0.231	44	1	1	0.231	58	0.281	42	0.703	20	0.444	69
DMU17	0.23	45	1		0.23	59	0.261	47	0.602	43	0.518	50
DMU18	0.338	31	1	拉打	0.338	4 50	0.365	31	0.601	45	0.566	32
DMU19	0.101	65	0.134	81	0.755	31	0.119	66	0.475	83	0.526	46
DMU20	0.285	36	0.304	69	0.938	18	0.306	38	0.56	60	0.572	28
DMU21	0.374	27	1	1	0.374	47	0.43	27	0.717	18	0.528	43
DMU22	1/	7	1	1	1	1	1 3	HILL FELLY	\ 1	1	1	1
DMU23	0.067	71	1	/1	0.067	81	0.082	71	0.571	56	0.434	72
DMU24	0.279	38	0.744	43	0.374	46	0.317	37	0.573	55	0.562	33
DMU25	0.63	16	0.63	45	1	1	0.612	16	0.72	17	0.68	15
DMU26	1	4	1	1	1	1	0.884	8	/ /1	1	0.884	8
DMU27	0.069	70	0.978	37	0.071	80	0.077	73	0.515	73	0.479	62
DMU28	0.019	84	1	7	0.019	84	0.018	84	0.615	41	0.345	82
DMU29	0.128	59	0.569	52	0.225	62	0.147	59	0.52	71	0.509	53
DMU30	0.046	77	0.437	64	0.105	78	0.059	76	0.577	54	0.403	76
DMU31	0.541	18	0.541	55	7	1	0.553	18	0.684	25	0.643	17
DMU32	0.394	26	0.409	65	0.963	16	0.457	26	0.669	29	0.582	26
DMU33	0.462	23	1	1	0.462	42	0.481	24	0.658	32	0.595	25
DMU34	0.165	51	1	1	0.165	65	0.203	50	0.702	21	0.407	74
DMU35	0.025	83	0.217	75	0.114	75	0.032	83	0.582	52	0.313	84
DMU36	0.091	67	1	1	0.091	79	0.127	63	0.705	19	0.327	83
DMU37	0.266	39	1	1	0.266	56	0.283	41	0.583	51	0.532	42
DMU38	0.54	19	0.54	57	1	1	0.552	19	0.683	26	0.642	18
DMU39	0.129	58	1	1	0.129	73	0.16	57	0.621	40	0.422	73
DMU40	0.108	62	0.237	74	0.457	43	0.126	64	0.489	79	0.525	47
DMU41	0.037	80	0.641	44	0.058	82	0.051	78	0.64	35	0.266	85
DMU42	0.066	72	0.6	47	0.11	76	0.089	69	0.598	46	0.389	78

(承上表)

			精石	雀法					模料	 射法	(,,,	上衣)
	07	ГЕ	P'.	ГЕ	S	E	07.	ГЕ	P'.	ГЕ	SE	
	效率	排名	效率	排名	效率	排名	效率	排名	效率	排名	效率	排名
DMU43	1	1	1	1	1	1	0.91	6	1	1	0.91	6
DMU44	0.46	24	0.495	59	0.929	19	0.507	22	0.663	30	0.621	21
DMU45	0.835	12	0.84	40	0.994	14	0.766	12	0.832	13	0.766	12
DMU46	0.285	37	0.581	50	0.491	41	0.326	34	0.587	50	0.554	35
DMU47	0.17	50	0.25	73	0.679	36	0.196	52	0.545	66	0.525	47
DMU48	1	1	1	1	1	1	0.87	9	1	1	0.87	9
DMU49	0.233	43	0.76	42	0.307	53	0.27	45	0.582	52	0.528	43
DMU50	0.187	49	0.848	39	0.22	64	0.225	49	0.563	59	0.513	52
DMU51	0.059	74	0.257	72	0.229	61	0.075	74	0.517	72	0.446	68
DMU52	0.041	79	0.258	71	0.158	67	0.046	79	0.491	77	0.473	64
DMU53	0.106	64	0.277	70	0.381	45	0.12	65	0.478	81	0.521	49
DMU54	0.108	63	1		0.108	77	0.147	59	0.628	39	0.405	75
DMU55	0.341	28	0.575	51	0.594	38	0.366	30	0.595	47	0.568	31
DMU56	0.211	47	0.211	77	_ 1	1	0.266	46	0.602	43	0.518	50
DMU57	0.248	41	0.309	68	0.803	29	0.279	43	0.565	58	0.553	36
DMU58	0.417	25	0.566	53	0.736	32	0.468	25	0.633	36	0.602	24
DMU59	0.464	22	0.486	61	0.955	17	0.498	23	0.659	31	0.616	22
DMU60	0.031	81	0.099	83	0.313	52	0.034	81	0.47	84	0.486	60
DMU61	0.516	20	0.592	48	0.872	24	0.51	21/	0.656	34	0.623	20
DMU62	0.314	33	0.492	60	0.637	37	0.362	32	0.604	42	0.562	33
DMU63	0.334	32	0.483	62	0.691	34	0.36	33	0.593	48	0.57	30
DMU64	0.159	52	0.519	58	0.307	54	0.181	55	0.549	65	0.507	54
DMU65	1	1	1	1	1	1	0.973	5	1	1	0.973	5
DMU66	0.263	40	0.315	67	0.836	26	0.301	39	0.552	63	0.572	28
DMU67	0.054	75	0.071	85	0.76	30	0.067	75	0.496	76	0.487	58
DMU68	0.047	76	0.12	82	0.393	44	0.055	77	0.476	82	0.497	57
DMU69	0.065	73	0.545	54	0.119	74	0.078	72	0.512	75	0.478	63
DMU70	0.028	82	0.211	78	0.131	72	0.033	82	0.513	74	0.401	77
DMU71	0.1	66	0.626	46	0.16	66	0.118	67	0.537	68	0.469	65
DMU72	0.152	54	0.454	63	0.334	51	0.195	53	0.568	57	0.486	60
DMU73	0.245	42	1	1	0.245	57	0.291	40	0.658	32	0.487	58
DMU74	0.122	61	0.15	79	0.814	28	0.146	61	0.491	77	0.528	43
DMU75	0.296	34	1	1	0.296	55	0.323	36	0.591	49	0.544	40

(承上表)

	精確法								模料	射法				
	ro	TE .	P'1	TE .	S	Е	ľO	ΓE	P'1	ΓE	S	Е		
	效率	排名	效率	排名	效率	排名	效率	排名	效率	排名	效率	排名		
DMU76	0.741	13	0.816	41	0.909	22	0.732	13	0.843	12	0.74	13		
DMU77	0.129	57	0.143	80	0.901	23	0.153	58	0.483	80	0.545	38		
DMU78	0.138	56	1	1	0.138	71	0.176	56	0.677	28	0.381	79		
DMU79	0.196	48	0.215	76	0.909	21	0.245	48	0.559	61	0.545	38		
DMU80	0.075	69	0.091	84	0.824	27	0.087	70	0.45	85	0.534	41		
DMU81	0.147	55	1	1	0.147	69	0.184	54	0.632	38	0.452	66		
DMU82	0.153	53	1	1	0.153	68	0.199	51	0.722	16	0.374	80		
DMU83	0.084	68	0.588	49	0.142	70	0.106	68	0.541	67	0.435	70		
DMU84	1	1/	1	拉打	1	41	1	1	1	1	1	1		
DMU85	0.291	35	0.318	66	0.916	20	0.324	35	0.558	62	0.582	26		
平均值	0.340		0.682		0.524		0.351		0.652		0.568			
標準差	0.311	A	0.327	-//	0.352		0.285	mi \	0.152		0.167			

接著檢定以這兩種方法之下所計算的各效率值與其排名是否相同,事前我們計畫以檢定各效率值與排名之差是否顯著異於零來判斷,因此首先以Anderson-Darling常態性檢定來檢定各效率值與排名之差是否服從常態分配,結果除了純技術效率與規模效率排名之差,其他皆顯著不服從常態分配,所以最後我們使用無母數檢定來判斷,表4-14為進行Mann-Whitney檢定之P值:

表4-14:模糊法與精確法差異性檢定之P值

	整體技術效率	純技術效率	規模效率
效率值	0.5248	0.3567	0.1587
排名	0.9528	0.1294	0.9478

在95%的顯著水準之下,所有P值都大於 0.025,由此可以看出以這兩種方法算出的效率值與排名沒有顯著不同,但是仔細看以精確法算出的數據,具有整體技術效率的廠商有 9 家,大於模糊法的 4 家; 具有規模效率的廠商有 13 家,大於模糊法的 4 家; 差異最大的具有純技術效率的廠商有 36 家,而模糊法只有 9 家,顯示在本研究中對於較有效率的廠商來說,以模糊法評估的鑑別力較強,可以從精確法下的效率廠商區別出部分比較沒有效率的廠商。

雖然模糊語意變數透過α-截集轉為精確數值在同一α-水準下為一對一的關係,但是再經過相同類別問項的平均後,以模糊法與精確法算出的變數會有不同的結果,原因在於語意變數的歸屬函數設定不同於精確法,而產生如此差異。因此以模糊法進行資料包絡分析的鑑別力較精確法高,推測是因為模糊法可以透過比較合理的語意變數設定,改善精確法中相鄰尺度差異固定為1的設定,例如尺度四(沒有改變)與尺度五(稍微改善)之間的差,設定成小於尺度五與尺度六(改善)之間的差,所以區別出各語意變數之間的差異,達到提昇鑑別力的效果。