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Seven statistical procedures were compared with

one another 1in terms of the ability to recover a |

'Tunidimehsiona1 latent trait from Likert—type'data.

They'are factorvana1ysis based on either Pearson

correlations (FA-PR) or polychoric corre1ations (FA-

PL), the gréded response mode] 1n-1tem response
theory (IRT-GRM), internal unfolding (IMDU), external
unfolding (EMDU), weighted unfolding (WMDU), and_ﬁhe '
common procedure of summing up'successive integers
assigned to response categdriés (SSI). Samp]e_size,
test 1éngth, and skewness of item response |

distributions were manipulated in this simulation

Vi
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study. Generally Speaking, IRT-GRM performed the beét'
and was most robust against skewness. FA-PR and FA-PL
- performed equa11y well across almost all conditions
but were competitive w{th'IRT—GRM oh1y when item
responses were normally distributed. SSI pkactice.
might be slightly worse than the two FA‘procedures‘
when item fesponses were normally distributed, but it
Was‘better'than them whén"item responsés were highly
skewed. WMDU performed as well as did SSI only when.
item responses were normally distributed or
moderately skewed and sample size waé large for MDS
models (e.g., N=1OQ);'iMDU and EMDU were even worse

than WMDU and appeared'not appropriate for Likert-

type data.
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CHAPTER I

INTRODUCTION

Ine postulated Sealing ituation
Data collected from sociaT/psycho]ogica1
research ﬁypica11y produces ordinal manifest:.
variables (Cliff, 1989; Hj1debrand, Laing &
. Rosenthal, 1977). For'examp1e,'about‘one'ha1f of all
recorded observations in the 1975 Gehéra1 Social
.Survey were obtained through use of the Likért—type_
response format (Clogg, 1979). However, ft is usually
assumed that the ordinal manifest variable (Y) is
obtained thfoughgéémevcrude cjassification of a
continuous variable (Y*), which mightvhave beeh
- obtained ff an 1ntérva1vsca1e were ava11ab1e.>1n
addition, the contiﬁuous reéponse variable (Y*) is
| | assumed to be related except for measurement error to
‘ M | o | an undér1y1ng_fatent dimension (&), which is thé‘
B

| | ‘ variable of ultimate interest in most
1 | 1 ! -

‘ | | éociaT/bsycho1ogicaT researches. This situation is
o | | ea . s
iRl { i1lustrated in Figure I-1.
|
\

. Two kinds of disturbance processes are assumed

to be involved in measuring a latent dimension given




l—,» {stochastic processes)

!

.
Y1
{crude classificatian)
1 2 ' 3 45 |

Y | | . | |
£tz t3 t4

Figurel-1: Raspanse‘Pmcésses of Likert-Tgpe scales




Likerf—type items: a stochastic process and a.crude-
classification process. First of all, it 1is usué]?y
assumed that the latent dimehsion (8) and the
continqous duantitative'résponse (Y*) aré Tinearly
and-probabilistica11y related. The basfc mathematjcai
form of this relationship is: |

v¥ = we +E, | * (1.1)

where W is a weight and E is the residual. The latent

' dimension”(e) is assumed to be stable across various

replicated observations, whi]e the residual (E) is
assumed to be spécific to replications. For

estimation convenience, both 8 and E are frequently

- assumed to be norma11y distributed in the popu1atioh;

-In addition, because of the limitations of the

instrument, the continuous quantitative response (Y*)
is unavailable and 1s_c1assified into an ordinal
scale (Y). In terms of underlying psycho1ogi¢a1
prdcesses, it could be that a person.combafeS»his/her
potentié]ly quantjtative response to the fmp]icit |

threshold values (ty to t, in Figure I-1) on the

ordinal scale and chooses one corresponding response -




category. Thereforé, the re]atiénship between the
manifest categorical variable (Y) and the
unéntitative resbonse variable (Y*) is an increasing
~step function. Supposing that five response

B ‘ _ categorﬁes are employed, the‘step function can‘be
I , _

represented in thé following scheme:

=1,'i'F Y <t1
=2,1f‘t15Y <t2

if t2

IA
=<
PN
r'-
w

(1.2)
= 4, if ts

< < <X =< <

1]
w

A

-<

FaS

ot

~

= 5, T‘F t4

1A
=<

o ~ _ ‘Where t; (i=1, 2, 3, 4) are the threshold values or
‘LH\ : .

L : : : category boundaries. These values may be determined
I} - . . : C .

|

\ . ,

k Wi by the properties of the items as well as by the
s ‘ labels of the response categories. They are assumed
\ W i ) ‘ :

ai ; ‘ "~ to be stable across persons. It should be noticed
I '

B ' ; that the variable of interest is © instead of Y*. The

r e 1 latent dimension, 8, is related to the manifest
g ] . : -

variable (Y) through both a 1inear/stdchastic

function and a stepifuhctioh.




Repﬁicated obser?ations of the same Tlatent
1 ' ‘ : dimensions are necessary‘for any scaling model
oy o v
E‘ because systematic variations cannot be
i _ differentiated from nbn—systematic fluctuations
l 7 : Qithout muitipTe observations. The typical procedures
ﬂ | : _ for estimating reliability coefficients, including
! | g methods of.test—retest, a1teknativ¢ forms, mu]tib]e
| ~ ;; raters; and mu1t1b1e items, are just replicated
[ . i : : . :
y‘ | _ : _ - observations at different levels or with different
u’ ! i procedees‘Which are sensitive to different’soncesv
M | ; _ of errors. These rép1icated observations can also be
i i | called "multiple indicators” o?‘severa1 latent

Al { o dimensions. The:present study, however, focused on
\ thé case where multib1e items were indicators of one
latent trait part]yvbecause that case is the

fundamental basis of the multidimensional case and

‘part1y because most IRT mdde1s have been deve?obed
lon1y for the unidimensional case.

The objective of a‘sca1ﬁng model in fhe
I ; described situation 15 clear: to estiméte the level
_ ? ‘ of the underlying Tatent dimension given ordina1 

‘ f-’ multiple indicators with disturbance from a
i \ | o . !

W\‘ : stochastic process and a crude classification. The
i : 3 ' v '




assumptions are also clear, including one continuous

~Tatent dimension, multiple indicators, normal

distribution of the latent dimension and of the
residua]é, and 1nvar1ance_of the response threshold

values across subjects.

[raditional AQQrgggh

For estimating the latent trait underlying

| Likert-type items, the traditional approach is to

assign successive integers to the response categories
and then simply sum up the raw scores on each item to

obtain a total score, which serves to estimate the

true scoré-of each person on the underlying

dimension,,This approach (SSI, Sum of Successive
Integers)vhaé been often criticized for its
assumption of equal intervals betWeen ordinal
respohse categories._However,'this approach’was
emp}oyed as a base—1ihe»for compar{ng the more':

sophisticated latent variable models because it is af

common practice in the literature.




N riable e
Due to methodological developments in thé last
three decades, three types bf Tatent variable mode}s
growing out of three distinct areas have been used to
estimate the underiy{ng.trait from Ordinai-data in a
re1atfve1ybsophisticated fashion. They are factor
analysis (FA) of categorical data, item responsé
theory (IRT),vahd non-metric multidimensional éca1ing

(MDS). Despite their disparate traditions, the three

- approaches have been treated by a féw résearchers

(e.g., Loehlin, 1987) under a more general concept,
latent variable models, because they all attempt to

reduce a large number of manifest variables into a

- few hypOthética1 latent variables constructed.in the

Mathematjca1 mode .

‘GiQen a cokrelatjon or covariance matrix among
manifest variables, the objective of FA is to
estimate some latent variables which constitute'the
comp1été latent space so that the fe1ationéh1ps among
indicators disappear Witth a homogeneous |
subpopulation with respect to these 1atent‘vafiéb]es.

That is, all pairwise partial correlations among the

manifest variables approach‘zero giveh that the




latent variables (factors) have been kept constant.
After thé factor structures haye been determined,
factor scoresifor individuals on the 1ateﬁt
dimensions can be .estimated. Because the observed
data are aésumed to be ordiha1, to perform FA on the
matrix of Pearson corfe1ations compUted from these
déta,(FA—PR)‘may,be criticized. A theoretically
favored'a1ternat19e,1s to first estimaté po1ychoricl
correlations among ordered variab]es (O]éson, 1979b)
.and then to perform FA on the matrix of polychoric
corre1ations'(#A—PL). FA—PL mékes it possible to
start the éstjmation of latent variab]és»with ordinal
manifest variab}esbbut to end with results on equal-
interval sca1es. The relative performances of FA-PL
and FA-PR were the first focus of the present study.
IRT typically has_been»deve1opéd for SCa1ihg
categorical résponse déta onto an equal-interval
scale. Traditional IRT requires that one single
Tatent variab]e constitutes the‘comp1ete latent space
in the_data so that Toca] independence is achieved aé
a‘ccnsequence. Unidimensionality may be seen as a
possible result of FA, but it is a pfesupposition of

most IRT models. Although FA and IRT seem to be




evolved from two separate traditions,»they‘have been
% ‘ |  shown to converge 1nvmany aspectsv(McDona1d, 1985){
P ! For dealing with ordinal data,Athe marginal

! , _ 11ke11hoqd.of Samejima’s (1969) normal ogive model
o : | _and‘FA for ordered variables have been formally

i * ! | . 'pr0ven to be equivalent (de Leeuw, 1883; Takane; de
l [W ‘ Leeuw, 1987). In cher words, they are differeht

il . formu1ationé of the same model. It should be noticed
il h

i that in practice the logistic model is frequently
!i oo “}““3 |

|
[

i v : the'1ogistic model is mathematically more tractable.
o - , .

|

I | | | |
M | ; used to approximate the normal ogive model because
[" g |
A

\ } . The logistic model will approximate the FA model to
iw RN ‘ . , . .
N i - the extent that the logistic model approximates the
| “‘H‘\l . ' .
R “normal ogive model. The performance of Samejima’s
@]MH . Lo

(1969) 1ogist1c IRT mode1_for graded responées (GRM)

was the second focus of the current study,

| i ' MDS_utiﬁizes the analogy between‘péychologﬁcaX

L“Pi. ’ é E proximities/preferenées and gedmetric»diétanceé'to

‘ ! represent stimuli in a'perceptua1 solution space;

k | i . i B Given the unidimeﬁsibna1‘situat{on,.non—metric MDS

b t attempts to represent the stimuli on a common

“ i | f‘ - dimension such that the distances among the stimuli
\‘m

| 1 . on the underlying dimension have the same rank orders
il |
\

e




as the obSérved proximity data. To deal with Lfkert—
type data, Carroll’s (1972) external unfolding (EMDU)
and CooMbs’ (1964) internal unfolding (IMDU) models
‘may be applicable. Unfortunate]y, thése kinds of
app1fcaﬁioﬁs were few and were shown to be‘
vunsatisfactory by a few.reséarchers (e.g;, Koch,b
1984). Likert—tybe data involves both a cumu]ative':_
and an unfolding mechanish;-The cumu1ative‘mechanism
exists in the relationship between the 1tem>énd the

person, while the unfolding mechanism exists 1in the

relationship between the item respdnse categories ahd'

the pérson. Thﬁs_Comp]éx situation may be better
modeled byvthe’weighted multidimensional unfo1dfng
(WMDU) model (Young, 1984) than by the two classical
unfolding models. With WMDU, coordinates for {tem
résponse categories as well as for persons may be
estimated. In addition, item discrimination}power may
be estimated‘with the weight for "individual
differences." The re]ative'berformances of iMDu;
EMDU, and WMDU models were the third focUs‘df the
preseht study. | |

Finally, 1aten£ variable models acrbss

different areas (FA, IRT, and MDS) were compared to

10




——
g
K
iy
111 11
i
i\ ' each other and to the traditfoha] SSI procedure. This
%? ? was the major focuévof the current study.
I { :
ﬁ w ~ : Objective
\ﬁ ” f | | In terms of the ébi]ity to recover the latent
%A | : : trait from Likert-type data, six latent variable | |
| | . : :
L gl f models (FA-PR, FA-PL, IRT-GRM, IMDU, EMDU, WMDU) in
'H ﬁi ‘ i _ ‘ thfee statistical areas were cohpared to éach other
“ wﬂ% f and'to the common SSI précedure. These comparisohs 
| o _ _
W Na ' |  were made through many experimental conditions where
V‘ sample sizés, test length, and distributions of item
v wﬁl responées were manipulated. The estimates of the
w‘ ' ? latent trait»Va1ues are respecﬁive1y called factor
% ' _ ; ' scores in FA, person parameters in IRT, and ideal
N.”ﬂw : . i points in MDS.
i
\‘ o
e
e
(R
Mﬁ‘ﬁw
Ll
e
|
| '\*
|
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CHAPTER II

LITERATURE REVIEW

ﬁl Latent Variables

“ - One objective of psychological research is to
| ‘ exp1oré the nétufe and'FUnctions of some Tateht-

! ? ' traits of indivian1s. fheréfore, the concebt QF,

‘ | . latent variables is‘centfa1 in psychometrics.

v P ‘ Neverthe1ess, there are many statistical ways of

) | " modeling the latent variable. For example, c1aésfca1
R E ' true score test fhéory decomposes the-observed

| ; variable into two latent parts, i.e., the trué? and
?‘ ‘ the errdr—score variabies (Lord & Novick, 1968); The
‘ true score is defined as the expected value of the.

| B observed score or is regardéd as the>observed SCore
[ ‘ ‘

il "of a person on a homogeneous test of infinite length.
ol : )

i | ' Under this conception, the observed scbre’is taken as
; }the unbiased estimator of the true score. Given,“

: Likert—type 1tehs, howeQer, many researchers are
reluctant to assign successive integers to the ftem

] response sca]es.arbitrar11y‘and then simply sﬁm up

the_item scores to obtain a total score as the
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estimator of the true score. This reluctance 1is due
to the assumption that an interval scale exists in
the arbitrarily assigned successive integers. For

simplicity, however, this SSI approach is frequently

employed by research practioners. This practice is

also justified by the results of some Monte Carlo
studies (e.g., Bollen & Barb, 1981; Jenkins & Taber,

1977;.Lissitz & Green, 1975), which showed that

- errors caused by regarding ordinal scales as interval

ohes were small enough to be 1gnored as long as a
minimum of 5 response categories were employed. For
the reason that "simple is better,” Cchen (1890)
recently also suggested that, for combiningvmu1t1ple,
indicators,_&nit weights instead of optimal weigh;s
cohing from regression or FA be assigned to»the

individua1_itéms. Because this SSI appkoach is so

widely employed, it sefved_as the baseline for

comparing the other 1atent variable models.

| The second way to identify one or more 1atent
variab1es in psycho1ogy is through the statfstica1
concept of local indepéndenCe, Which underlies a body

of ldatent variable models including factor -analysis,

structural equation modeling, item response theory,
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Table II-1"
Latent Variable Models Utilizing the Principle

of Local Independence

! ; - Manifest variables

| o o | »
H I ' f ' } o Metrical - Categorical
i ~ ,

i : ‘ ' ' Latent trait
I , | : : Factor analysis| analysis (IRT)
i : o Metrical -
ol T - |Factor analysis of
NM : : _ categorical data
1% § - Latent | . _
g . variables Latent profile |[Latent class
byl ¢ . ' _ analysis analysis
A . Categori- ‘
! 1 ' cal Analysis of mixtures
| : }

Note: From Bartholomew (1987, p.4)

Tatent prdfile analysis and latent class ané]yéis

(Bartholomew, 1987)(see Table II-1). Because the last

two analyses assume a non-metric latent variable,
they will not be included in the current study.

A psychological interpketatjon of the term

? ' "local independence” is that an individual’s

v systematic pérformance can‘be comp]éte1y expiéined.by
some underlying traits so tﬁat, given hfs values on
these traits, no more information can be learned from

him/her. In other words, his/her performance should
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be random once his/her values on these tfaits have
been fixed (Anderson, 1959). Translated into
statistica] terms; local independence is.the‘
il ‘ v _ statistical indepehdence of residuals once the latent
| o % variables in the mode1 constitute the complete latent
\ ‘  | o space and their values are fixed.
| ;G | : : _ However, statistica] independence may bé
! é defined 1in different ways in differeht models. Fof
Al , E example, FA defines it in terms of correlations or
i | é ‘covariances ih‘the population, wHi1e Jatent class
_mi % | analysis and IRT define it in terms of probabilities.
i | ‘ More spécifica]1y, FA tries to derive some common

o v
fagtors which constitute thé complete Tatent space

! ‘ that can "exp]éin away" the observed baikwise

' : correlations between manifest variables. Latent class

il : analysis attempts to seérch For séme latent c1asées
kb 1 | such that the fe1ationsh1ps‘in the contingency table
FW ?. of the'obserVed variables will disappear within eachb
» ; ‘ latent class. IRT requires the assumption of“

_i‘ é unidimensionality and uti]izes_its conéequence.of

i local independence to estimate person and item
pérameters in such a manner that “the probdbi]ftyvof

the response pattern for each examinee 1s'equa1'to
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the product’d? the probability associated with the

examinee response to each item” at a fixed value of

the iatentitrait (Hamb]eﬁoh & Swaminathan, 1985,
p.23). |

F_The third way to define a latent variable is_i
in terms of spatial distance. TypicaT exémples of
‘spatial models cah be found in the fam11y of MDS.
Like exploratory FA, MDS.atﬁempts to.search for a
small number of latent variables which can expTaih
'the obserVed relationships among a much larger number
_of_stimu11 (Loehlin, 1987). In other words, it tries
to construct a_spatia1 cohfiguration which can

represent the quantity or rank order 1nformat1on of

‘all observed pairwise proximities. Unlike common FA,

-

howevér, MDS does not utilize the principle of local

independence. Instead, it (especially classical

metric MDS) emp1bys algorithms similar to the ones

applied by principal components analysis (Davison,

- 1985; Davison & Srichantra, 13988; Rodgers & Young,

1981).

In summary, there are at least three

“mathematical ways of defining and estimating a latent

variable: a) classical true score theory, b) a body




I 2 '

of models which utilize the principle of local
| ‘ 1ndebenden0e; and c),the'disfance models of MDS.
Because thé second and fhe third ways of estimation
| | utilize sophisticated procedures for recoverihg
| i

| ‘ metric information from non-metric data, they will be

« N ' ' explored further in the following sections.
l’\‘ :H‘ L ) » ) )
L Al :
Il Al
| 3\‘\“\ | Eactor Analysis
- | . ' | |
y ‘% . : ; FA originated from the work of Galton, Pearson
i il 5 ‘ :
[ MU 5

| » . ﬁ : and particularly Spearmah. The maximum 1ikelihood

i | approabh to the estimatfon of the paraméters in the
FA model, a statiStical]y respectabie approach, was
introduced by Lawley forty years ago (Everitt, 1984;
_Law1ey & Maxwell, 1971). HoWever; the computatioha?
difficulties were not solved until Jéreskog’s work 1in

the Tate 1960s. Mofe recently, Joreskog’s a1gorithms

" were implemented in the LISREL computer package

'(e.g,, Jéreékog & S6rbom, 1984).

Basic Theories

; FA 1is basically founded on the fo11oW1ng two
| )

! w‘ procedures: a) conditiona] independence, and b)
t “ZJ‘ Tinear least squares regression. Without loss of
I -

b l

‘ !
l |




18

genera11ty,.thé two proced&res will be explicated 1in
terms of a correlation matrix and standardized
variables.

| ' L -~ Given a matrix of cofre1ations between any

| ! ; ‘pair of manifest variables, x{, Xgs ++e35 XK, FA trfes

i ) A ‘ : to estimate an underlying factor f4 such that:
! - . ’ i :

K i Xy o= oW fy o+ oey

l : 4 o X2 W2 f1 f 62 ‘ | : ) (2.?)

i j - Xp = Wi Ty + e, -
i .~ where wy and e; (i=1, 2, ..., k) are respectively the
w ‘ K . - .

i B regression weight and the residual. Each equation.in
o : ,

i | (2.1) represents the linear least sduares regression

of ‘a manifést variéb1e on the latent variable f4 so
‘that the residual e; is uncorrelated with the

predictor, fq (Jdreskog & S&rbom, 1979). If f4.
constitutes the_cbmp]ete Jatent space, then.f1 is
sufficient toveXp1ain the obsefved corre]étiohs_so

P . that the correlation between ény pair of residuals ej
B and ej is zero, i.e., conditionaj independence is o

upheld. In other words,
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r(ej, ej) =0 (2.2)
I " : Cor rixy, xj|fq) = o, 1. - (2.3)
s (! .
| °
‘ i : ) . . : .
! o ‘ In this situation, it can easily be verified that
| 4 | |
&
| i : i S Wi ifJ. (2.4)
I -‘ |
1:‘:“1‘\ : : ‘ . '
.l JM y If the reproduced correlations from the model are
d iy o :
. \EH . ‘ v . _ v
. ! . significantly different from the corresponding
Wy UW - observed correlations, then conditional independence
0 fﬁ} - 1 may not be upheld and more than one factor may be
i ““i”\lf . X .
| it | ~ reguired. Therefore, .a second factor is introduced as
O S : . i . :
ey .
| iy in:
X g
b |
o | X1 = wyg Fy o+ Wy fo 4 oey
‘ﬂﬁ | | . | Xp = Way Ty + wap o + e . (2.5)
“i\‘:H : . .
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i ; : ‘
h | F | L X = Wy Fy o+ owep Tt e
\“\“\2 ) R
o
Bk , ‘ o C o
M _ ] - Each equation in (2.5) still represents a linear

least squares regression of a manifest variable on




the latent variables, fqy and f,. The aim is still to

accomplish conditional independence so that

rixi, xj|f{,f2) = 0, iFi. (2.6)

If this aim is achieved, then the two factors span

the comp1eté latent space and it can be verified that
F(Xi, Xj) = w11-Wj1 +‘W12 sz. o (2.7)

Ifythe réprpduéed'corre1ationé are significantTy
different from the corfesponding observed
corre1ations,'then.avthird factor may be 1ntroducéd,
and so férth, Certain indices of goodness of fit,
such as chi-square tests, are needed to decide
whether the differences betweén the reproduced and

the observed correlations are statistically

significant or not.

The above basic theories of FA can be easily
summarized in matrix form. Let x‘represent the vector
of manifest varﬁabies, W the matrix of facior,'
TOadihgs; f the vector of common factorAsCOkes;‘and e

the vector of residuals, then

20




Xx=WTF+ e. (2.8)

The covariance matrix X of x is then given by
T =WOoW + s,

(2.9)

where & is the covariance matrix of f, and s is the

vector of unique variances of x. If the distributions

of the residual‘e.are‘assumed to be multivariate
normal, then the conditional distributibn of xiwi?f
éfso be multivariate normal. In addition, if latent
factofs, fs, foi?ow»muftivariate normal | ‘
distributions, then the margina] distributions of the
manifest vékiab?es, xs,>can be derived and will also
be multivariate normal. This margina?izationbprocess
is usually emp1oyed to faci11taﬁe.the estimationAOf.

latent variables giveh discrete data (Mislevy, 1986).
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- .Ordered Polychotomous Indicatofs

Given ordered polychotomous indicators, the
question arises as to whether or not it is
appropriate to'perform“FA on a Pearson_correiation
matrix (FA-PR). Labovitz (1967, 1870) provided very
ihf1uent{a1 justification fbr using Pearson | |
correlations with ordinal-level variables. In his.
simulation Studies, he.demonstrated that "mohotonic
random scoring" systems, which indicated random1y-
stretched sca1és, are‘High]y related with "equal
distance scoring” systems. He afgued that thé errors
due to tfeatmeht of ordinal'variab1es as interval
were small enough to be ignored. However, his studies
were lTimited to the following conditions: a) The
underlying latent variable was uniformly distributed;’
and b) As many as thirty—oné categories of the
ordinal variable were used. Givéh the situatidn»where
the underlying variable was normally or uniformly
dﬁstributed, 0’Brien (1979) found that the

correlations between stretched scales and the equal

with the number of categories (C) when C was greatef

than four. His results were dramatically different

22

- distance scoring system were quite high and increased




23

when the undér1ying cohtinuous Variabie was qujte
skewed'(1§g~norma1):vPeérsonuf’s wére éubstantia]?y
smaller than those baséd on uniform and normal
distributions and decreased as the nUmberbof’
categories increased. Bollen and Barb (1981) éXamined
diffekences in the Peafsbﬁ r’s cémputed'on‘two
ndrmaiiy distributed continuoué variables compared té
the same two variab1es equal-intervally éo]1épséd
into a few ordered categories. They found that thése
differenceé were basica]]y.sma11 and that the
.greatest differences occurred when_thé cbntinUoué
Variab]eé correlated high]y and only a few (]ess than
five} categorieé were’used.fof co?iapsing. Genéfa11y
épeaking, thevapprdpriateness of the Qse of Pearsoh’s
f with ordinal data seems to- depend on a) the‘

distributions of the two variables correlated; b) the

number of the co]1apséd‘éategor1es; énd_c) the

equality of the intervals betWeen coi1aps§d
categorieé. |

Given discrete data; it 15 well known that the.
Pearsonian corre1at{on is not free to range from -1

to 1 when the two correlated variables are skewed

highly in opposite directions (Carroll; 13961; Muthén,
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1983). In other words, the Pearsonian correlation
coefficient will genera11y underestimate the latent
re1atfonship between two norha11y distr?buted
k ; : continuous variabTes which are categorized into two
ﬂ ﬁ ‘ ; ' maniFést variables with opposite skewnéss. In a '
,\ w ; » ; siMu]ation'study, Olsson (1897%9a) 1ndeed.fOUnd that_
% the méximum Tikelihood FA may creaté a substantjal
i Tack of,Fft of the true model when it was performéd
; é on the Pearsonian correlations éomputéd from
' 3 : sﬁccessive integers assigned to ordinal categories.
wx‘ | ‘ "‘ His'findings were eépecia]]y true when the observed
| j variables Qere skewed in opposite‘directibns and the

i true'1oad1ngs_were high. He also found that the
ot : .

i - classification of continuous scores into categorical
“““‘H ) ) »
scores attenuated the estimates of. factor loadings.

i 1 The attenuation increased when the variation in
i i

: ; skewness of manifest variables increased and the
1‘; E L0

‘number of scale steps decreased. Given these results,

1 | O1séon suggested that researchers perform a FA on
i 4 _ ‘ _

N _ ; polychoric correlations (FA~-PL) when observed
il ) . I . . -

i'»" variables were obtained from a classification of some

continuous 1ateht‘var1ables. This suggestion was also
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made by some other researchers_(e,g., Carroll, 1961;
Muthén, 1983: Muthén, 1984).

The pb1ychorﬁc correlation coefficienﬁ_is a
generalization of the tetrabhofic correlation
coefficient to the bo]ychoric case (Olsson, 1979b;
Olsson, Draégoﬁt& Dorans, 1982). It estimates the‘
re]ationéhips between th'Tatent continuous var1a51es
both'of which are assumed to be‘norma]1y distributed
aﬁd are measured by ordinal scales. Various methods
of.estimatihg the population polychoric cdrreTatﬁon
can be traced back to Pearsoﬁ (1913). Fér the‘
tetrach;ric case; thé Maximum'Like11h§od (ML)
estimétion ofvtheithrésho1d values andvthe 1étent
correjations is just-determined and simp]er.vFor‘thé

polychoric case, the ML estimation is over-determined

and time—consumihg. Olsson (1978b) presented:two ML
estimation procedures for the polychoric case. Tﬁe
first procedure estimates the threshold vajﬁes énd
the polychoric correlation 51mu1taneousfy._The second
procedure has two steps: aj'to estimate thresho1a
values with the inverse of the normal distribution
function evaluated at the éumu]ative marginal

proportions of each variable, and b) to obtain the



26

maximum Tikelihood (ML) estimate of the polychoric
corre1atibh, given the threshold va1ues, |

Thére are'pros and cons for using polychoric
| 5 . correlations as the input to»factbr analysis.

\ o : Polychoric correlations are not stable. The matrix of
. . i v , :
\

i : ~ } the polychoric correlations may not be positive

Y v | - defﬁnitevso that maximum likelihood FA may not be

k o 5 applicable. The estimated standard deviations of the
i :

d ' polychoric correlations in LISREL VI are 1nf]atediso
it v : » that the chi-square test of the gbodness—of—fit is

" _ ' ' incorrect. On the other hand, Jdreskog and S&érbom’
i\‘i“\ . | ‘ v

(1988)‘have shown 1in a simuTatioh study that: a)

! E polychoricvcorrélations were not sensitive to the

% ; maréinéT distributibns of the obéerved variabies; b)
| ‘% : compared to Spearman’s rank correlations, Kendall’s
‘ ‘f v tauFb correlations, and product—moment corre]ations,
: é polychoric correlations were the best estimators of
| [ the true 1atent,re1ationsh1p$; and c¢) polychoric:

i - , _ -

‘ 2 correlations appear to be the only consistent
Wl ‘ | = .

3 ' ~ | estimators of the true latent relationships. In
another simulation study, Babakus, Ferguson and
Jéreskog (1987) also found that, compared to product-

moment, Spearman’s rho, and Kendall’s tau-b
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correlations, polychoric correlations gave the most
accurate estimateé of the true latent correlations
and factor loadings but produCéd the wOrst goodness—-
of-fit values. Given these resu1ts? the current study’
bredfcted that FA-PL should have a better performance
than FA-PR in terms of the accuracy of estimating‘the

under]yihg traits from multiple indicators.

Item Response Theory

Although the genesis of IRT can be traced backv
to the 1930s, fhe’foundétiona] work of IRT was done
by Frederic M. Lord (1952; 1953a; 1953b). Birnbaum
(1958, 1968, 1969) substituted the more |
mathematica11y traotab1e logistic models for the
norma1—ogfve,mode18 developed by Lord and.stimu1ated
substantial progress in IRT. In addition, Rasch’s |
(5960) independent work in Denmark also ehcoufaged

numerous studies of the one-parameter logistic model.

Basic Theory
Since the latent traits are not treated as
random variables in IRT, Bartholomew (1987)

considered this theory to be non-practical and
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outsidé the main§tream of theoretical development.
However, many psychometricians'Consider it to be
"magic"” (Thissen, 1986). It is magical because, given
that the model fité the data;vthe ba11bration of
items fs independent of the ability distribution of
those ﬁndivid&a]s who happen tb‘be used for |
ca11bratfon, and the measuremeht‘of individuals is
independent of the items that-happén‘to be selected
F&r.measQring'(Rasch, 1960; Wright, 1967). These two
properties are'known_as fspecjfic'objeétivity."

| How db IRT mdde]s achieve the propertiés of
objectfvity? For simﬁiicity; dichotomous items are
assumed in the following i1lustration, Imagine a
unidimenéﬁona1:1étent variable as a straight line on
which 1ndividﬁa1s can be differentiéted with
different trait Teve]s and on which items can be
differehtiated with different séa]e (ftem difficulty)
values. Georg Rasch modeled the‘interaction between

the person and the itemvwith the following function:

Ty = exp(8, = by)/[1 + exp(8, - by)1, (2.10)




i
~

where w,; is the probability of person m succeeding on

item i, 8, is the latent trait Tevel of pekson m, and.

b; is the scale/threshold/difficulty value of item i.

Similarly, the probability of person n succeeding on

“ditem i is modeled as:

Ty = exp(8, = by)/[1 + exp(8, - b)1.  (2.11)

The above two functions compare the latent trait
level, 8, to the scale value, b. When & = b, the
probability of this person supceedihg on this item is

.50. As © > b, the probability of success is greater

than .50 and approachés 1.0. As © < b, the

probability of success is less than .50 and
approaches}b. This is a probabiiity mode1 for item
response processes. | |

Given one item i, if persons m and n both
succeed or both fail on this item, then no
information is available to differentfate m from'n on
the latent trait. However, if one.of.them succeeds
and the other fails, then information is available.
The probabf1ity of‘m succeeding but n faiiing on item

1 (M) is

29
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Mioi = Wi (1 = Wyy) = Qxb(em - by)/K, (2.12)

b i where K = [1 + exp(8y, = b;)I[1 + exp(8, - b;)].
Similarly, the pkobab111ty of m failing but n
i | * : succeeding on item i (Wyy;) is

Mgy = (1 = W)W, = exp(8, - b;)/K. (2.13)
The "magic" occurs when (2.12) and (2.13) are
combined to produce the following conditional

probabi]ity:‘

04 ‘ exD(em - en)

- = . . - (2.14)
Tori + Tqoj -1 + exp(8, - 8,)
The above function ban be rewritten as

where m,,; can be estimated with the number of items
answered cokréct]y’by person m but failed by person

N, while my; can be estimated with the number of
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jtems‘which are failed by person m but answered
correctly by pérson n (Masters, 1988). Note.that in
(2.14) and (2.15) the item pafameter (by)
disappeared. It implies that the estimation of .the
difference between the two person parameters (6,, 6,)
does not depend on the item pafameter'(bi). As a .
consequence, thiébresu1t permits individuals to be

sooredIOn the same scale, even though they do not

_respdnd to the same set of items.

By'thé same'logic, it can be éhown that the
eétfmatioh of the difference between the scalé values
of item i and.j does not depend on person parémeters;
The>cond1tiona1 probability of}perscn n answering
item 1.correct1y but failing item j'(nmo), given that

he/shé answers only one of the items correctly, is

Tt )  exp(b; - b;) (2.18)
Mot + Tnio 1 + exp(b; - b;) A

which can be rewritten as

b; = by = Tn(The1/ Tyl s
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whére Ty Can be estimated with the number of persons
who fail item i but answer item j correctly, while
Tho Can be estimated with the number of‘persons who

answer item i correctly but’fai} item j.

Ordered Ponchotbmoué Items

When the IRT models for dichotomous data’afe
extended to po1ychotomous data, there are at Jleast
three modeils available: a) the pafﬁiaf cfedit'mode1
(Masters, 1882); b)bthe rating scale mbde1 (Andrich, .
1978); and c) the graded respchse mode1 (Samejima,
1569). In the.f011OW1ng_discdssion, thebterﬁ
"threshold" will refer to a general concept of
diffjcQTty in the polychotomous items because it haé
been widely employed under the contexts of FA-P, IRT,
and even latent class ana1ysfé. Thresholds defined by
the paftiaT credit model and the rating sca]e.model
will be called "stebs," and_by thé graded résponse
model, "category boundaries.”

The partial credit model is simp1yfthe Rasch
model applied to polychotomous items. Therefore, all
items are assumed to have the same'discriminatioh

parameter, 1.0. In addition,'the step difficulty
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values in an item are défined locally by the
pfdbability of résponding'in either of two adjacent ‘.
‘categokies. In other words, the step values

ﬁ i : correspond to the intersections of adjacent

\ i : probab111ty_chVes. COnsequentTy, the step values fo?
( ‘ ? an item are not necessarijy ordered,‘a1though the
response categories must be ordered. This model

1mp1ies'thét, given an item, it can be more difficult

moving erm respohse catégory 1 to>categéry 2 than
from‘category 2 to category 3. The partial credit

z model is not appropriate for the current‘simu1ation'
| study because the items will be deSighed to have

different discrimination parameters.

The . rating scaie model assumes that the
funétioniﬁg of»the kespdnée Categofies (e.g.,
never/sometimes/often/a7ways)_1s the same across
items, although éach item may haYé a differen£ scale
value (location along the trait continuum). Given'é
set of polychotomous jtems with respdnse categorﬁes
0, t, ..., m, this model 1ncorporates.the'f011ow1ng

constraint into the partial credit model:

by = by + Sk’ (k. =1, -;-, m), . (2.18)
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where by, is the step value for item i at scale step
k, b; is the scale value for item i and 1is usually |
defined as the mean of the step values (bjyk:s), and
5, is the distance between each step value and the
scale value. It can be‘seen that, in this mode1,

g % scale values (b;:s) can vary across items while Sk’s
arevkept constant across items. When Cbmpared to the
ﬁart1a1 credit and the graded Eesponse model, the
rating scale model has the advantage of simp]icity
becauée it ihvojves fewer parameters. This model is

suitable when the interaction between response

categories.andbitemsvdoes hot occur. However, it is
not suitéb1e for the data of the present study
because; a) ﬁhe present simulation allows the
distances between step values and the scé1e value to
vary across items; and b) the present simu}ation |
allows items to have different discrimfnation
parameters.

Given the_simu]ated situation in the present_
study, the mostvapprépriate model from IRT may bé_the
Qraded response model (GRM) (Samejima, 1969).

Samejima developed a two-stage procedure to derive
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- the probability of an individual selecting a

| » ‘ particular response category in an polychotomous

g ~item. In the first stage, an'item with response
category 0, 1, ..., m was viewed as a combination of

m diehotomoue items and the two-parameter mode1 was

applied to model the cumu1at1ve probability of an
individual responding to a particular or higher
category. This 1dea_1s expressed by the following

equation:

expla;(8, = by)]

nij ’

K 1 + expla;(8, - by)]

M3
A
H
=
1
3

(2.19)

where Thi is the brobabiTity of person n responding

to item i with response category»j or higher, 'a; is
the discrimination parameter for item i, by, fs»the
category boundary between'response category k and k—1
of item i, and 8, is the latent trait 1eve1'of 
individual n. Nete that the probabi]ity of respondiﬁg
to categery 0 or higher'eovers the Comp1ete

probability space and was set to be onhe, that is,
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M3
=)
I

nij ~

(2.20)

In the second stage of Samejima’s procedure,
the probability of an individual responding to a

particular résponse-éategoryvj is given by:

m
nig ~ = T
k J=k+1

nigr K =0, oo, m. (2.21)
The above equation is the general form for drawing
the operating characteristic curves for a graded
response item. From (2.18), (2.19) and (2.20), it can

be derived that the probability of responding to the

'firSt and the last category is given by:

(2.22)

_ o expla; (8, = biy)l ,
and T, = ' - (2.23)
1 + expla;(8, = biy)]

respectively. Equation (2.23) is equivalent to

equation (2.19) when k=m.




b
!
E
;

37

The GRM allows avparaméter for each item to
have a différenf discrimination power. In,additﬁon,
it allows the distance between respdnse scale
thkéshé]ds to vary across items. Certainly, the cost
of this F1exib11ity is thevincréased number of item
parameteré to be estimated and, therefdré, the
accompanying estihatibh probiems and Cdmputef time o
needed. This model é180 differs from the partial
credit model 1in its definitioh of the threshold
values. This model définés threshold values g]obél1y
in terms of cﬁmu1at1vé-probabiiities of eVery_
response category within an item. For examp]e; given
an item with 4 response'categoriés, the threshold
values are defined in the way shown in Table II-2. A

consequence of this definition of categdry boundaries

.is that the threshold values are, by definition,

ordered. This consequence is, however, consistent
with the assumption of the simq]ation process‘used in
the present study.

The applicability of the graded response modéi
to Likert-type scales has been dehonstrated by
several studies (e.g., Dodd, 1984; Dodd, Koch &

DeAyala, 1988; Koch, 1983a; Thissen & Steinberg,
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1988). This"mode1 is much closer to the FA approaches
thah is either thevpértﬁa1 credit or thé ratfng sca?é
model. The relationships between the FA and IRT
models will be exb]ored further in the Jast section

of this chapter.

Table II-2

Threshold Values Defined in the Graded Respohse Model

Threshold Value : Location

tiy Tnio = Thig T Wiz + Ty

Liz  Taio T Mniy T TMaiz Ty

tis Tnio + Mpiy ¥ Tpsa = TMpys
1tidi 1 calin

According to Yéung.(1987), the first'decade of
MDS was initiated by‘Torgefson’s'(1952, 1958) metrié
MDS, following which Shepard’s (19862) and Kruskal’s
(1964) nonmetric MDS methods opened. the second
decade. The‘béginning of the third decade was due to
the development of fndiyidua]_differences of>Weighted'

MDS methods (Carro11‘&.Chang;'1970). Currently,




