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Summary. In oncology, increasing number of active control trials have been

conducted to compare a test therapy to a standard therapy. These new ther-

apies are developed for less invasive or easy administration, or for reduced

toxicity and thus to improve the quality of life at the minimal expense of

survival. Therefore, evaluation of equivalence or non-inferiority based on

censored endpoints such as overall survivals between test and active control

becomes an important and practical issue. Under the assumption of pro-

portional hazards, Wellek (1993) proposed a log-rank test for assessment of

equivalence of two survival functions. In this paper, an explicit form of the

asymptotic variance of the maximum likelihood estimator for the treatment

effect is derived. It follows that the asymptotic power and sample size for-

mulae can also be obtained. Alternatively, a two one-sided test (TOST) is

proposed to evaluate the equivalence of two survival functions. The criti-

cal values of the proposed TOST depend upon only the asymptotic variance
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and the standard normal percentiles, which greatly simplify the sample size

determination. In addition, a procedure for testing non-inferiority based on

censored endpoint is derived and the corresponding sample size formula is

also provided. It can be shown that when the sample size is large, the same

sample size formulae can be derived for both the log-rank test and TOST

when two survival functions are assumed to be equal. The sample size for-

mulas for both procedures take into account the accrual pattern and the

duration of the study. A simulation is conducted to empirically investigate

the performance on size, power, and sample size of the proposed procedures

and the log-rank test. Numerical examples are provided to illustrate the

proposed procedures.

Key words: Equivalence, Non-inferiority, Survival Function, Two one-

sided test procedure, Power, Sample size

1. Introduction

There are increasing number of comparative clinical trials where new treat-

ments are compared to an active control. Many active control trials are de-

signed due to ethical concerns, especially for life-threatening diseases. How-

ever, for many others, the new treatments are developed for less invasive or

easier administration, or for reduced toxicity and thus to improve the quality

of life at minimal cost of efficacy. Therefore, the assessment of equivalence or

non-inferiority in efficacy is an important and practical issue. For example,

investigators in gynecological oncology were interested in the evaluation of

the efficacy and toxicity of adjuvant therapy after radical hysterectomy and

pelvic lymphadenectomy in stage IB or IIA cervical carcinoma patients with

pelvic lymph node metastases. The current standard adjuvant therapy is
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the concomitant chemo-radiotherapy (CT+RT) (cisplatin plus radiotherapy).

However, postoperative radiotherapy is associated with significant morbid-

ity. Some retrospective studies indicated that the adjuvant chemotherapy

alone (CT) (cisplatin, onvovin and bleomycin) seemed to have comparable

recurrenc-free survival rate and significantly less morbidity. The investigators

would like to confirm the findings with a randomized trial and prove that the

recurrence-free survival for patients treated with CT and for patients treated

with CT+RT are equivalent.

For another example, axillary lymph nodes dissection has been a standard

procedure in patients with breast carcinoma for staging and the prevention

of metastases. However, the disease for the majority of early stage patients

have not metastasized to the lymph nodes and this procedure can cause com-

plications in the axillary area and the upper arm. To avoid the unnecessary

complications, investigators have developed techniques in the identification

of the sentinel nodes. It is then of interest to see if the disease-free survival

of patients with sentinel nodes dissection alone is as good as that of patients

with axillary nodes dissection.

For patients with stage IV nasopharyngeal carcinoma (NPC), concurrent

chemoradiotherapy (cisplatin/5-FU) plus adjuvant (cisplatin/5-FU) has been

proved to prolong survival. However, the adjuvant therapy may increase the

chances of long term toxicity. At least 20% patients suffered severe toxicity,

mostly vomiting or mucositis, while receiving adjuvant chemotherapy, and

more than 11% patients surffered late complication, mostly hearing impair-

ment or neck fibrosis (Cheng et al., 2000). Certain herbal medicine were

then proposed to replace the adjuvant therapy in the hope to maintain the

3



survival effect but reduce the risk of side effects. It is thus relevant to have

a comparative trial to test the hypothesis that five-year survival rate for

this herbal medicine is equivalent to that afforded by cisplatin/5-FU in this

patient population.

Several works have been published to address the issues in design and

analysis of equivalence or non-inferiority trials for binary endpoints, such

as Hsueh, Liu and Chen (2001), Kang and Chen (2000), Chan (1998), and

Farrington and Manning (1990), among others. Much less work has been

developed when the primary endpoint is the time-to-failure data. How-

ever, many equivalence/non-inferiority trials are designed for treatments to

life-treatening disease, and for which time-to-failure is usually the primary

endpoint, as described in the previous three examples. Literature for the

equivalence in time-to-failure data is scarce. Under proportional hazards

assumptions, Wellek (1993) proposed a log-rank test based on the asymp-

totic normality of the maximum partial likelihood estimator and an approx-

imation form of the asymptotic variance. The test also used a noncentral

chi-square percentile with a data-dependent noncentrality parameter as the

critical value.

In this paper, we follow the development of Wellek and further derive an

explicit form of the asymptotic variance. With this form, sample size deter-

mination is possible without simulation studies. In addition, we proposed the

two one-sided test (TOST) as an alternative of the log-rank test. The critical

values of TOST only depend on the asymptotic variance and the standard

normal percentiles, which greatly simplifies sample size determination. We

also allocate much effort in pointing out issues in the application of the re-
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sults to actual trial designs. In Section 2, some basic notations and Wellek’s

test are introduced. The asymptotic variance is derived explicitly. To reduce

the complexity in the calculation of the critical value, an alternative two

one-sided test(TOST) is proposed in Section 3. Corresponding sample size

formulas are given in Section 4. Some simulation and numerical results are

presented in Section 5 and an example is illustrated in Section 6. Discussion

and final remarks are provided in Section 7.

2. The asymptotic variance

We consider that two unrelated samples (T1, · · · , Tn1), and (Tn1+1, · · · , Tn1+n2)

of possibly right censored survival times are given such that Ti ∼ S1(·) for

1 ≤ i ≤ n1 and Ti ∼ S2(·) for n1 + 1 ≤ i ≤ n1 + n2. We assume that S1(·)
and S2(·) belong to the same proportional hazards model and with no loss

of generality, S1(·) is the survivor function for the control group. That is,

S2(t) = {S1(t)}eθ

for all t > 0 and some θ.

Hence, for i = 1, · · · , n1 + n2, Ti has hazard function

λ(t) = λ1(t)e
ziθ

where

λ1(t) =
d

dt
{− log S1(t)}, zi =

{
0, for 1 ≤ i ≤ n1;
1, for n1 + 1 ≤ i ≤ n1 + n2.

We considered the hypotheses of equivalence by restricting the uniform ab-

solute difference between S1(·) and S2(·) as the following

H0 : sup
t>0

|S1(t)− S2(t)| ≥ δ versus H1 : sup
t>0

|S1(t)− S2(t)| < δ, (1)
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for some δ > 0. Wellek (1993) showed that, by the continuity of S1(·) and

reparametrization, the hypotheses (1) are equivalent to

Ha
0 : |θ| ≥ θ∗ versus Ha

1 : |θ| < θ∗ (2)

where θ∗ satisfies

eθ∗/(1−eθ∗ ) − eθ∗eθ∗/(1−eθ∗ ) = δ.

The partial log-likelihood for θ can be shown as

log L(θ) = d+2θ −
k∑

j=1

dj+ log{rj1 + rj2e
θ},

where for v = 1, 2; j = 1, · · · , k,

rjv = number of items at risk in the vth sample at the jth smallest

failure time t(j),

d+v = total number of failures in the vth sample,

dj+ = total number of failures at the jth smallest failure time.

Hence, the maximum partial likelihood estimator θ̂ satisifies

k∑

j=1

dj+
rj2e

θ̂

(rj1 + rj2eθ̂)
= d+2,

and the observed information at θ̂ is

I(θ̂) =
k∑

j=1

dj+rj1rj2e
θ̂

(rj1 + rj2eθ̂)2
,

as N = n1 + n2 →∞
I(θ̂)/N

p→ 1/v2(θ),

where the reciprocal 1/v2(θ) is the limiting value of the observed information

and is a function of true value θ.
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Defining C̃α(ψ) as

C̃α(ψ) = { αth quantile of a χ2 distribution with df=1 and noncentrality

parameter ψ2 }1/2

for arbitrary ψ > 0, Wellek (1993) proposed an aymptotic UMP level α test

with rejection region

√
N |θ̂|/v(θ̂) < C̃α

{√
Nθ∗/v(θ̂)

}
. (3)

Without an explicit form of v(θ), Wellek suggested estimating
√

N/v(θ̂) by

the observed information
√

I(θ̂). This test procedure is later referred as the

log-rank test for equivalence in this paper.

In fact, an explicit form of the limiting value v2(θ) can be derived. Let T

be the event time, C be the censoring time and ∆ be the censoring indicator,

i.e. ∆ = 1 if T ≤ C and ∆ = 0 if T > C. We define fi as the p.d.f.

corresponding to the survival function Si, and Sci(t) = Pr(C > t|Z = i −
1) as the censoring function for group i, i = 1, 2. In addition, let ρ =

limN→∞ n2/N , and 0 < ρ < 1. Therefore, we have the following results.

Theorem 1. If the trial has an infinity duration, then

1/v2(θ) =
∫ ∞

0
p(s)q(s)u(s)ds.

where

p(s) = Pr(Z = 1 | T = s, ∆ = 1) =
ρSc2(s)f2(s)

ρSc2(s)f2(s) + (1− ρ)Sc1f1(s)

≡ 1− q(s),

u(s) = Pr(T = s, ∆ = 1) = ρSc2(s)f2(s) + (1− ρ)Sc1f1(s).
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The proof of Theorem 1 is given in the Appendix. With this explicit form

of v2(θ), the asymptotic behavior of the log-rank test can be evaluated an-

alytically, and the sample size determination is possible without simulation,

as will be shown in Section 4. However, in practice, a trial is always de-

signed within a finite period of accrual time plus an additional finite period

of follow-up time. Therefore, the following result is much more relevant and

useful.

Corollary 1. If the accural period of the trial is T0, and an additional

follow-up period of τ is considered, assuming an uniform accrual rate, then

1/v2(θ) =
∫ T0

0

∫ T0+τ−t

0
p(s)q(s)u(s)ds

1

T0

dt.

3. A two one-sided test (TOST)

Wellek’s test procedure is complicated to apply because of the necessity to

evaluate the noncentral chi-square percentile in (3) . It is easy to see that

the hypotheses in (2) can be partitioned into two one-sided hypotheses,

Ha
U0 : θ ≤ −θ∗ versus Ha

U1 : θ > −θ∗

and

Ha
L0 : θ ≥ θ∗ versus Ha

L1 : θ < θ∗.

By the intersection-union principle, Ha
0 is rejected if both Ha

U0, H
a
L0 are re-

jected. Thus the rejection region of the two one-sided test procedure (TOST)

at level α can be easily shown as

ZL = (θ̂ − θ∗)
√

I(θ̂) < −zα, and ZU = (θ̂ + θ∗)
√

I(θ̂) > zα. (4)
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Denotes Φ(·) as the standard normal distribution function. The following

theorem gives the asymptotic power functions of the log-rank test (3) and

the two one-sided test (4), respectively.

Theorem 2. At θ = θ0, |θ0| < θ∗, the log-rank test (3) has asymptotic power

βLR(θ0) = Φ
(
C̃α

{√
Nθ∗/v(θ0)

}
−
√

Nθ0/v(θ0)
)
−

Φ
(
−C̃α

{√
Nθ∗/v(θ0)

}
−
√

Nθ0/v(θ0)
)

;

and the two one-sided test (4) has asymptotic power

βTOST (θ0) = Φ
(
−zα +

√
Nθ∗/v(θ0)−

√
Nθ0/v(θ0)

)
−

Φ
(
zα −

√
Nθ∗/v(θ0)−

√
Nθ0/v(θ0)

)
.

Furthermore, the TOST test for the hypotheses of equality can be easily

modified to a test for the hypotheses of non-inferiority:

H0L : inf
t>0
{S2(t)− S1(t)} ≤ −δ versus H1L : inf

t>0
{S2(t)− S1(t)} > −δ,

or equivalently,

Ha
0L : θ ≥ θ∗ versus Ha

1L : θ < θ∗.

The corresponding one-sided test procedure based on ZL in (4) is used.

Corollary 2. At θ = θ0, θ0 < θ∗, the non-inferiority test procedure has

asymptotic power

βNI(θ
0) = Φ

(
−zα +

√
Nθ∗/v(θ0)−

√
Nθ0/v(θ0)

)
.
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4. Sample size determination

At the design stage of clinical trials, determination of the sample size is always

a key element. It plays an important role in assessing the feasibility of a trial.

For clinical trials to test the equivalence between the survival functions of two

study arms, the sample size is often required to acheieve a pre-determined

level of power, β∗, at S1(·) = S2(·), or θ0 = 0 in proportional hazards models.

With the explicit form of v(θ), the sample size formulae of the log-rank test,

TOST and the non-inferiority test can be derived analytically.

Corollary 3. For the asymptotic power greater than β∗ at θ0 = 0, the

sample size required for the log-rank test (3) is the smallest integer N such

that

C̃α

{√
Nθ∗/v(0)

}
≥ z(1−β∗)/2. (5)

The TOST (4) should have sample size no less than

{
zα + z(1−β∗)/2

}2
v2(0)/θ∗2,

while the sample size required for the non-inferiority test ZL is at least

{
zα + z(1−β∗)

}2
v2(0)/θ∗2.

Notice that, at θ0 = 0, p(s), q(s) and u(s) in v2(0) are simplified as

p(s) =
ρSC2(s)

ρSC2(s) + (1− ρ)SC1(s)
= 1− q(s),

and

u(s) = f1(s){ρSC2(s) + (1− ρ)SC1(s)},
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respectively. We can see that the sample size evaluation for TOST only re-

quires one calculation involving standard normal percentiles, while it requires

repeated calculations of noncentral chi-square percentiles for the log-rank

test.

Even though the preceding test procedures can be applied to any propor-

tional hazards models without specific forms of the survivor functions, the

determination of the sample size depends on the specified f1(·), SC1(·) and

SC2(·) in v2(0).

5. Simulation results

Several simulation studies were performed in order to study the small sample

performance of the three test procedures. The first simulation study used

the same parameters as the one reported in Wellek for comparison. The sam-

ples of the control arm were generated under a lognormal survivor function,

S1(t) = Φ(2 − ln(t)) and an independent exponential censoring distribution

function, SC1(t) = 1− exp{−t/50}. The censoring rate for this arm is about

19%. The samples of the treatment arm were generated at both boundaries

of the hypothesis with δ = 0.15 and at an identical alternative S2 = S1, all

with SC2 = SC1. The empirical type I error rates and power were thus calcu-

lated based on 10,000 replications. The computations were carried out using

FORTRAN 90 on an x86 Family 6 Model 8 Stepping 10 PC. The results of

different sample sizes are presented in Table 1-1. The corresponding approx-

imation of the asymptotic size and power were also evaluated at θ0 = ±θ∗

and θ0 = 0, respectively, and presented in the same Table. Table 1-2 shows

the simulation results under the same distributional assumptions as those

for Table 1-1 except that the maximum allowable difference δ is reduced to
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0.10. For the other 2 simulation studies, the survivor function for the control

group was specified in an exponential model: S1(t) = exp(−t/λ1), where

λ1 is selected such that S1(5) = 0.55, and the censoring distribution was

SC1(t) = SC2 = exp(−t/4λ1). Note that the censoring distribution was se-

lected such that the censoring rate is 20% for infinite duration. The results

are shown in Table 2-1 when δ = 0.15 and Table 2-2 when δ = 0.10.

In general, TOST is more conservative when compared to the log-rank

test. For very small sample sizes, TOST is extremely conservative, but the

differences between TOST and the log-rank test decreases as the sample size

increases. Under both distribution models, when δ = 0.15, the type I error

rate and power for the log-rank test and TOST are virtually identical after the

total sample size reaches 250, where the type I error rate is approximately

controlled. In fact, it can be shown that the sample sizes for both tests

approximate to the same value for large N . Let χ2
ψ be a chi-square random

variable with noncentrality parameter ψ2, then

α = P (χ2
ψ ≤ C̃2

α(ψ)) = Φ(C̃α(ψ)− ψ)− Φ(−C̃α(ψ)− ψ).

We see that as ψ goes to infinity,

Φ(C̃α(ψ)− ψ) ≈ α, and C̃α(ψ) ≈ ψ − zα.

That is, the asymptotic power of the log-rank test βLR(θ0) can be approxi-

mated by the asymptotic power of TOST βTOST (θ0) provided N is sufficiently

large. If a trial to test the equivalence of two survivor functions is designed

with sufficient power, say the most commonly required 80%, the sufficient

total sample size will be greater than 250. In other words, with reasonable
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sample sizes, TOST has the same performance as the log-rank test and has

the advantage of easily evaluable rejection region and power.

We can see that the maximum allowable difference δ is very influential on

sample size determination. Under both survivor models, when δ reduces to

0.10, the performance of the log-rank test and TOST becomes identical as

the total sample size reaches 500. For a test with 80% power, the required

sample size is close to 600.

6. Numerical examples

In the example of stage IV NPC, the 5-year survival rate has been reported

to be 55% when treated with CCRT plus adjuvant chemotherapy (Cheng et

al, 2000). Medical investigators are interested to see if the survivor function

remain unchanged with the substitution of the adjuvant chemotherapy by a

herbal medicine after CCRT. A randomized clinical trial is then designed to

test the hypothesis of equivalence in the survivor functions of the two arms.

Table 3 shows the sample sizes for the log-rank test and TOST under a log-

normal model or an exponential model. The parameter for either model was

determined so that S1(5) = 0.55. In addition, exponential models are used

for the censoring distributions, for which the parameters were determined

so that the censoring rate was 20% under either survival model. That is,

for the log-normal model, S1(t) = Φ(1.735 − ln(t)) and SC1(t) = SC2(t) =

1− exp{−t/35.7}; and for the exponential model,S1(t) = 1− exp{−t/8.36}
and SC1(t) = SC2(t) = 1− exp{−t/33.5}. Equal allocation for the two arms

was assumed, and δ was set at 0.15. For illustration, the sample sizes for the

non-inferiority test are also shown in Table 3. We note that under the case
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of SC1(t) = SC2(t), and at θ = 0, ∆ and T are independent with Z. For ∀s,

p(s) = P (Z = 1|T, ∆) = P (Z = 1) = ρ = 1− q(s),

then

1/v2(0) = ρ(1− ρ)
∫ ∞

0
P (T = s, ∆ = 1)ds = ρ(1− ρ)P (∆ = 1)

is proportional to the probability of uncensored observations regardless of

the specifications of S1 and SC1. Therefore, the sample size is inversely pro-

portional to the uncensoring proportion. In our example, since the censoring

rate and the allocation proportion are the same for both models, they have

the identical sample sizes for trials with infinite duration.

In addition to the sample size calculations for trials with infinite duration,

we also calculated the sample sizes for the more realistic cases with 5 years of

uniform accrual and 1 or 2 additional years of follow-up, using the expression

for 1/v2(θ) in Corollary 1. The results indicate that when the accrual dura-

tion is limited to 5 years, the sample size is approximately doubled or tripled

for additional 2 or 1 year of follow-up. With these specifications, sample sizes

under the log-normal model are larger than those under exponential model

by about 10% for the cases with 1 year follow-up and 5% for the cases with 2

years of follow-up. Similar to the unlimited case, with independence between

∆, T and Z at θ = 0, the values of 1/v2(θ) for the limited accrual case is

proportional to

EUET{E(∆|T )|T < T0 + τ − U},

and hence the sample size for the limited accrual case is inversely proportional

to the probability of uncensored observation up to time T0 + τ . Thus the
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difference in sample size between the unlimited and the limited accrual cases

is believed to increase as the uncensoring proportion within the limited study

period decreases. We like to emphasize the fact that the sample sizes for the

log-rank test and for TOST are identical for all cases in Table 3.

7. Discussion

We have proposed a two one-sided test for testing the equivalence of two

survivor curves. With moderate or large sample sizes, the type I error rates

evaluated at the boundaries and the power evaluated at S1 = S2 for TOST are

virtually identical to those for the log-rank test proposed by Wellek. These

tests are developed under the assumption of proportional hazards. However,

as in most of the designs for comparative clinical trials, distributional models

need to be specified for sample size determination. We like to point out that,

when we reject the null hypothesis in a log-rank test or TOST, the maximal

difference between S1(t) and S2(t) is equal to or smaller than an acceptable

boundary δ. It is easy to show that for all proportional hazards models, this

maximum occurs at time t∗ where S1(t
∗) = exp [θ∗/{1− exp(θ∗)}] and θ∗ is

the corresponding equivalence limit. Therefore, the sample size required to

perform these tests with certain power could be very different from the the

sample size required to test the equivalence of survival at a fixed time.

For example, the 5-year disease-free survival is about S1(5) = 95% for

patients with early stage breast carcinoma after surgery with axillary lymph

nodes dissection. A comparative trial is designed to test the non-inferiority

in disease-free survival for patients with sentinel nodes dissection (STND) in-

stead of axillary nodes dissection (AXND). The investigators consider STND

group as non-inferior if the 5-year disease-free survival S2(5) is at least 90%,
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that is , δ = 5%, then under exponential models and S2(t) = S1(t)
exp(θ),

θ = 0.7198 at the boundary S2(5) = 90%, which leads to a very small sample

size, 24 per arm, for equal allocation and infinite accrual without censoring.

We note here that if we relax the model assumption and calculate the sample

size to test the non-inferiority between two proportions using method por-

posed by Kang and Chen (2000), then we need 251 patients per arm and

each patient has to be followed for 5 years.

However, if the investigators consider STND to be non-inferior to AXND

only if the difference between survival is at most 5% at any time, then it is the

same as requiring S2(t
∗) ≥ S1(t

∗)−5% at time t∗, where t∗ is solved to be 90.5

years! This leads to θ∗ = 0.1360 and a sample size of 669 per arm. Neither of

the two results seem appealing. The former case concentrates on one single

time point and thus highly depends on the model assumptions. The latter

case considers the time period that goes beyond any practically meaningful

length. One reasonable alternative is to let investigators determine the lengh

of interest, say 15 years, and then test the non-inferiority within this time

period. Since |S1(t) − S2(t)| is an unimodal function of t and 15 < t∗, it is

easy to see that the maximum for this period [0, 15] occurs at t0 = 15. This

leads to θ0 = 0.3297 and a sample size of 114 per arm.

In general, the sample sizes sufficient to prove equivalence or non-inferiority

are larger than the sample sizes sufficient to prove difference. In designing

trials for equivalence or non-inferiority based on censored endpoints, there

are several non-trivial issues as pointed out in this paper. The investiga-

tors should be aware of the implications of the assumptions in sample size

caculation in order to develop appropriate and feasible designs.
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Appendix A

Proof of Theorem 1

Let U = min(T, C) and λi is the hazard of the ith sample, i = 1, 2. Since

1

N
I(θ) =

1

N

k∑

j=1

dj+rj1rj2e
θ

(rj1 + rj2eθ)2
=

k∑

j=1

(dj+/N)(rj1/N)(rj2/N)eθ

{(rj1/N) + (rj2/N)eθ}2
.

in which, for i = 1, 2, as n →∞,

dj+

N

p→ P (Z = i, U ≥ t(j)) ≡ u(t(j)),
rji

N

p→ P (U ≥ t(j), Z = i− 1),

where λi(t) = P (T = t|Z = i − 1)/P (T ≥ t|Z = i − 1). Thus with eθ =

λ2(t)/λ1(t),∀t,

(rj1/N)(rj2/N)eθ

{(rj1/N) + (rj2/N)eθ}2
=

{
(rj1/N)

(rj1/N) + (rj2/N)eθ

} {
(rj2/N)eθ

(rj1/N) + (rj2/N)eθ

}

p≈
{

P (U ≥ t(j), Z = 0)λ1

P (U ≥ t(j), Z = 0)λ1 + P (U ≥ t(j), Z = 1)λ2

}
·

{
P (U ≥ t(j), Z = 1)λ2

P (U ≥ t(j), Z = 0)λ1 + P (U ≥ t(j), Z = 1)λ2

}

For P (U ≥ t(j), Z = i) = P (C ≥ t(j)|Z = i)P (T ≥ t(j)|Z = i),

P (U ≥ t(j), Z = i− 1)λi

= P (C > t(j)|Z = i− 1)P (T = t(j)|Z = i− 1)P (Z = i− 1)

= P (∆ = 1, T = t(j), Z = i− 1),

and

(dj+/N)(rj1/N)(rj2/N)eθ

{(rj1/N) + (rj2/N)eθ}2

p≈ P (Z = 1|∆ = 1, T = t(j))P (Z = 0|∆ = 1, T = t(j))

≡ p(t(j))q(t(j)).
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Then the asymptotic properties can be obtained following a standard ap-

proach for failure time data by using the Martingale Theory and found that

1

N
I(θ)

p→
∫ ∞

0
p(s)q(s)u(s)ds ≡ 1

v2(θ)
.

Appendix B

Proof of Theorem 2

At θ = θ0, |θ0| < θ∗, the log-rank test (3) has asymptotic power

βLR(θ0) = P (
√

N |θ̂|/v(θ̂) < C̃α

{√
Nθ∗/v(θ̂)

}
)

≈ P (
√

N |θ̂|/v(θ0) < C̃α

{√
Nθ∗/v(θ0)

}
)

= P (−C̃α

{√
Nθ∗/v(θ0)

}
<
√

Nθ̂/v(θ0) < C̃α

{√
Nθ∗/v(θ0)

}
)

≈ Φ
(
C̃α

{√
Nθ∗/v(θ0)

)
−
√

Nθ0/v(θ0)
}
−

Φ
(
−C̃α

{√
Nθ∗/v(θ0)

}
−
√

Nθ0/v(θ0)
)
,

as n goes to infinity. The asymptotic power of TOST can be easily derived

in similar way.
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Table 1-1. With δ = .15, empirical power β̂ / asymptotic power β, of

Wellek’s test, TOST and the noninferiority test in a log-normal case :

S1(t) = Φ(2− ln(t)).
Size Power

θ0 = .4106 θ0 = −.4106 θ0 = 0

N n2 n1 β̂ β β̂ β β̂ β
50 25 25 βLR .0509 .0501 .0481 .0501 .1146 .1168

βTOST .0000 .0000 .0000 .0000 .0000 .0000
βNI .0528 .0500 - - .3566 .3678

75 50 25 βLR .0529 .0501 .0457 .0500 .1465 .1542
βTOST .0000 .0000 .0000 .0000 .0000 .0000
βNI .0576 .0500 - - .4459 .4461

100 50 50 βLR .0486 .0500 .0505 .0500 .2445 .2597
βTOST .0303 .0305 .0230 .0225 .1344 .1614
βNI .0505 .0500 - - .5660 .5807

125 75 50 βLR .0511 .0500 .0476 .0500 .3241 .3420
βTOST .0447 .0419 .0355 .0387 .2690 .2961
βNI .0526 .0500 - - .6395 .6481

150 75 75 βLR .0509 .0500 .0506 .0500 .4558 .4758
βTOST .0489 .0481 .0472 .0467 .4414 .4641
βNI .0505 .0500 - - .7204 .7321

175 100 75 βLR .0549 .0500 .0507 .0500 .5453 .5658
βTOST .0543 .0493 .0498 .0488 .5417 .5619
βNI .0553 .0500 - - .7649 .7809

200 100 100 βLR .0485 .0500 .0494 .0500 .6485 .6684
βTOST .0484 .0498 .0489 .0497 .6475 .6676
βNI .0488 .0500 - - .8217 .8338

250 125 125 βLR .0523 .0500 .0516 .0500 .7847 .7988
βTOST .0523 .0500 .0516 .0500 .7847 .7987
βNI .0523 .0500 - - .8940 .8994

300 150 150 βLR .0516 .0500 .0556 .0500 .8707 .8805
βTOST .0516 .0500 .0556 .0500 .8707 .8805
βNI .0516 .0500 - - .9325 .9402
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Table 1-2. With δ = .1, empirical power β̂ / asymptotic power β, of

Wellek’s test, TOST and the noninferiority test in a log-normal case :

S1(t) = Φ(2− ln(t)).
Size Power

θ0 = .2727 θ0 = −.2727 θ0 = 0

N n2 n1 β̂ β β̂ β β̂ β
100 50 50 βLR .0491 .0500 .0466 .0501 .0993 .1058

βTOST .0000 .0000 .0000 .0000 .0000 .0000
βNI .0503 .0500 - - .3323 .3382

200 100 100 βLR .0473 .0500 .0522 .0500 .2070 .2173
βTOST .0156 .0177 .0104 .0103 .0591 .0726
βNI .0450 .0500 - - .5291 .5363

300 150 150 βLR .0503 .0500 .0516 .0500 .3839 .3967
βTOST .0469 .0458 .0454 .0441 .3543 .3697
βNI .0530 .0500 - - .6764 .6848

400 200 200 βLR .0491 .0500 .0491 .0500 .5800 .5852
βTOST .0483 .0495 .0484 .0492 .5763 .5822
βNI .0490 .0500 - - .7918 .7911

500 250 250 βLR .0497 .0500 .0518 .0500 .7268 .7289
βTOST .0496 .0499 .0518 .0499 .7266 .7287
βNI .0496 .0500 - - .8629 .8643

600 300 300 βLR .0490 .0500 .0506 .0500 .8254 .8268
βTOST .0490 .0500 .0506 .0500 .8254 .8268
βNI .0490 .0500 - - .9111 .9134

700 350 350 βLR .0502 .0500 .0511 .0500 .8839 .8910
βTOST .0502 .0500 .0511 .0500 .8839 .8910
βNI .0502 .0500 - - .9425 .9455
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Table 2-1 With δ = .15, empirical power β̂ / asymptotic power β, of

Wellek’s test, TOST and the noninferiority test in an exponential model:

S1(t) = exp(−t/λ1), where λ1 is selected such that S1(5) = 0.55, and the

censoring distribution SC1(t) = SC2 = exp(−t/λc), where λc is selected such

that the censoring rate is 20%.
Size Power

θ0 = .4106 θ0 = −.4106 θ0 = 0

N n2 n1 β̂ β β̂ β β̂ β
50 25 25 βLR .0461 .0501 .0520 .0501 .1063 .1155

βTOST .0000 .0000 .0000 .0000 .0000 .0000
βNI .0526 .0500 - - .3485 .3645

100 50 50 βLR .0529 .0500 .0495 .0500 .2401 .2548
βTOST .0315 .0293 .0200 .0210 .1317 .1518
βNI .0515 .0500 - - .5735 .5759

150 75 75 βLR .0482 .0500 .0525 .0500 .4504 .4671
βTOST .0460 .0479 .0494 .0464 .4347 .4542
βNI .0479 .0500 - - .7140 .7762

200 100 100 βLR .0539 .0500 .0489 .0500 .6399 .6599
βTOST .0529 .0498 .0484 .0496 .6378 .6589
βNI .0539 .0500 - - .8200 .8295

250 125 125 βLR .0469 .0500 .0523 .0500 .7722 .7919
βTOST .0469 .0500 .0523 .0500 .7722 .7918
βNI .0469 .0500 - - .8871 .8959

300 150 150 βLR .0480 .0500 .0510 .0500 .8622 .8754
βTOST .0480 .0500 .0509 .0500 .8622 .8754
βNI .0480 .0500 - - .9331 .9377

350 175 175 βLR .0492 .0500 .0517 .0500 .9219 .9266
βTOST .0492 .0500 .0517 .0500 .9219 .9266
βNI .0492 .0500 - - .9616 .9633
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Table 2-2 With δ = .1, empirical power β̂ / asymptotic power β of Wellek’s

test, TOST and the noninferiority test in a exponential model:

S1(t) = exp(−t/λ1), where λ1 is selected such that S1(5) = 0.55, and the

censoring distribution SC1(t) = SC2 = exp(−t/λc), where λc is selected such

that the censoring rate is 20%.
Size Power

θ0 = .2727 θ0 = −.2727 θ0 = 0

N n2 n1 β̂ β β̂ β β̂ β
100 50 50 βLR .0482 .0501 .0479 .0501 .1019 .1049

βTOST .0000 .0000 .0000 .0000 .0000 .0000
βNI .0506 .0500 - - .3251 .3353

200 100 100 βLR .0526 .0500 .0456 .0500 .2094 .2136
βTOST .0182 .0160 .0071 .0084 .0510 .0635
βNI .0539 .0500 - - .5315 .5317

300 150 150 βLR .0501 .0500 .0473 .0500 .3719 .3888
βTOST .0447 .0454 .0417 .0436 .3408 .3597
βNI .0505 .0500 - - .6757 .6798

400 200 200 βLR .0500 .0500 .0470 .0500 .5609 .5762
βTOST .0496 .0494 .0462 .0491 .5574 .5728
βNI .0498 .0500 - - .7803 .7864

500 250 250 βLR .0512 .0500 .0482 .0500 .7223 .7210
βTOST .0512 .0499 .0481 .0499 .7214 .7207
βNI .0512 .0500 - - .8564 .8603

600 300 300 βLR .0510 .0500 .0516 .0500 .8121 .8205
βTOST .0510 .0500 .0516 .0500 .8121 .8204
βNI .0510 .0500 - - .9077 .9102

700 350 350 βLR .0475 .0500 .0485 .0500 .8821 .8862
βTOST .0475 .0500 .0485 .0500 .8821 .8862
βNI .0475 .0500 - - .9426 .9431
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Table 3. Sample size requried per arm under each model with ρ = 1/2,

δ = ..15 and S1(5) = .55, censoring rate =.20
Log-normal case Exponential case

β∗ (∞, ∗)a (5, 1)b (5, 2)c (∞, ∗)a (5, 1)b (5, 2)c

..7 LRT1 107 302 233 107 271 224
TOST2 107 302 234 107 271 224
NIT3 70 198 153 70 178 147

..8 LRT 127 360 278 127 323 266
TOST 127 360 278 127 323 266
NIT 92 260 201 92 234 192

..9 LRT 161 454 351 161 408 336
TOST 161 454 351 161 408 336
NIT 127 360 272 127 323 266

(∞, ∗)a: infinity accrual and follow-up;

(5, 1)b : 5 years of uniform accrual and 1 additional year of follow up;

(5, 2)c : 5 years of uniform accrual and 2 additional years of follow up;

LRT1 : Wellek’s Log-Rank test;

TOST2 : two one-sided test;

NIT3 : non-inferiority one-sided test.
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