4 Unit and Proper Bitolerance Orders

Associated with any bitolerance order on V, there is a natural extension of the order: give a representation (in which we may assume no two interval I_{x} and I_{y} have the same center), we defined the linear extension by $x \prec_{c} y$ if and only if the center of I_{x} is less than the center of I_{y}. We call this linear extension central extension. We need the following two lemmas to prove our main results in this section.

Lemma 4.1. (K. P. Bogart and G. Isaak [1]) Let $P=(V, \prec)$ be a proper bitolerance order and $N=\left(V^{\prime}, \prec\right)$ an induced suborder with $V^{\prime}=\{a, b, i, j\}$ with $i \prec a, b \prec j, b \prec a$ and with no other comparabilities among $\{a, b, i, j\}$. Then in any central extension of the ordering, either (i) $b \prec_{c} i \prec_{c} a$ or (ii) $b \prec_{c} j \prec_{c} a$ (or both).

Proof. For a contradiction, assume there is a proper representation $\langle I, p, q\rangle$ of P whose central extension \prec_{c} of P violates both (i) and (ii) in Figure 8. Then $i \prec_{c} b \prec_{c} a \prec_{c} j$, that is, the center satisfy $c(i)<c(b)<c(a)<c(j)$. Since the representation is proper, the left and right endpoint of each interval also appear in the order, thus $R(i)<R(b)$ and $L(a)<L(j)$. Now $b \prec j$ so $R(b)<p(j)$ and thus $R(i)<R(b)<p(j)$. Similary, $i \prec a$ so $q(i)<L(a)<L(j)$. Hence, $R(i)<p(j)$ and $q(i)<L(j)$ imply $i \prec j$, a contradiction.

Figure 8: A proper bitolerance representation with $i \prec a, b \prec j, b \prec a$

Lemma 4.2. (K. P. Bogart and G. Isaak [1]) Let $P=(V, \prec)$ be a proper bitolerance order and $Q=\left(V^{\prime}, \prec\right)$ an induced suborder 2+2 with $V^{\prime}=\{a, b, i, j\}$ with $i \prec a, b \prec j$ and with no other comparabilities among $\{a, b, i, j\}$. Then in any central extension of the ordering, either (i) $i \prec_{c} b \prec_{c} j \prec_{c} a$ or (ii) $b \prec_{c} i \prec_{c} a \prec_{c} j{ }^{\prime}$

Proof. Fix a proper bitolerance representation $\langle I, p, q\rangle$ of P where $I_{v}=[L(v), R(v)]$ and the centers of the intervals are distanct. Let \prec_{c} be the associated central extension. Thus $i \prec_{c} a$ and $b \prec_{c} j$ and without loss of generality we assume $i \prec_{c} b$. It remains to show $j \prec_{c} a$, so for a contradiction, assume $a \prec_{c} j$ in Figure 9. Since the representation is proper, the left and right endpoint of each interval are also ordered by \prec_{c}, thus $R(i)<R(b)$ and $L(a)<L(j)$. Since $b \prec j$, we have $R(b)<p(j)$, thus $R(i)<R(b)<p(j)$. Similary, $i \prec a$ so $q(i)<L(a)$ and thus $q(i)<L(a)<L(j)$. Hence $R(i)<p(j)$ and $q(i)<L(j)$ imply $i \prec j$, a contradiction.

Figure 9: A proper bitolerance representation with $i \prec a, b \prec j$

Theorem 4.3. (K. P. Bogart and G. Isaak [1]) For an ordered set $P=(V, \prec)$ the following are equivalent:
(i) P is a proper bitolerance order.
(ii) P has a linear extension \prec_{L} so that
(a) $N=\left(V^{\prime}, \prec\right)$ an induced suborder with $V^{\prime}=\{a, b, i, j\}$ with $i \prec a, b \prec j, b \prec a$ and with no other comparabilities among $\{a, b, i, j\}$, then either (i) $b \prec_{L} i \prec_{L} a$ or (ii) $b \prec_{L} j \prec_{L} a$ (or both).
(b) $Q=\left(V^{\prime}, \prec\right)$ an induced suborder 2+2 with $V^{\prime}=\{a, b, i, j\}$ with $i \prec a, b \prec j$ and with no other comparabilities among $\{a, b, i, j\}$, then either (i) $i \prec_{L} b \prec_{L}$ $j \prec_{L} a$ or (ii) $b \prec_{L} i \prec_{L} a \prec_{L} j$.
(iii) P is a unit bitolerance order.

Proof. (iii) \Longrightarrow (i): This can be proved directly from the definitions of unit and proper bitolerance orders.
(i) \Longrightarrow (ii): Lemma 4.1 and 4.2 have proved.
$($ ii $) \Longrightarrow$ (iii): Let $P=(V, \prec)$ be an ordered satisfying the condition of (ii) for linear extension \prec_{L}. According to \prec_{L}, we know that $v_{1} \prec_{L} v_{2} \prec_{L} \cdots \prec_{L} v_{n} \Longrightarrow L\left(v_{1}\right)<$ $L\left(v_{2}\right)<\cdots<L\left(v_{n}\right)$. Next we let $R\left(v_{1}\right)>L\left(v_{n}\right)$ and $n=R\left(v_{1}\right)-L\left(v_{1}\right)$ for unit. Now we define the remaining right endpoint by $R\left(v_{i}\right)=L\left(v_{i}\right)+n$. Hence we construct a unit bitolerance representation $\langle I, p, q\rangle$ for P.

- Assign endpoint of $I_{v_{i}}$:

Let $L\left(v_{i}\right)=i$ for $i, 1 \leq i \leq n$.
Let $R\left(v_{i}\right)=n+i$ for $i, 1 \leq i \leq n$.

- Assign right tolerant point: If v_{i} is maximal element in P, let $q\left(v_{i}\right)=n+\frac{1}{2}$

Otherwise, let a be the smallest index so that $v_{i} \prec v_{a}$ and set $q\left(v_{i}\right)=a-\frac{1}{2}$

- Assign left tolerant point: If v_{i} is minimal element in P, let $p\left(v_{i}\right)=n+\frac{1}{2}$

Otherwise, let b be the largest index so that $v_{b} \prec v_{i}$ and set $p\left(v_{i}\right)=n+b+\frac{1}{2}$

First, we are sure that $q\left(v_{i}\right) \in I_{v_{i}}$ for all $v_{i} \in V$. If $q\left(v_{i}\right)=n+\frac{1}{2}$, then $L\left(v_{i}\right) \leq n<$ $n+1 \leq R\left(v_{i}\right)$. Otherwise, $q\left(v_{i}\right)=a-\frac{1}{2}$ where $i<a$. Since i and a are integers, $i \leq a-1$ and $L\left(v_{i}\right)=i \leq a-1<q\left(v_{i}\right)<a \leq n<R\left(v_{i}\right)$. Also $p\left(v_{i}\right) \in I_{v_{i}}$ for all $v_{i} \in V$.
So the intervals $I_{v_{i}}=\left[L\left(v_{i}\right), R\left(v_{i}\right)\right]$ and the tolerant points $p\left(v_{i}\right), q\left(v_{i}\right)$ give a unit bitolerance representation of an order $Q=\left(V, \prec^{\prime}\right)$. Now, we want to show that $P=Q$, that is, $v_{i} \prec v_{j} \Longleftrightarrow v_{i} \prec^{\prime} v_{j}$. Without loss of generality, we let $i<j$. We have the following two cases.

Case 1: $v_{i} \prec v_{j}$ in P
We know $v_{i} \prec v_{j}$. So v_{i} is not maximal, by definition we have $q\left(v_{i}\right)=a-\frac{1}{2}$, and we know that $a \leq j$. Then $q\left(v_{i}\right)=a-\frac{1}{2}<a \leq j=L\left(v_{j}\right)$.
By the same way, v_{j} is not minimal, we have $p\left(v_{j}\right)=n+b+\frac{1}{2}$, and we know that $i \leq b$. Then $p\left(v_{j}\right)=n+b+\frac{1}{2}>n+b \geq n+i=R\left(v_{i}\right)$. So we can obtain $v_{i} \prec^{\prime} v_{j}$ in Q.

Case 2: $v_{i} \| v_{j}$ in P.
Since $p\left(v_{i}\right)<R\left(v_{i}\right)<R\left(v_{j}\right)$, we know $v_{j} \nprec^{\prime} v_{i}$. Hence we must show $v_{i} \nprec^{\prime} v_{j}$.
For a contradiction, suppose $v_{i} \prec^{\prime} v_{j} \Rightarrow q\left(v_{i}\right)<L\left(v_{j}\right)$ and $R\left(v_{i}\right)<p\left(v_{j}\right)$.
Since $q\left(v_{i}\right)<L\left(v_{j}\right) \leq n$, we know $q\left(v_{i}\right) \neq n+\frac{1}{2}$. So v_{i} is not maximal in P, $q\left(v_{i}\right)=a-\frac{1}{2}$. Hence, a is the smallest index such that $v_{i} \prec v_{a}$.
Similarly, since $n+1 \leq R\left(v_{i}\right)<p\left(v_{j}\right)$, we know $p\left(v_{j}\right) \neq n+\frac{1}{2}$. So v_{j} is not minimal in $P, p\left(v_{j}\right)=n+b+\frac{1}{2}$ where b is the largest index such that $v_{b} \prec v_{j}$. We have the following two claims.
(1) claim $a<j$:

Because $q\left(v_{i}\right)=a-\frac{1}{2}<L\left(v_{j}\right)=j$, we know $a \leq j$. However, $v_{i} \prec v_{a}$ and $v_{i} \| v_{j} \Rightarrow a \neq j$.
(2) claim $b>i$:

Because $n+i=R\left(v_{i}\right)<p\left(v_{j}\right)=n+b+\frac{1}{2}$, we know $b \geq i$. However $v_{b} \prec v_{j}$ and $v_{i} \| v_{j} \Rightarrow b \neq i$.

In addition, if $a=b$, we obtain $v_{i} \prec v_{a}=v_{b} \prec v_{j}$. Since $v_{i} \| v_{j}$, we know that $a \neq b$. Therefore, we have shown that $v_{i} \prec v_{a}, v_{b} \prec v_{j}$, and $v_{i} \| v_{j}$ in P already. We must consider the relation of v_{a} and v_{b} in $V^{\prime}=\left\{v_{i}, v_{j}, v_{a}, v_{b}\right\}$ in the following two cases.
(a) If $v_{b} \prec v_{a}$ in P then the induced order $\left(V^{\prime}, \prec\right)$ is the order N described in (ii)(a). We have $v_{b} \prec_{L} v_{i} \prec_{L} v_{a}$ or $v_{b} \prec_{L} v_{j} \prec_{L} v_{a}$. However, it means $b<i<a$ or $b<j<a$, which contradicts that fact $b>i$ and $a<j$.
(b) If $v_{b} \| v_{a}$ in P then the induced order $\left(V^{\prime}, \prec\right)$ is the order $2+2$ described in (ii)(b). We have $v_{i} \prec_{L} v_{b} \prec_{L} v_{j} \prec_{L} v_{a}$ or $v_{b} \prec_{L} v_{i} \prec_{L} v_{a} \prec_{L} v_{j}$. However, it means $i<b<j<a$ or $b<i<a<j$, which contradicts that fact $a<j$ and $b>i$.

