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Abstract

Latin hypercube designs have been used in conducting computer experiments since
1979. After that, lots of efforts have been made to improve them either from a better-
space filling perspective or form an optimality perspective. In this article we
investigated thoroughly about the nature of Latin hypercube designs and compared
Latin hypercube sampling with random sampling and stratified sampling. We also
looked at the application of Latin hypercube sampling to computer experiments and
found out that when a regression model is used, the regression may be more accurately

estimated by Latin hypercube sampling than random sampling.

Keywords: Latin hypercube designs, Lain hypercube sampling, random sampling,
stratified random sampling.
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Latin Hypercube Designs

A. Notation
Input variable =X = (X|,--,X;)e S R¥, where S is the ‘sample’space.
Output variable =Y = A(X) € R, where ‘h’ is not explicitly known, it might be
determined by computer code, for example.

We wish to estimate some quantity using estimator

I, Yy)= %Zf:'lg()’i), where g is a known function,

based on a sample X|,~-,Xy of the X's of size¢ N and then determining
Y; = h(X) each of these X's.

Assume
(1) X is distributed in S according to some distribution F(%).

(11) S1,--+S; are disjoint subsets of S such that



Sl UUS[ =S,and
p; = P(X € S;)= measure of the size of S,

B. Sample Selection Methods
(i) Random Sampling
Let X,--,Xy be a random sample from S according to the distribution

F(x) onS. For simplicity, assume F is the uniform distribution.

Note: If N is “large” we hope our sample will be spread nice and evenly
throughout S. However, this need not be true if NV is “small”.

(i1) Stratified Samping

We attempt to “force” our sample to be more evenly spread throughout S
using stratification.

Let §),---S; be our “strata” and suppose we wish to sample »; points from
S; with ¥/ n=N. Let Xi1s+, Xy, be a random sample according to the
conditional distribution of Fon§; , i.e.

F(X|S)= ——I—F(X) : ]Xic—:Sj , where / is an indicator function.

!

The {Xij}lsiSI,ISan[ is our stratified sample. For simplicity, we take F to be
uniform on S. We assume samples in different strata are independent.
(iii) Latin Hypercube Sampling

Another attempt to “force” our sample to be more evenly spread throughout S
than random sampling.

Let X; be the i-th coordinate of X =(Xj,---,X})". For each i, divide the
range of X; into N strata (intervals) of equal marginal probability 1/N under F.

Sample once from each stratum and let these sample values be denoted
X, Xy . Formthe kxN array as in the following.

X Xz oo Xy
X1 Xy - KXoy
X Xe2 0 Xy

Randomly permute each row, using independent permutations for each row. The
N columns of the resulting array are our Latin Hypercube sample. For simplicity,
we take F to be uniform on S.
C. Properties of the Estimator 7 Under These Plans
(1) Random Sampling
Recall



1
Tt Yy) =3, g(h)
Let Tk denote this estimator when random sampling is used. Assume F(%) has

a density, say f(X) and let

T =E(g(Y)) = E(g(h(X))) = | g(h(¥)) f(%)dz,
S

6% = Var(g(Y)),

sothat E(Tg) =71, Var(Tg)=6%/N.
(1) Stratified Sampling

General case — an unbiased estimator of 7. Recall{S;;] <i < I} is a partition

of S and
pi=P(XeS)1<i<],

we again assume F and density /. Recall that we select a random sample
_ (V)R ifXes,
f(E]S) = { Z ’
0 ow.

of size n; from S,-,Zilzl n; = N. Let X“,‘-~,/\7,-ni be the random sample from S,

so that the X;; are iid. f(X]S;), 1< j<n;.

LetY; = h(X jj) = observation corresponding to X jj» then

ri = E@(y) = [ (), )f (D)dz,
Si
of =Var(g(¥y) = [ [8() (Y, )/ (R)dx.
Si

Let Tg = Zle[(pi/n,)zyi:lg(}’,j)] , then E(Ts) =1. Thus Tg is an unbiased
estimator of 7. Also since samples from different strata are
independent Var(Ts) = X1, (p? /n;)0}.

(ii1) Latin Hypercube Sampling
Here we assume F is such that the coordinates of X are independent. We
also assume F has a density f Recall that for each coordinate X;
of X = (X{,---,X})" we divide the range of X; into N strata or intervals of equal
marginal probability 1/N under F. The Cartesian product of these interval

partitions S into N* cells each of probability N7*. Each of these N* cells can
be labelled by a set of & cell coordinates

f?li = (m,-l,-'-,mik)', 1£i< Nk R
where m;; = interval number (between 1 and N) of coordinate X; represented in
cell 7.



One way to select a Latin hypercube sample of size N is to take a random

sample of N of the NF cells, say my, .-+, my . subject to the condition that for

N
each J, the set {m,-[j}ﬁl is a permutation of the integers 1, 2, ... , N. Then a

single random observation is made in each cell. We then have that the density
of X given X € cell iis

F7| R cell = {;ka(,?), %ecell i
0

ow.

Thus the distribution of Y = 4(X) under Latin hypercube sampling is
k — _
PY<y)=YN P(Y<y|Xecell i)P(Xe cell i)

= [f(D)dx,
h(Z)<y

which is the same as for random sampling. Thus if
T (h, o Yy) = (/NI (%)

is T under Latin hypercube sampling then E(7;)=1 which is same as for
random sampling.

To calculate Var(T;), we look at the sampling as follows. Select X;

independently and at random from each of the N k cells and let

Y, = h(X;), 1<i< N¥,

We then independently select our sample of N cells as defined previously,
letting

{l if cell iis in our sample

0 ow.

Then
Var(1;) = S5 { T Var g5 + S} 5K covtomg (w1, )

Through some tedious calculation one can show that

N-1 1
Var(Ty) = Var(Tg) + — [Nk(N—l)k ]szwi—r)(uj—n

< Var(Tg) , provided the second term above is 0.

Theorem.(McKay, Beckman, and Conover (1979)) If is monotonic in each of
its arguments and if g(¥) is monotonic in Y, then Var(T;) < Var(Tg).



An Application to Computer Experiments
Let Z(X) be a vector valued function for which a linear model
Y =2'(X)B
seems an appropriate approximate to #(.X). The “population” least squares value
of B is
—1
pr = [ ] Z(fﬁ’(f)dF(f)J [Z(R)Y (R)ax .
S S

Assuming [Z(%)Z'(%)dF (%) is known or easily computable, we might estimate 37

by

X -1
B= ( jZ(f)Z’(f)dF(x)J —I—Zi"il Z(%)Y; .
S N

The variance of B is

—1 -1
(Jz(f)z'(f)df’(f)} z (Iz(f)z'(f)dF(f)j :
S S
where
2 =((Zj)) = d xd matrix,

Ly = [r(X)r;(x)dx,

r;(¥) = residual from additivity for 4,
h=(h,hy)e RY =bounded function on S,
Y;=h(X;),1<i<N

Owen argues that to the extent that Z(X)Y(X) is additive, the regression may be
more accurately estimated by Latin hypercube sampling than random sampling.
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