

Using Pluggable Procedures and Ontology
to Realize Semantic Virtual Environments 2.0

Yu-Lin Chu Tsai-Yen Li
Computer Science Department, National Chengchi University

{g9505, li}@cs.nccu.edu.tw

Abstract
Allowing users to design animation procedures and share their
designs with other users is a crucial function for creating personal-
ized 3D avatar behaviors on multi-user virtual environments
(MUVE’s). By describing the ontology of the virtual objects in the
environment to animation procedures, we allow these procedures
to create customized animations for an avatar to interact with the
environment or other avatars. In this paper, we attempt to realize a
semantic virtual environment (SVE) in our MUVE system (called
IMNET) with the concept of web 2.0 through three mechanisms:
dynamical installation of animation procedures, ontology design
of semantic description for virtual objects and avatars, and interac-
tion-oriented message delivery. Based on our demonstrative appli-
cations, we have designed example semantics for the objects in the
virtual world by the use of ontology. We have used two applica-
tion scenarios about automatic generation of navigation path and
casual interactions between users to illustrate the potential of cre-
ating sharable rich contents in a semantic virtual environment.

CR Categories:

Keywords: Semantic Virtual Environment, Multi-user Virtual
Environment, OSGi, Ontology for Virtual Environment

1 Introduction
In recent years, Multi-User Virtual Environment (MUVE) has
attracted much attention due to the increasing number of users and
potential applications. Figure 1 shows the common components
that a MUVE system may provide. Generally speaking, a MUVE

refers to a virtual world that allows multiple users to log in con-
currently and interact with each other by texts or graphics pro-
vided by the system. On-line games can be considered as a special
kind of virtual environment with specific characters, episode and
ways of interactions. Other MUVE systems such as SecondLife1
provide a general framework for users to design their own 3D
contents and interact with other users through their avatars in a
more general way. Although the users are allowed to build their
own world, the animations that can be displayed are limited to
those that have been prepared by the system. In addition, due to
the lack of semantic information, it is also not feasible to design
virtual avatars, controlled by the computer, to interact with other
avatars.

Under the concept of web 2.0, we think future virtual environ-
ments will also depend on how easily the users can share their
own designs of procedures for customized animations and high-
level behaviors. However, it is a great challenge to design an ex-
tensible virtual environment system that allows the users to write
their own customized procedures that can dynamically acquire the
information of the virtual environment and other users. In our
previous work, we have succeeded in extending a MUVE system
developed by ourselves, called IMNET (Li et al., 2005), to allow
user-defined animation procedures to be specified, downloaded,
and executed on the fly (Chu et al., 2008). However, in order to
enable these user-defined procedures to create richer animations
for interactions, we must be able to describe the semantics of the
objects in the world in a standard way accessible to all potential
animation/behavior designers.

In this paper, we aim to use ontology to describe the semantics of
the objects in the virtual environment such that users can design
their own animation procedures based on the information. For
examples, if we can acquire object information such as 3D geome-
try, height, and 2D approximation, we can design a motion plan-
ning procedure that can generate a collision-free path for the ava-
tar to walk to a given destination. In addition, we also have de-
signed the ontology specifically for information exchange between
avatars. We also have added a new information query mechanism

1 Second Life, http://secondlife.com

(a) (b) (c) (d)

Figure 1. Common components in a multi-user virtual environment: (a) login; (b) choose an avatar; (c) interact with virtual
world; (d) a scripting interface (optional)

Appear in Proceedings of the 7th International Conference on Virtual Reality Continuum and Its Applications in Industry (VRCAI), 2008

to facilitate the communication between avatars. These new func-
tions will be demonstrated through several examples where the
user-designed programs acquire application-specific semantics in
the standard ontology format after the programs have been de-
ployed dynamically to other clients’ machines.

The remaining of the paper is organized as follows. In the next
section, we will review the research related to our work. In the
third section, we will describe the example design of ontology for
the objects in the virtual worlds and for the avatars. In Section 4,
we will describe the improved communication protocol allowing
on-demand query of information among avatars. Then, in the fol-
lowing two sections, we will give examples of how to design ani-
mation components that can take advantage of the semantic infor-
mation to generate richer user behaviors. Finally, we will conclude
the paper with future directions.

2 Related Work
In this work, we aim to provide a smart virtual environment that
can enable richer contents and interactions. Before the concept of
semantic virtual environment emerges, there has been much re-
search about how to integrate AI technologies into a virtual envi-
ronment system. R. Aylett et al. (2001) found that this type of
virtual environments have several common features. For example,
these systems add components for solving problems such as con-
figuration, scheduling and interaction. These systems constructed
knowledge-level representation of the virtual scene and supported
high-level processing with a natural language interface. These
systems also used causal behaviors to replace the simulation of
physical features.

In order to facilitate advanced applications that allow better com-
munications between agents and the environment, the concept of
semantic virtual environment was proposed (Otto, 2005; Kleiner-
mann et al., 2007). Unlike traditional virtual environments that
were designed mainly for visual effects, semantic virtual environ-
ments should contain richer structural semantic information that is
adequate for a computer to process (Otto, 2005). For example, a
plate on top of four sticks may be easily interpreted as a table by a
human but it will be more difficult for a machine to infer that
without low-level geometry reasoning. An analogy of this unstruc-
tured information for visual interpretation is the vast home pages
on the web. This is also why semantic web was proposed to facili-
tate automatic processing and communication among web servers.
Similarly, in order to facilitate the reuse of 3D design and anima-
tion procedures, it is crucial to annotate the objects in a virtual
world with semantic information in a standard format such that the
same contents can be reused in different worlds or in different
MUVE systems.

The idea of SVE has been realized from various aspects by much
work in the literature. For example, the SEVEN system was pro-
posed by Otto (2005) as an example of realizing SVE with the
concept of software components. It focuses more on the reusabil-
ity of system components on different MUVE systems instead of
components designed by the users. Gutierrez et al. (2005) also
have proposed an ontology for virtual human by incorporating
semantics into human shapes. They also regarded that the design
of ontology is a continuous process where richer semantic infor-
mation about human attributes should be added in a collaborative
fashion. Instead of dealing with human shapes, the work in (Abaci
et al., 2005) focuses on adding action semantics in smart objects to
facilitate the interaction between the avatars and with the objects
in the virtual environment. Garcia-Rojas et al. (2006) also pro-

posed to add semantic information, such as emotion and expres-
siveness, to animations in order to facilitate the selection of appro-
priate animation clips for a specific scenario.

3 Design of Ontology in IMNET
For developing and sharing animation procedures in the IMNET
system, in this section we will describe our ontology design for
virtual objects and avatars in IMNET. The topology described in
this section is to serve the demonstrative purpose of potential ap-
plications; therefore, the design is by no means complete.

3.1 Ontology design of virtual environment
The objective of ontology design for virtual environment in this
work is two-fold. First, we would like to keep the information that
exists in the original IMNET such as object geometry and trans-
formation. Second, we hope to use an example to show that more
semantic information about the virtual objects can facilitate the
computation of advanced reasoning procedures such as a path
planner that may be designed by the users.

Our ontology design of the virtual environment is shown in Figure
2. The root of the world document is the IMWorld node, which
contains world information (WorldInfo) and all the virtual ob-
jects (WorldObject) in the world. In order to retain the seman-
tic information of the virtual objects existing in the original IM-
NET, we have designed the GeometryInfo and Transform
nodes. Each object also has some additional attributes such as
name, tag, baseLevel, and height. The tag attribute is
designed for the user to denote application specific properties for
virtual objects. For example, in the example of path planning, one
can tag certain objects as sidewalk and crosswalk such that
these regions can be treated appropriately by the path planner ac-
cording to their meanings in the world. Each object may also have
the attribute of Approximation2D, which is a polygon that can
be used to define 2D approximation of obstacles in the environ-
ment for the path planner. In addition, if 2D approximation is over
simplified for the application, one can also use the baseLevel
and height attributes to define 3D approximation regions where
the obstacles are located. If these attributes are not available for
some objects, they still can be computed from the given 3D ge-

 : class : inherited property : property

WorldObject

IMWorld
hasObject* isFocusedOn

isa

hasWorldInfo

file
World-

HotPosition

x y
z

description

Transform

Scale
Translation

Rotation
Polygon

hasGeometry

hasApproximation
hasTransform

file

hasPolygon

value

hasTranslation
hasRotation

hasScale

x
x

x

y y

y z
z

z
rot

tag
baseLevel

name

height

Approximation2D

GeometryInfo

Ground

Figure 2. Ontology design for virtual world

ometry and transformation of the objects. Some objects may also
serve as the ground of the world by the node of Ground to define
the boundary of the world. In addition, some objects could also be
treated as HotPosition when they are the foci of interest in the
application.

3.2 Ontology design for avatars
In MUVE’s, an avatar could be controlled by a real user or by a
computer program (called virtual user) if the system provides such
a function. Virtual users can be used by the designer of the virtual
world to perform simple tasks such as a watching a gate or offer-
ing guided tours. In this section, we describe the basic ontology
classes and attributes (as shown in Figure 3) that we have designed
for the applications of the avatar interactions. Although an avatar
is also an object in a virtual world, they have more active and
complicated roles to play. For example, a user may choose to use
his/her own animation for a specific behavior by using the has-
Behavior property to connect to the Behavior class. This
Behavior class defines the procedure (with name, package,
and codebase) for generating the desired animation. In addition,
an avatar may contain some basic attributes such as name, ge-
ometryInfo, and status. We also use the hasFriend and
hasPosition properties to get the friendship and current posi-
tion information of avatars.

3.3 Using ontology to load the virtual world
In the two subsections above, we have defined an ontology for the
objects and avatars in the virtual world. However, in the original
IMNET system, the geometry of the virtual world is loaded from a
single VRML file. The geometry is parsed and converted into the
underlying format for 3D display by a module called
VRMLModelFactory as shown in Figure 4. In order to augment
the system with semantic information, we have split the geometry
into several VRML files with one file for each object. This file is
specified in the geometryInfo attribute of every worldOb-
ject. We have adopted the Web Ontology Language (OWL)
established by W3C as the file format for the ontology of the vir-
tual world. As shown in Figure 5, the system first loads and parses
the OWL file into an object format through the automatic gener-
ated Java class and the Protégé API. The geometry file for each
object is then retrieved from the ontology and loaded into the sys-
tem by the VRMLModelFactory module.

4 Communication Protocol for Information
Query

In a semantic virtual environment, we think semantic information
should not only be used by internal modules, but should also be
accessible to other clients through user-defined pluggable modules.
In the previous section, we have described the ontology of the
world and how it is loaded into the IMNET system. However, the
clients are not required to specify all attributes defined in the on-
tology of the avatar. In addition, not all information described in
the ontology will be broadcast to all clients. Therefore, we need to
have a flexible way for the avatars to communicate semantic in-
formation with each other. In this subsection, we will describe
how we modify the current communication protocol of IMNET to
take information query into account.
The application protocol in the original IMNET is similar to other
MUVE’s that only encapsulates pre-defined message types in the
XML format. The underlying animation scripting language,
XAML, is an example of message type (Li et al., 2004). Another
example is the message for textual information used in the chat
module. For instance, in Figure 6, we show an example where

<IMNET from=“user1” to=“user2”>
 <Chat>…</Chat>
</IMNET>

Figure 6. An example of IMNET message

IMBrowser

VRML

VRMLModelFactory

Figure 4. Processing a single VRML file to generate the virtual
world

name

Avatar
hasFriend*

Position

hasPosition
x

geometryInfo

status

name

updateTimestamp
y
z

updateTimestamp

Behavior

updateTimestamp hasBehavior*

package
codeBase

UI

：class ：property

Figure 3. Ontology design for avatars

IMBrowser

VRMLModelFactory

OWLModelFactory

OWL

get geometry
and transform info.

VRML
Model

Figure 5. Processing an OWL file and loading multiple VRML
files to generate the virtual world

User1 wants to send a <Chat> message to user2. However, in the
original design there is no way for the clients to query the infor-
mation of other avatars that may be defined by the avatar design-
ers instead of the system. This function is crucial for the avatars to
exchange information for richer interactions in a semantic virtual
environment.
In the work, we have enhanced the communication protocol of
IMNET to incorporate a broader range of message types. We dis-
tinguish three types of information exchange between avatars as
shown in Figure 7. The first one is the static information, such as
the id and name properties that are delivered only once at the be-
ginning when a user logs in. The second type is the update infor-
mation, such as the position of the avatar, which is voluntarily
pushed to all clients in a more frequent way. The third type is the
query information, such as optional attributes or questions, which
is sent to the inquirer only upon requests. We have integrated
these three types of messages with the tag <Info> and distinguish
their types in an internal tag. In particular, we have designed a
mechanism for query-response processing as shown in Figure 7.
For example, in Figure 8, we show a scenario where user1 asks
user2 if user2 wants to be a friend of user1. The message is sent
with a <queryInfo> internal tag and with a timestamp property.
This timestamp property can be used as the id of the query. The
query processing component in Figure 7 may prompt user2 (if
user2 is a real user) with a dialog box or evoke an auto-responding
component (if user2 is a virtual user) for a response. Then he/she
can use this id to indicate this query (askId) in his/her reply mes-
sage to user1 as shown in Figure 9.

5 Demonstrative Examples
In this section, we will give two examples of using semantic in-
formation in the virtual world to enhance the functions and behav-
iors of the avatars.

5.1 Example 1: motion planning for avatars
A common way for a user to navigate in a virtual environment is
by controlling his/her avatar by input devices such as keyboard or
mouse. However, it is a low-level task that may not be easy for a
novice user to control his/her avatar to reach a destination. There
has been much research that proposed to use motion planning
techniques to generate collision-free navigation paths for the ava-
tar to follow (Salomon et al., 2003). However, in order to define a
motion planning problem, we need to obtain the geometric infor-
mation of the objects in the environment such that we know where
the boundary of the world is and which of the objects needs to be
treated as an obstacle.

In this subsection, we will use a motion planning component as an
example to illustrate how a user-defined animation procedure can
be installed dynamically and retrieve necessary world information
for the needs of the application. A user first prepares the procedure
as a software bundle according to the specification of OSGi2. Then
he/she can use a XAML script, such as the one shown in Figure 10,
to indicate where he/she wants to move to. In this script, he/she
needs to specify the name of the package, the initial (optional) and
goal locations, and the URL for downloading the bundle if it is not
already installed. In this case, the bundle will be installed dynami-
cally and evoked through the OSGi mechanism (Chu et al., 2008).

2 OSGi Alliance, http://www.osgi.org/

<Info from=“user1” to=“user2” timestamp=“1215476323”>
 <queryInfo ask=“make friend”/>
</Info>

Figure 8. An example of query message

<Info from=“user2” to=“user1” timestamp=“1215476330”>
 <queryInfo askId=“1215476323” answer=“yes”/>
</Info>

Figure 9. An example of responding message

Client

Query
Information

Avatar
Ontology

Static
Information

Update
Information

Server

Communication

ask

Answer
Information

answer

Question
Processing
Component

User
Dialog interface
for questions

Figure 7. Client architecture for the processing of three types of
information

Planner Bundle

MoPlan
Service

MapLoader

Path
Planning

Path Data

IMBrowser

Animation
Manager

OWLModel
Get OWL

Model

XAML
Script

Avatar
Walking

Figure 11. The process of how the motion planning component
generates animations

<MoPlan package='imlab.osgi.bundle.interfaces'
codebase='http://imlab.cs.nccu.edu.tw/plan.jar'>

 <param name="-s" value="1.1 2.3"/>
 <param name="-g" value="5.2 3.8"/>
</MoPlan>

Figure 10. An example of specifying a motion planning prob-
lem in a user-defined component, MoPlan.

In order to generate a collision-free path, a motion planner needs
to acquire obstacle information from the world. In our system, the
motion planning component obtains this semantic information
through the ontology of the virtual world defined in Section 3.
According to the obtained obstacle information, the planner first
converts the obstacle information into a 2D bitmap and then com-
putes a potential field that is commonly used in a motion planner.
And then the planner performs a best-first search to find a feasible
path to the goal according to the potential field. Finally, the plan-
ner component translates the path to a XAML script and assigns it
to the avatar to generate the walking animation as depicted in Fig-
ure 11.

Obstacle information can not only be inferred from low-level ge-
ometry but also be given as approximation by the scene designer.
In Section 3, we have designed an optional attribute called Ap-
proximation2D in the ontology of a virtual object. In Figure 12(a),
we show an example of the collision-free path generated by the
planner by the use of the 2D approximation of the objects in the
world. If the planner can find this 2D approximation for an object,
it will use it to build the 2D bitmap needed in the planner. If not, it
still can build the convex hull of the 3D geometry and project it
into the ground to form a 2D approximation. In other words, se-
mantic information could be designed to facilitate automatic rea-
soning but it is not mandatory. The designers of virtual objects are
not obligated to define all attributes in an ontology that could be
large in collaborative creation. In addition, the user-defined ani-
mation procedures do not easily break down in such a loosely
coupled distributed environment either since they can take this
into account in the design stage.

However, some semantic information cannot be inferred directly
from geometry. For example, in the virtual environment, there
could be some crosswalk or sidewalk regions that need to be used

whenever possible. One can tell this kind of objects from their
appearance but it would be difficult for the machine to infer their
functions through geometry. In this case, the planner has to ac-
quire this information through the semantics defined in the ontol-
ogy of the virtual world. In the example shown in Figure 12(b),
the planner knows where the sidewalk and crosswalk through
object tagging in the ontology and makes the regions occupied by
these objects a higher priority when planning the path for the ava-
tar. The potential values in these regions are lowered to increase
the priority during the search for a feasible path. Consequently, a
path passing through these regions was generated in the example
shown in Figure 12(b). In addition, according to this semantic
information, appropriate animations, such as looking around be-
fore moving onto the crosswalk region, could be inserted into the
motion sequence of walking to the goal.

5.2 Example 2: interaction between avatars
An objective of this work is to allow different animation compo-
nents owned by different clients to interact with each other. The
users can communicate through customized tags to acquire the
avatar ontology of each other and use this information to perform
specific interactions. The user behind an avatar could actually be a
real user or a virtual user controlled by a computer program. In
this subsection, we will use two scenarios to illustrate these two
types of interactions. The first scenario is to demonstrate the inter-
action between two real users, and the second scenario is for the
interaction between a real user and a virtual user.

To facilitate the interaction between the avatars, we have designed
a component called SocialService. There are three steps for initiat-
ing an interaction between avatars as shown in Figure 13. A user
who would like to initiate the interaction first sends a customized
XAML script shown in Figure 14 to the other avatar (step 1) for it
to install this social interaction component (step 2). Once the com-
ponent has been installed, interaction queries related to social ac-
tivities can be delivered through the communication protocol de-
scribed in Section 4 and processed by the SocialService compo-
nent (step 3).

In the first scenario, both users are real users. First, user1 would
like to invite user2 to be his friend (Figure 15(a)). Therefore, a
query message: “‘User1’ added you to his friend list. Do you want
to invite ‘user1’ to be your friend as well?” appeared in user2’s
interface (Figure 15(b)). If user2 choose ‘yes’, user1 would be
added into her friend list and a confirmation message would be

Client B

IMNET
Communication

Module

Components

Ontology

Client A

IMNET
Communication

Module

Components

1) request

3) interaction
messages

2) components
install Ontology

Figure 13. The steps for initiating an interaction between avatars

<SocialService package='imlab.osgi.bundle.interfaces'
codebase='http://imlab.cs.nccu.edu.tw/social.jar'/>

Figure 14. Starting the mechanism of the interaction between
avatars through XML script

User1 View User2 View User1 View

(a) (b) (c)
Figure 15. Interaction between the real users

 (a) (b)
Figure 12. The example paths generated by the path planner:
(a) avoiding the obstacles described by the 2D approximation
in semantics; (b) the path generated by taking crosswalk and

sidewalk into account.

sent back to user1 (Figure 15(c)). Through the interaction between
the two real users, the friend information was updated into the
ontology of both avatars.

In the second scenario, user1 arranged a virtual user called door-
keeper to watch the door and provide information to potential
guests (Figure 16(1~2)). When user2 entered a designated region,
the doorkeeper would turn to face user2 and ask: “May I help
you?” At the first encounter, user2 just entered this area by acci-
dent and therefore chose the answer: “Just look around.” The
doorkeeper replied: “Have a good day!” (Figure 16(3~5)) The
state of the doorkeeper in this interaction was then set to FINISH.
After user2 left the area, the state was restored to IDLE (Figure
16(6)). Assume that after some period of time, user2 approached
the doorkeeper again for the second time. This time user2 chose:
“I’m looking for my friend.” The doorkeeper replied: “Who’s your
friend?” Then user2 answered: “Jerry.” At this moment, the door-
keeper queried the avatar ontology of user1 (named Jerry) to see if
user2 is in his friend list. If so, the doorkeeper would inform user2
the current position of user1. Otherwise, the doorkeeper would
answer: “Sorry, Jerry does not seem to know you.” If there is no
such a user called Jerry, the doorkeeper would answer: “Jerry is
not in this world.” (Figure 16(7~9))

6 Conclusions and Future Work
Sharing of user-designed software components is a key function
for enabling richer contents and behaviors in the future develop-
ment of MUVE systems. In our previous work, we have designed
a mechanism under OSGi to facilitate dynamic installation of user-
designed software components in IMNET. In this work, we have
extended the MUVE system to allow the semantics of the objects
and avatars in the virtual environment to be described in the form
of ontology. This provides a standard way for the software com-
ponents to acquire semantic information of the world for further

reasoning. We have used two types of examples: path planning
and social interaction, to show how users can design their own
code to facilitate richer or autonomous behaviors for their avatars
(possibly virtual). We hope that these examples will shed some
lights on the further development of object ontology and more
sophisticated applications.

7 Acknowledgement
This research was funded in part by National Science Council
under contract no. NSC96-2221-E-004-008.

References

ABACI, T. C´IGER, J. AND THALMANN, D. 2005. Action semantics
in Smart Objects. In Proc. of Workshop towards Semantic Vir-
tual Environments.

AYLETT, R. AND CAVAZZA, M. 2001. Intelligent Virtual Environ-
ments - A State-of-the-art Report. In Proc. of Eurographics.

CHU, Y.L. LI, T.Y. AND CHEN, C.C. 2008. User Pluggable Anima-
tion Components in Multi-user Virtual Environment. In Proc.
of the Intl. Conf. on Intelligent Virtual Environments and Vir-
tual Agents, China.

GARCIA-ROJAS, A. VEXO, F. THALMANN, D. RAOU-ZAIOU, A. KAR-
POUZIS, K. AND KOLLIAS, S. 2006. Emotional Body Expression
Parameters In Virtual Human Ontology. In Proc. of the 1st Intl.
Workshop on Shapes and Semantics, pp. 63-70, Matsushima,
Japan.

GUTI´ERREZ, M. GARCÍA-ROJAS, A. THALMANN, D. VEXO, F. MOC-
COZET, L. MAGNENAT-THALMANN, N. MORTARA, M. SPAG-
NUOLO, M. 2005. An Ontology of Virtual Humans: incorporat-
ing semantics into human shapes. In Proc. of the Workshop
towards Semantic Virtual Environments.

KLEINERMANN, F. TROYER, O.D. CREELLE, C. AND PELLENS, B.
2007. Adding Semantic Annotations, Navigation paths and
Tour Guides to Existing Virtual Environments. In Proc. of the
13th Intl. Conf. on Virtual Systems and Multimedia
(VSMM’07), Brisbane, Australia.

LI, T.Y. LIAO, M.Y. AND LIAO, J.F. 2004. An Extensible Scripting
Language for Interactive Animation in a Speech-Enabled Vir-
tual Environment. In Proc. of the IEEE Intl. Conf. on Multi-
media and Expo (ICME2004), Taipei, Taiwan.

LI, T.Y. LIAO, M.Y. AND TAO, P.C. 2005. IMNET: An Experi-
mental Testbed for Extensible Multi-user Virtual Environment
Systems. In Proc. of the Intl. Conf. on Computational Science
and its Applications, LNCS 3480, O. Gervasi et al. (Eds.),
Springer-Verlag Berlin Heidelberg, pp. 957-966.

OTTO, K.A. 2005. The Semantics of Multi-user Virtual Environ-
ments. In Proc. of the Workshop towards Semantic Virtual
Environments.

SALOMON, B., GARBER, M., LIN, M. C., MANOCHA, D. 2003. In-
teractive Navigation in Complex Environment Using Path
Planning. In Proc. of the 2003 Symposium on Interactive 3D
graphics.

(1) (2) (3)

(4) (6)

(7) (8) (9)

(5)

Figure 16. Interaction between a real users and a virtual user
(doorkeeper)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

