
Designing Aspects for Side-Effect Localization

Kung Chen Jia-Yin Lin
National Chengchi University, Taiwan
{chenk,g9405}@cs.nccu.edu.tw

Shu-Chun Weng
National Taiwan University, Taiwan

b92103@csie.ntu.edu.tw

Siau-Cheng Khoo
National University of Singapore, Singapore

khoosc@comp.nus.edu.sg

Abstract
Computation performed in many typical aspects involve side ef-
fects. In a purely functional setting, adding such aspects using tech-
niques such as monadification will generally lead to crosscutting
changes. This paper presents an approach to provide side-effecting
aspects for purely lazy functional languages in a user transparent
fashion. We propose a simple yet direct state manipulation con-
struct for developing side-effecting aspects and devise a system-
atic monadification scheme to translate the woven code to a purely
monadic style functional code.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Optimizaation

General Terms Design, Languages, Theory, Verification

Keywords Aspect-oriented programming, Side-effect, Lazy se-
mantics, Monadification

1. Introduction
This paper concerns developing aspects that are inherently state-
ful in a purely functional setting. Many typical aspects, such as
profiling, display refresh, and tracing, all need to maintain a state
which depends on the execution state of the base program. We refer
to them as side-effecting aspects. To work properly, these aspects
need to monitor the state of the base program and update their in-
ternal state correspondingly. Although we can hide the hairy de-
tails of state manipulation by using monads [12], yet weaving a
monadic aspect into a base program usually entails a comprehen-
sive rewriting of the base program. We argue that it is better to
support side-effecting aspects directly for localizing concerns and
to automate the conversion of the woven code into monadic style
via source-to-source transformation techniques. Such a process has
been pioneered by Lämmel [9] and is referred to as monadification
by Erwig and Ren[2].

In our previous work of AspectFun [1], an aspect-oriented lazy
functional language with a Haskell-like syntax, we have developed
a state-based implementation for control-flow related advice which
uses a reader monad to keep function execution states (entry and
exit) and employs a monadification step to convert the woven pro-
gram. In this paper, we generalize this approach to the language
level by providing constructs for writing side-effecting aspects di-
rectly and systematic monadification procedures for implementing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PEPM’09, January 19–20, 2009, Savannah, Georgia, USA.
Copyright c© 2009 ACM 978-1-60558-327-3/09/01. . . $5.00

them. Specifically, we propose to equip AspectFun aspects with
user-defined mutable variables for performing side-effecting oper-
ations and extend its compiler with a more powerful monadification
module based on cached state monad transformers to realize them.

At first sight, this may seem an easy task of just employing a
state monad as the repository for mutable variables and lifting all
non-monadic functions into monadic ones. This is simply not the
case. First, lazy semantics makes the monadification process more
difficult. Without proper control, monadification of a side-effecting
aspect may lead to wrong order of evaluation and result in code
that interferes with the execution of base program by unnecessarily
forcing the evaluation of arguments or duplicating the evaluation.
Therefore, besides reconciling the different needs of evaluation
order between side-effecting operations and lazy evaluation, we
must make an effort to ensure that the monadification itself will
be non-interfering by preserving the lazy semantics. Second, the
base program could be monadic already. Hence, we need to employ
monad combination mechanisms such as monad transformers [10]
to integrate both monadic aspects and monadic base program.

To illustrate the challenges, we present the problem of employ-
ing aspect to trace invocations of function calls in lazy functional
language. As tracing involves side-effect, we introduce a state-
aware monadic aspect to capture tracing function. In addition, out-
put of tracing may force early evaluation of function arguments,
leading to alteration of evaluation order of the base program. In
Section 3, we present a general solution to such problem through
introducing cached state.

The rest of the paper is organized as follows. Section 2 first re-
views our base language, AspectFun, and describes the language
constructs we design for writing side-effecting aspects. Section 3
identifies the issue of preserving laziness when moandifying such
aspects with functional base programs and presents the monadifica-
tion scheme we employ to implement side-effecting aspects in As-
pectFun. Section 4 illustrates how we can use monad transformers
to handle the case when the base program is monadic and outlines a
unified monadification scheme that accommodates both cases. Sec-
tion 5 describes related work. Finally, Section 6 summarizes and
discusses the future work.

2. Extending AspectFun with Side-Effecting
Aspects

This section describes the language constructs we propose for de-
veloping side-effecting aspects in AspectFun. After giving a brief
overview of AspectFun, we shall present the proposed extension
for manipulating states in aspects along with some examples. To
ease the presentation of the examples, we shall use pattern match-
ing and freely employ functions available in the Haskell prelude
and few Haskell constructs that are not yet implemented in Aspect-
Fun.

189

2.1 AspectFun Overview
Figure 1 shows the syntax of AspectFun. We write ō as an abbre-
viation for a sequence of objects o1, ..., on (e.g. declarations, vari-
ables etc). An AspectFun program is a sequence of top-level decla-
rations followed by a main expression. Top-level definitions include
global variables and function definitions, as well as aspects. An as-
pect declaration provides two specifications: An advice, which is a
function-like expression named via the prefix n@; and a pointcut
designator, around {pc}, designates when the advice will be ex-
ecuted. In aspect-oriented programming [6], the specific program
execution points to trigger an advice is called join points. Here, we
focus on join points at function invocations. Thus a pointcut basi-
cally specifies a function whose invocations may trigger the exe-
cution of advice. The act of triggering an advice during a function
application is called weaving. The argument variable arg is bound
to the actual argument of the named function call.

Programs π ::= d in π | e
Declarations d ::= x = e | f x = e | f :: t→ t |

n@advice around {pc} (arg) = e

Arguments arg ::= x | x :: t

Pointcuts pc ::= ppc | pc + cf | pc− cf

Primitive PC’s ppc ::= f x | any | any\[f] | n
Cflows cf ::= cflow(f) | cflow(f(:: t)) |

cflowbelow(f) | cflowbelow(f(:: t))

Expressions e ::= c | x | proceed | λx.e | e e |
if e then e else e | let x = e in e

Types t ::= Int | Bool | a | t→ t | [t]
Predicates p ::= (f : t)

Advised Types ρ ::= p.ρ | t
Type Schemes σ ::= ∀ā.ρ

Figure 1. Syntax of the AspectFun Language

Advice may be executed before, after, or around a join point.
Specifically, around advice is executed in place of the indicated
join point, allowing the call to the advised function to be replaced.
A special keyword proceed may be used inside the body of around
advice. It is bound to the function that represents “the rest of the
computation” at the advised join point. As both before advice and
after advice can be simulated by around advice that uses proceed,
we only need to consider around advice in this paper.

Precisely, a pointcut, pc, may be either a primitive pointcut
or a composite pointcut. A primitive pointcut, ppc, specifies a
function (f) or an advice name (n) the invocations of which will
be advised. A sequence of pointcuts, pc, indicates the union of all
the sets of join points selected by each. A primitive pointcut can
also be a catch-all keyword any. When used, the corresponding
advice will be triggered whenever a function is invoked. Name
based primitive pointcuts can be composed with control-flow based
pointcuts (cflow and cflowbelow) to form composite pointcuts,
which inspects the run-time stack of function execution.

In Figure 1, the argument variable arg may contain a type
scope, the t in x :: t. When such a type scope is present, the
applicability of a piece of advice is bounded by its pointcut as well
as its type scope. Specifically, when the function in the pointcut is
polymorphic, a type scoped argument only matches executions of
the function with arguments of types that are subsumed by their

scope. This is particularly useful as many functional languages are
polymorphically typed.

Expressions in AspectFun are pretty standard and are evaluated
with a lazy semantics. As mentioned above, the special keyword
proceed may be used inside the body of around advice. When
applied, proceed will resumes the execution of advised functions
or other advice that also designates the same function as its join
point, as in AspectJ.

AspectFun is polymorphically and statically typed. It intro-
duces a concept of advised types [13] that extend types with pred-
icates of the form (f : t). Advised types are inspired by Haskell’s
type classes and are used to capture the need of advice weaving
based on type context. As a result, AspectFun is able to statically
resolve type scopes on pointcut and weave aspects into base pro-
gram. We have built a compiler that employs a type-directed static
weaver to translate an AspectFun program into executable Haskell
code. The readers are referred to [1] for more details.

2.2 Side-Effecting Aspects
We now describe how we extend AspectFun to support side-
effecting aspects. The essential construct we add to AspectFun
is user-defined mutable variables declared at top-level. We use var
as the keyword to begin such a declaration. The precise syntax is
as follows.

Declarations d ::= . . . | var id :: t = e

Such mutable variables are declared with a monomorphic and
ground type, t, and an optional initializing expression, e. Side-
effecting aspects employ mutable variables to keep pertinent state
information. For example, the following declaration introduces a
mutable variable profileMap whose type is Map.Map String Int
with initial value empty1. Later, we shall use it to develop a profil-
ing aspect.

var profileMap :: Map.Map String Int = Map.empty
getProfileMap :: Map.Map String Int
setProfileMap :: Map.Map String Int -> ()

Also associated with each mutable variable declared is a pair
of getter and setter functions. With them, the user can write helper
functions to develop side-effecting aspects. For example, the fol-
lowing function, incProfile, will increase the calling count of a
function whose name is passed to it.

incProfile :: String -> ()
incProfile fname =
let! pMap = getProfileMap --strict evaluation
in let newMap =

case of Map.lookup fname pMap of
Nothing -> Map.insert fname 1 pMap
Just v -> Map.insert fname (v+1) pMap

in setProfileMap newMap

Here we provide another construct, let!, for users to override
the default lazy evaluation semantics of the normal let expres-
sions. In other words, the expression used in the local definition of
a let! expression will be evaluated eagerly unlike its let counter-
part. This is necessary because operations such as getProfileMap
are state-aware and require the current state snapshot before con-
tinuing the subsequent evaluations. This will become clearer when
monadification transformation is introduced later.

Besides mutable variables, output is also an important element
for side-effecting aspects such as tracing aspects. Hence we also
provide a function, putMsg :: String -> String -> (), for
performing output in aspects. The first string parameter is the name
of aspect which puts the second parameter (the message) into an

1 The Map is an alias of the Data.Map in Haskell prelude.

190

internal buffer. Together with the getter and setter functions, they
form the state API of an aspect. Finally, in a side-effecting aspect,
it is often required to serialize the execution of state-affecting
expressions. Hence we also add sequencing expressions, (e1; e2),
to AspectFun.

Given the above background, we shall present three examples to
illustrate our side-effecting aspects. The first example declares two
variables, profileMap and memoMap, and then defines two aspects,
profiler and memoFib, to profile and memoize the function fib
for computing the Fibnoacci numbers.

Example 1

var profileMap :: Map.Map String Int
var memoMap :: Map.Map Int Int

fib n = if n <= 1 then 1
else fib (n - 1) + fib (n - 2) in

--aspect 1
profiler@advice around {fib} (arg) =

incProfile "fib"; proceed arg in
--aspect 2
memoFib@advice around {fib} (arg) =

case lookupCache arg of
Just v -> v
Nothing -> let! v = proceed arg

in insertCache arg v; v in
fib 10

Note that, in the above code, we use let! expression to get
the return value of proceed. The reason is quite obvious. Since
an invocation of proceed inside advice is defined to resume the
execution of the advised function as well as other (possibly side-
effecting) aspects that also designate the same function as their join
point, we should ensure that the proceed call is indeed executed
immediately so that the state maintained by its side-effecting as-
pects is consistent.

The second example is a tracing aspect for the tail recursive
factorial function, adapted from Kishon’s thesis work on program
monitoring [7].

Example 2

fac n acc = if n == 0 then acc
else fac (n - 1) (n * acc)

var indent :: String = ""
tracer@advice around{fac, (*)} (arg) =
\arg2 ->

let! ind = getIndent in
setIndent ("| " ++ ind);
putMsg "tracer" (ind++tjp++" receives ["++

show arg ++ ", " ++ show arg2 ++ "]");
let! result = proceed arg arg2 in

setIndent ind;
putMsg "tracer" (ind++tjp++" returns " ++

show result);
result

Here the state to be maintained is the indentation string, kept by
the variable, indent. The tracer aspect traces the execution of
the functions, fac and (*), respectively. The tjp is a keyword for
referring to the function current being advised, namely the current
join point2. The advice simply traces the arguments passed to and
the results returned from the advised functions. Unfortunately, the

2 AspectFun does not support the tjp facility yet. Nevertheless, we can
write two almost identical aspects to trace fac and (*), respectively.

above aspect declaration does not render proper tracing of the
factorial function, as its execution interferes with the lazy semantics
of the factorial function. We shall discuss this in detail in the next
section.

The last example shows a case in which the base program to be
advised involves its own state manipulation and is thus written in a
monadic style too 3. We illustrate this by refactoring the monadic
version of the “display update” example presented by Hofer and
Ostermann [5].

The context of this “display update” example [6] is a simple fig-
ure editor that manipulates typical shapes such as points and lines.
Any update done on such shapes will trigger an action for display
refresh. It is a model example of crosscutting concerns (i.e., display
refresh) that can be nicely handled by aspect-oriented program-
ming. In their work, Hofer and Ostermann aim to show a simula-
tion of aspect-oriented programming with monads. To achieve this
goal, besides introducing IO monad for state manipulation, they
also introduced an additional monad, MonadIO, and an overloaded
withStateChange operator to implement the crosscutting concern
of display refresh.

By contrast, we use side-effecting aspects to separate the con-
cern of display refresh from the base module of shape manipula-
tion; thus the base module only needs to use the IO monad to sup-
port shape updates. We list below the main fragments of the refac-
tored code.

Example 3

newtype Point = P (IORef (Int, Int))
newPoint :: Int -> Int -> IOPoint ...
setPointX, setPointY :: Point -> Int -> IO () ...
movePointBy::Point-> Int -> Int -> IO () ...
newtype Line = L (IORef (Point, Point))
newLine :: Point -> Point -> IO Line ...
getLineP1, getLineP2 :: Line -> IO Point ...
moveLineBy :: Line -> Int -> Int -> IO ()
...
sample :: Line->IO()--a test case
sample l = moveLineBy l 7 (-9)
data DisplayObject=forall a.Displayable a =>

DisplayObject a
--user variable
var displayObject ::DisplayObject =

DisplayObject EmptyDisplay

--aspect 1:before advice
initDisplay@advice around{sample} (l) =

setDisplayObject (DisplayObject l); proceed l

--aspect 2: after advice
moveUpdate@advice around{movePointBy,moveLineBy

-cflow(updateDisplay)} (arg) =
\dx -> \dy -> updateDisplay (proceed arg dx) dy

--aspect 3: after advice
setUpdate@advice around{setPointX,setPointY

-cflow(updateDisplay)} (arg) =
\newVal -> updateDisplay (proceed arg) newVal

updateDisplay f n = let a = f n in refreshDisplay; a
refreshDisplay:: IO ()
refreshDisplay = let DisplayObject d=getDisplayObject

in display d; putStrLn ""

3 Currently, AspectFun does not yet support base programs written in
monadic style. The code presented here is written by hand in accordance
with our existing design of an Haskell-enhanced version of AspectFun.

191

Here the user variable, displayObject, is the object to display,
which is either a line or a point. The function sample is a test case.
There are three aspects. The first one, initDisplay sets the object
to display before running the test case, sample. The other two as-
pects, moveUpdate and setUpdate, trigger the display refresh op-
eration when a point or a line is updated. They both have composite
pointcuts: Besides the update functions, they include a control-flow
based pointcut, -cflow(updateDisplay), which ensures that the
advice code will not be triggered when the updateDisplay func-
tion is still in execution, thus preventing repeated display refresh
during a single update operation.

3. Monadifying Aspect Programs
The first step of AspectFun compilation is to weave aspects into
the base program, thus producing an integrated program, which we
call a woven code. In the presence of side-effecting aspects, it is
necessary for the woven code to be generated in monadic style, in
order to retain its functional purity.

This section describes how we enhance the compiler of Aspect-
Fun to support side-effecting aspects through incremental monad
computation. First, we present a general framework for monadify-
ing functional expressions in a non-strict evaluation context. Next,
we illustrate the method to incorporate a state monad into the
framework so that we can also monadify those state-aware func-
tions used by side-effecting aspects properly. Finally, we identify
further requirements for preserving laziness by examining the trac-
ing aspect example, and describe an extension of the framework to
fulfill these requirements.

3.1 Monadifying Pure Expressions
We begin with a general framework for monadifying functional ex-
pressions. Like the pioneering work of Lämmel [9], our monad-
ification transformation also consists of two major steps, namely
A-normalization [3] and monad introduction.

3.1.1 A-Normalization
Given an expression, the A-normalization step converts it into a
sequential version according to the call-by-value sequencing. Such
normalized expressions, called A-normal forms, are a popular inter-
mediate representation used in compilers for functional languages.
Essentially, in an A-normal form, function applications and the
condition parts of if-expressions are all flattened by let-expressions.

Let’s take the profiling of the fib function presented before as
an example. The input to our A-normalization step is the following
woven Haskell code generated by the AspectFun compiler.

let profiler proceed arg = incProfile "fib";
proceed arg in

let fib n = if n <= 1 then 1
else profiler fib (n - 1) +

profiler fib (n - 2) in
profiler fib 10 --main

The aspect, profiler, becomes an ordinary function with an ad-
ditional parameter, proceed that captures the continuation to the
advised function. Moreover, all invocations of the fib function are
now left to the profiler function.

After A-normalization, the above profiler program is converted
to the following code.

let profiler proceed arg = incProfile "fib";
proceed arg in

let fib n = let nleq1 = n <= 1 in
if nleq1 then 1
else let nm2 = n - 2 in

let fibm2 = profiler fib nm2 in
let nm1 = n - 1 in

let fibm1 = profiler fib nm1 in
(+) fibm1 fibm2 in

profiler fib 10 --main

3.1.2 Monad Introduction
The second step of the monadification transformation is monad
introduction. This aims to lift computations in the input expressions
to a designated monad, (M, return,�). Its essence can be captured
by the monadification operatorM defined over types as follows.

M(t1 → t2) ⇒ M(t1) → M(t2) (1)
M(a) ⇒ M a (2)

where rule (1) applies to functional types and rule (2) applies on
non-functional types.

We note that the monadification schemes proposed by Lämmel
[9] and Erwig and Ren [2] do not lift arguments of functions to
monadic space. By contrast, we lift function arguments to monadic
space in order to capture the computation of arguments inside the
aspect monad and thus support the non-strict evaluation semantics
of AspectFun.

The concrete steps for lifting computations to monadic space
are formalized as a rewriting function, [[·]]Γ , that converts an A-
normalized expression, e, to a monadified version, eM , over the
designated monad, M . The subscript Γ is a type environment con-
taining the types for the free identifiers occurring in e. Figure 2 dis-
plays the definition of [[·]]Γ , implicitly parameterized over a monad
M .

The key parts of the moandification function [[·]]Γ can be sum-
marized as follows. Constants and primitive functions are lifted to
the monadic space by the return operation and the liftM oper-
ation of the designated monad, respectively. For if expressions,
since their boolean conditions had been turned into a monadified
expression, we need to apply a do-binding to trigger its evaluation.
The remainding cases are quite straightforward.

The following code shows the monadified version of the fib
function defined earlier4.

fibM :: M Int -> M Int
fibM n =

do let leq_n_one = (liftM2 (<=)) n (return 1)
nleq1 <- leq_n_one
if nleq1 then return 1
else do let nm2 = (liftM2 (-)) n (return 2)

let fibnm2 = profilerM fibM nm2
let nm1 = (liftM2 (-)) n (return 1)
let fibnm1 = profilerM fibM nm1
(liftM2 (+)) fibnm1 fibnm2

[[·]]Γ as defined possesses the following two good properties. First,
its output expression has the desired monadified type.

Proposition 1 (Type Lifting) Given an A-normalized expression e
and a type environment Γ, if Γ � e : t, then, regardless of the
underlying monad,

M(Γ) � [[e]]Γ :M(t)

whereM(Γ) is the pointwise application ofM to the type part of
all bindings in Γ.

Second, it preserves the semantic value of the input expression.
This can be specified by replacing the underlying monad with the
Identity monad.

Proposition 2 (Semantics Preserving) Given an A-normalized
expression e and a type environment Γ, if Γ � e : t and e �−→∗

β v,

4 A fold over the do-bindings is performed to polish the code.

192

[[�]]Γ : e −→ eM

(CONST) [[c]]Γ = return c

(PRIM) [[p]]Γ = liftMn p where n is the arity of primitive function p

(VAR) [[x]]Γ = x

(IF) [[if a then e1 else e2]]Γ = let eM
1 = [[e1]]Γ

eM
2 = [[e2]]Γ

in if isConst(a) then if a then eM
1 else eM

2

else do {x′ ← a; if x′ then eM
1 else eM

2 }
where x′ is fresh

(LAM) [[λx.e]]Γ = λx.[[e]]Γ
(APP) [[e a]]Γ = [[e]]Γ [[a]]Γ
(LET) [[let x = e1 in e2]]Γ = let eM

1 = [[e1]]Γ
eM
2 = [[e2]]Γ

in do {let x = eM
1 ; eM

2 }
where a ∈ Atoms ::= c | x

Figure 2. Monadification Function

then runIdentity([[e]]Γ) = v, where the underlying monad, M ,
is set to the Identity monad and runIdentity is the standard
function for extracting values from the computation of [[e]]Γ.

3.2 Monadifying State-Aware Functions
Given the monadification framework presented above, we now
proceed to specialize it by introducing state monads to support
side-effecting aspects. The essence of our scheme is a state monad
that encapsulates state information maintained by those state-aware
functions assisting the user in developing side-effecting aspects.
Specifically, state information consists of two parts: a user variable
record and an output buffer. We shall refer to them as aspect state
and the state monad encapsulating them as aspect monad.

Since the specific content of the user variable record depends on
individual program, we provide the following generic state monad,
GM based on the standard state monad of Haskell. The putMsgM
function extracts its string arguments out of the monad and appends
them to the internal output buffer. In addition, two utility functions,
getUserVar and modifyUserVar, are supplied to facilitate the
generation of the monadified versions of state accessor functions
for user variables.

type GM v = State (v, OutputBuf)
-- v is a program-specific type

OutputBuf = [(String, String)]--(advName,msg) pair
putMsgM :: GM v String -> GM v String -> GM v ()
putMsgM a m =

do a’ <- a; m’ <- m
modify $ \(u, ms) -> (u, (a’, m’):ms)

getUserVar :: GM v v
getUserVar = do (uv,_) <- get

return uv
modifyUserVar :: (v -> v) -> GM v ()
modifyUserVar trans = modify $ \(u, s) -> (trans u, s)

The definition of the aspect monad for a specific program is derived
from its declarations of user variables. Take the profiler aspect
as an example, the enhanced AspectFun compiler will generate
the following definition of a specialized aspect monad and the
associated accessor functions for its user variable, profileMap.

--one variable one field
data UserVar = U {profileMap::Map.Map String Int}
--aspect monad
type M = GM UserVar

--state accessor functions
getProfileMapM :: M (Map.Map String Int)
getProfileMapM = getUserVar>>= \u -> return $ profileMap u
setProfileMapM :: M (Map.Map String Int) -> ()
setProfileMapM var =
do var’ <- var

modifyUserVar $ \u -> u{ profileMap = var’ }

Functions such as getProfileMapM defined above, as well as
those which invoke them are state-aware; their invocations mostly
require immediate access to the underlying state monad. Yet, as
mentioned before, AspectFun is a lazy language. Hence we pro-
vide let!-expression to enable the user to override the default lazy
evaluation semantics when applying such state-aware functions. In
the context of monadic space, this means that we have to trigger the
computation embodied in the definition of a let!-expression. Hence
we need to enhance the monadification with a new case to handle
let!-expressions as follows.

[[let! x = e1 in e2]]Γ =

let eM
1 = [[e1]]Γ
eM
2 = [[e2]]Γ

in do {x′ ← eM
1 ; let x = return x′; eM

2 }
where x′ is a fresh identifier

Here the do-binding triggers the computation captured in the
monadified expression, eM

1 , ensuring that the state information
fetched in the expression eM

1 is the current snapshot.
Alternatively, we could leave the monadification function un-

changed by treating the let!-expressions as a syntactic sugar as fol-
lows.

let! x = e1 in e2 → let x = e1 in (x; e2)

However, as will become clear in the next sub-section, this ap-
proach will cause many unnecessary operations in a lazy evaluation
context.

As to the sequencing expression, e1; e2, its monadification is
rather straightforward. We simply wrap the monadification of each
component expression within a do-expression as follows.

[[e1; e2]]Γ = do {[[e1]]Γ ; [[e2]]Γ}
Let us revisit the profiling example defined previously to illus-
trate the enhanced monadification function. The fib function does
not use any let!-expressions, so its monadified version remain un-

193

changed. The profiler aspect employs a sequencing expression.
Hence its body becomes a do-expression after monadification. Fi-
nally, the monadification of the helper function incProfile is
more involved, because of the use of the let!-expressions. Applying
the enhanced monadification function to it, we obtain the following
monadified version for the incProfile function.

profilerM :: (M Int -> M Int) -> (M Int -> M Int)
profilerM proceed arg = do incProfileM (return "fib")

proceed arg
incProfileM fname =

do pMap’ <- getProfileMapM -- access user variable
let pMap = return pMap’
let lookupResult’ = (liftM2 Map.lookup) fname pMap
lookupResult <- lookupResult’
let newMap = case lookupResult of

Nothing -> (liftM3 Map.insert)
fname (return 1) pMap

(Just v’) -> do let v = return v’
let np1 = (liftM2 (+)) v (return 1)
(liftM3 Map.insert)

fname np1 pMap
setProfileMap newMap

3.3 Preserving Laziness
With the introduction of the specialized state monad and the eager
approach of monadifying let!-expressions, we can support the de-
sired order of evaluation required for side-effecting aspects. How-
ever, monadification brings along its own “side effect”. Whereas
an expression may be evaluated once under lazy semantics despite
being referred to (by an identifier) multiple times in a program, its
monadified counterpart may be evaluated at every reference. When
the monad involved is state-aware or can perform IO operation,
multiple evaluations of the monad can interfere eccentrically with
the underlying base program that obeys lazy semantics. This is-
sue emerges when we attempted to monadify the tracing aspect of
Example 2. As shown in [7], according to the lazy semantics, the
tracing result of (fac 3 1) should be

fac receives [3, 1]
| fac receives [2, 3]
| | fac receives [1, 6]
| | | fac receives [0, 6]
| | | | times receives [1, 6]
| | | | | times receives [2, 3]
| | | | | | times receives [3, 1]
| | | | | | times returns 3
| | | | | times returns 6
| | | | times returns 6
| | | fac returns 6
| | fac returns 6
| fac returns 6
fac returns 6

However, our monadified tracing aspect of fac does not yield the
same result. Consider the following code for the tracing example
generated by our monadification function5.

tracerFacM :: (M Int -> M Int -> M Int) ->
(M Int -> M Int -> M Int)

tracerFacM proceed arg arg2 =
do getIndentResult <- getIndentM

let ind = return getIndentResult
let ind’ = (liftM2 (++)) (return "| ") ind
setIndent ind’
let show_arg2 = (liftM show) arg2
let str_1 = (liftM2 (++)) show_arg2 (return "]")
let str_2 = (liftM2 (++)) (return ",") str_1
let show_arg = (liftM show) arg

5 The tracerMulM is very similar to tracerFacM, and thus omitted.

let str_3 = (liftM2 (++)) show_arg str_2
let str_4 = (liftM2 (++)) (return "fac receives [")

str_3
let str_5 = (liftM2 (++)) ind str_4
putMsgM (return "tracerFacM") str_5
proceedResult <- proceed arg arg2
let result = return proceedResult
setIndent ind
let s_result = (liftM show) result
let str_6 = (liftM2 (++)) (return "fac returns ")

s_result
let str_7 = (liftM2 (++)) ind str_6
putMsgM (return "tracerFacM") str_7
result

facM :: M Int -> M Int -> M Int
facM n acc =
do let eq_n_zero = (liftM2 (==)) n (return 0)

neq0 <- eq_n_zero
if neq0 then acc
else do let nmacc = (tracerMulM (liftM2 (*)) n acc

let nm1 = (liftM2 (-)) n (return 1)
(tracerFacM facM) nm1 nmacc

mainM = (tracerFacM facM) (return 3) (return 1)

Running the above monadified tracing program with (facM
(return 3) (return 1)) yields the following incorrect trace.

fac receives [3, 1]
| | times receives [3, 1]
| | times returns 3
| fac receives [2, 3]
| | | | times receives [3, 1]
| | | | times returns 3
| | | times receives [2, 3]
| | | | times receives [3, 1]
| | | | times returns 3
| | | times returns 6
| | fac receives [1, 6]

...

| | | | | | times receives [3, 1]
| | | | | | times returns 3
| | | | | times receives [2, 3]
| | | | | | times receives [3, 1]
| | | | | | times returns 3
| | | | | times returns 6
| | | | times returns 6
| | | fac returns 6
| | fac returns 6
| fac returns 6
fac returns 6

From the generated trace, we can see that some expressions,
such as times 3 1, are evaluated more than once and in wrong or-
ders. In other words, the monadified tracing program obtained not
only changes the order of evaluation but also duplicates the eval-
uation of some expressions, thus delivering wrong order of trac-
ing messages. This result is disturbing: Aspects such as tracing are
usually perceived as a non-interference aspect in typical imperative
aspect-oriented programs. However, for aspect-oriented functional
language with lazy semantics, such aspects can turn out to be inter-
fering despite the introduction of monadic computation.

A closer look at the monadified aspect code reveals the source
of the problem: Calling the lifted show function, (liftM show),
with the argument arg2, which in turns invokes the show function
to obtain string representations of the arguments. This will lead
to premature evaluation of the invocation of the multiplication,
which is also being traced. Later, when the call to facM is resumed
via proceed call, the multiplication call will be triggered and
traced again. Hence the problem here is how to preserve the lazy

194

semantics of the base program while weaving aspects which are
perceived to be non-interfering, such as tracing. Unfortunately,
existing monadification schemes such as [9, 2, 3, 4] do not address
these issues.

There are indeed two issues involved. First, although the use of
any strict function in an aspect will result in evaluation of function
arguments and thus change the order of evaluation, the monadifica-
tion process should at least ensure that no duplication of evaluation
occurs. Second, the show function aggrevates the situation by ex-
plicitly displaying this subtle change in the evaluation order to the
trace user. As pointed out by Kishon, we should find an alternative
display function that does not evaluate its argument and do a post
lookup process to retrieve the value of its argument, a thunk or an
evaluated value, to be compliant with lazy semantics.

We employ two techniques to address this issue of aspect inter-
ference and the need of show function, respectively. The first one
is to maintain a cache of function arguments and wrap it around
the original aspect monad to form a new aspect monad. The cache
stores the values of function arguments which are either a thunk
or an evaluated value, just like any typical implementation of lazy
evaluation. This is to ensure that the arguments will not be evalu-
ated more than once. The new aspect monad, its monad operation
code and other auxiliary definitions are sketched in Figure 3.

-- Cells: thunks or values
data Cell = forall s a.Cell Bool (CState s a)
type Cache = Map.Map Int (Maybe Cell)
newtype CState s a = CState{

realrunCState :: (s, Cache) ->
(Either a Int, (s, Cache))}

runCState :: CState s a -> (s, Cache) -> (a, (s, Cache))
runCState a (s, cs) =

let (ea, (s’, cs’)) = realrunCState a (s, cs)
in fromCacheEither ea (s’, cs’)

type M a = CState (UserVar, OutputBuf) a
instance Monad (CState s) where

return t = CState $ \(s, cs) -> (Left t, (s, cs))
ma >>= k = CState $
\(s, cs) -> --(Left a) or (Right n)
let (ea, (s’, cs’)) = realrunCState ma (s, cs)

(ra, (s’’, cs’’)) = fromCacheEither ea (s’, cs’)
in realrunCState (k ra) (s’’, cs’’)

instance MonadState s (CState s) where
put s’ = CState $ \(s, cs) -> (Left (), (s’, cs))
get = CState $ \(s, cs) -> (Left s, (s, cs))

fromCacheEither :: forall s a. Either a Int ->
(s, Cache) -> (a, (s, Cache))

fromCacheEither (Left a) (s, cs) = (a, (s, cs))
fromCacheEither (Right n) (s, cs) =

... evaluate the thunk of this cell via fromCell
and store its result

fromCell :: Cell -> (s, CacheSet) ->
(Either a Int, (s, CacheSet))

fromCell (Cell _ c) = realrunCState (unsafeCoerce# c)
--Functions for manipulating the cache
getNewCacheLoc :: CState s Int
getNewCacheLoc = ...get a new cell loc from cache ...
setCache :: Int -> CState s a -> CState s a
setCache n t = ...put thunk t into loc n of the cache ...
add2Cache:: CState s a -> CState s (CState s a)
add2Cache arg = do n <- getNewCacheLoc

return $ setCache n arg

Figure 3. Cache-extended State Monad

The cache is a map from integers (locations) to cells containing
thunks or values . The type (CState s a) is the key element
of the new aspect monad. It can be viewed as an extended state
monad wrapped by a cache of cells. When feeding an extended
state, (s, cacheSet), to run, the new aspect monad will produce an
”either-object”: either a real value, (Left a), or a cell location,
(Right n), of the cache. In the definition of the bind operator
(�=) of the new aspect monad, we first activate such an action
using realrunCState to obtain an either-object, and then feed it
to the function fromCacheEither which may look up the cache to
trigger the monadic computation stored therein via the fromCell
function. Note that, due to the use of forall quantifier in the
definition of Cell type, we have to use the GHC extension of
unsafeCoerce function in the fromCell function.

Also shown in Figure 3 are three functions for manipulating
the cache. Function getNewCacheLoc extends the cache and re-
turns the new location. Function setCache puts a monadic com-
putation into the designated location of the cache. Finally, function
add2cache employs them to put a monadified function argument
computation into the cache.

With the introduction of (CState s a), the issue of duplicated
evaluation of function arguments is resolved. Yet the lifted show
function still makes the tracing messages out of order. We need to
provide a special version of show to preserve the desired message
order. The following function, showM, is the version we have de-
signed for this purpose.

showM :: M Int -> M String
showM a = case fst $ realrunCState a

(emptyM, emptyCacheSet) of
Left v -> return $ show v
Right n -> return $ "<M’M:" ++ show n ++ "|"

Specifically, the new showM function does a “dry run” of the
monad computation using an empty state, and if the result is a cell
location, it returns a marker (“<M’M:”) and a cell location to signal
that its argument is kept in the cell. Afterwards, we provide a post
processing function deserialize to traverse the output buffer and
replace such marked locations with the value stored the specified
cell of the cache.

Finally, the monadification function of Section 3.1 needs to be
enhanced by applying the add2Cache function to those let-bound
expressions which are fully applied function calls. Specifically, the
(LET) part of [[·]]Γ needs to be refined as follows.

[[let x = e1 in e2]]Γ =

let eM
1 = [[e1]]Γ
eM
2 = [[e2]]Γ

in if e1 is of functional type or a constant
then do {let x = eM

1 ; eM
2 }

else do {x← add2cache $ eM
1 ; eM

2 }
Following this enhancement, the revised monadification of the trac-
ing program is as follows. Running it with facM (return 3)
(return 1) will produce the same result as described in [7].

tracerFacM :: (M Int -> M Int -> M Int) ->
(M Int -> M Int -> M Int)

tracerFacM proceed arg arg2 =
do getIndentResult <- getIndentM

let ind = return getIndentResult
ind’ <- add2Cache $ (liftM2 (++)) (return "| ") ind
setIndentM ind’
s_arg2 <- add2Cache $ showM arg2
str_1 <- add2Cache $ (liftM2 (++)) s_arg2 (return "]")
str_2 <- add2Cache $ (liftM2 (++)) (return ",") str_1
s_arg <- add2Cache $ showM arg
str_3 <- add2Cache $ (liftM2 (++)) s_arg str_2

195

str_4 <- add2Cache $
(liftM2 (++)) (return "fac receives [") str_3

str_5 <- add2Cache $ (liftM2 (++)) ind str_4
putMsgM (return "tracerFac") str_5
proceedResult <- proceed arg arg2
let result = return proceedResult
setIndentM ind
show_res <- add2Cache $ showM result
str_6 <- add2Cache $

(liftM2 (++)) (return "fac returns ") show_res
str_7 <- add2Cache $ (liftM2 (++)) ind str_6
putMsgM (return "tracerFac") str_7
result

facM :: M Int -> M Int -> M Int
facM n acc =

do eq_n_zero <- add2Cache $ (liftM2 (==)) n (return 0)
neq0 <- eq_n_zero
if neq0 then acc
else do nmacc <- add2Cache $

(tracerMulM (liftM2 (*)) n acc
nm1 <- add2Cache $ (liftM2 (-)) n (return 1)
(tracerFacM facM) nm1 nmacc

Lastly, note that in Section 3.2, we decided against treating let!-
expression as syntactic sugar. With the introduction of cache into
our system, it is worth noticing that we do not have to introduce
add2cache operations to the monadified let!-definition.

4. Transforming Monadic Programs
Although AspectFun does not yet support monadic base programs,
we can still describe how to extend our modification transformation
when the base program is already monadic.

4.1 Using Monad Transformers
In the presence of monadic base programs, we need to employ
the state monad transformer mechanism to combine the monad of
the base program with the aspect monad. For example, the display
update program in Example 3 uses the IO monad, hence the aspect
monad for it is defined as follows.

type S m a = StateT (UserVar, OutputBuf) m a
type M a = S IO a

In general, the monadification operator M should be extended as
follows:

M(t1 → t2) ⇒ M(t1)→M(t2) (3)
M(a) ⇒ MT N a (4)

M(N (t1 → t2)) ⇒ MT N (M(t1)→M(t2)) (5)
M(N a) ⇒ MT N a (6)

where N is the monad used in the base program (base monad), and
MT is the monad transformer being used. In Example 3, N is IO
and MT is StateT (UserVar, OutputBuf).

Finally, the monadification function, [[·]]Γ , also needs to be ad-
justed. There are two categories of changes. Firstly, we must apply
proper lifting operations when passing computed values between
the base monad and the aspect monad. Essentially, we shall use
liftM operator to lift operations on the base monad before apply-
ing them, and use liftN operator to lift results of computations in
the base monad, N. The following enhanced versions of (PRIM) and

(APP) illustrate the ideas.

(PRIM) [[p]]Γ = liftMn p

where n is the arity of the primitive function
or the base monad operation p

(APP) [[e1 e2]]Γ =

if isFullAppBaseMonadOP (e1)

then do {x← [[e1]]Γ [[e2]]Γ; liftN x}
else [[e1]]Γ [[e2]]Γ

Secondly, we need to extend the [[·]]Γ function to handle the bind
(�=) and the return operations of the base monad.

(BIND) [[do {x← e1; e2}]]Γ =

do {x′ ← [[e1]]Γ; let x = return x′; [[e2]]Γ}
(RETURN) [[return e]]Γ = [[e]]Γ

In the case of (BIND), we need to use the return of the new monad
to move the result of do-binding action back to the new monad. As
to the case of (RETURN), we simply drop the return of the base
monad and return the monadified expression.

The following code snippets show the original version of the
getLineP1 function and its monadified version.

getLineP1 :: Line -> IO Point
getLineP1 (L l) =

do (p1,_) <- readIORef l
return p1

getLineP1M :: M Line -> M Point
getLineP1M ll =

do (L lBindout) <- ll --PatternMatching
let l = return lBindout --Bind
bmOP <- (liftM readIORef) l --Prim
(_, p1BindOut) <- liftIO bmOP --App
let p1 = return p1Bindout --Bind
p1 --Return

4.2 Unified Monadification Scheme
We started from a simple state monad of user variables and output
buffer, and then extended it with a cache facility. Now we gener-
alized the state monad along another direction using monad trans-
former. It would be nice to combine these different enhancements
under a unified monadification framework. Specifically, we devise
a cache-extended state monad transformer that can accommodate
the aspect monads presented so far as special cases. This monad
transformer, CStateT, is defined in terms of another monad trans-
former, CacheT as follows.

newtype CacheT m a = CacheT{
realrunCacheT :: Cache ->

m (Either a Int, Cache)}
type CStateT s m a = CacheT (StateT s m) a

instance MonadTrans CacheT where
lift ma = CacheT $

\cs -> ma >>= \a -> return (Left a, cs)

instance Monad m => Monad (CacheT m) where
return t = CacheT $ \cs -> return (Left t, cs)
ca >>= k = CacheT $ \cs ->

do (ea, cs’) <- realrunCacheT ca cs --Either a
(ra, cs’’) <- fromCacheEither ea cs’
realrunCacheT (k ra) cs’’

instance MonadIO m => MonadIO (CacheT m) where
liftIO = lift . liftIO

...

196

Given the above definitions, we can easily derive the respective
aspect monads defined in previous subsections.

1. The aspect monad of Section 3.2 can be replaced with the
following one:

type M a = CStateT (UserVar, OutputBuf) Identity a
-- identity monad

2. The aspect monad of Section 3.3 can be replaced with the
following one:

type M a = CStateT (UserVar, OutputBuf) Identity a

3. The aspect monad of Section 4.1 can be replaced with the
following one:

type M a = CStateT (UserVar, OutputBuf) IO a

Figure 4 shows a summary of the monads we developed along the
way towards our goal.

StateT s m a

CacheT (StateT s m) a

CState s a

State s a

Figure 4. Summary of the Monad Transformations

5. Related Work
Research works about monadification can be traced back to those
on continuation passing style conversion [3, 4], where compiler-
based transformation rules were developed to convert all functions
and intermediate results in a program into monadic form. In par-
ticular, the A-normalization technique was introduced in [3]. Al-
though transformations rules for both call-by-value and call-by-
name were presented, no concerns about lazy semantics (call-by-
need) were discussed.

Our monadification scheme is inspired by the monad introduc-
tion transformation of Lämmel [9], in which a set of type-directed
transformation rules were devised to convert A-normalized expres-
sions into monadic computation. The rules are given in natural
semantics style and exhibit a degree of non-determinism to sup-
port the case of monadifying only selected functions. Recently, Er-
wig and Ren [2] have developed a set of syntax-directed rewriting
rules that can convert a group of selected functions into a monadic
form and identified the correctness criteria for the conversion. Once
again, neither of them addresses the issues related to lazy semantics
either.

In this work, the monadification transformation is performed af-
ter type inference and static weaving of the base program and its
side-effecting aspects. Hence we have full type information of the
expression available for monadification. Moreover, our monadifi-
cation scheme differs from theirs by lifting function parameters to
the monadic space, too. While this decision enables us to derive a

simple monadification function for transforming the woven code in
a lazy context, it prohibits us from being able to monadify only se-
lected functions, as was done by the above two approaches. In par-
ticular, any library functions for AspectFun must also be monadi-
fied if they cannot be simply lifted to work with side-effecting as-
pects. However, none of the approaches, including ours, can handle
the case that the source code of external functions invoked in the
monadified function is unavailable.

Kishon’s thesis work [7, 8] developed a semantics-directed pro-
gram monitoring framework. The main tool his framework em-
ployed for collecting program execution information is code in-
strumentation. His annotation labels for marking program points to
monitor are just like pointcuts in aspect-oriented programming. But
the instrumentation is done at the interpreter (semantics) level, not
source-level. Hence it is easier for his framework to utilize semantic
entities such as environment and store to implement a thunk-based
cache for performing lazy tracing.

The potential relation between aspects and monads was first
suggested by De Meuter [11]. The recent work of Hofer and Os-
termann [5] explored this subject in further depth and presented a
detail comparison between aspects and monads in terms of two di-
mensions: their capabilities and effects on modularity. Our example
of “display update” is based on the code of their work.

6. Conclusions and Future Work
We have proposed a simple state manipulation construct for devel-
oping aspects that can perform side-effecting operations in aspect-
oriented lazy functional languages. Such aspects are good for moni-
toring the execution state of the base program in a modular manner.
We have also presented a systematic monadification scheme to re-
alize them by translating the woven code to a purely monadic style
functional code. Along the way, we have identified the difficulties
involved in monadifying such side-effecting aspects in a lazy func-
tional setting and proposed a solution which employs a cached state
monad transformers to reconcile the gap between side effects and
lazy semantics.

The AspectFun compiler has been extended accordingly to sup-
port the proposed constructs for developing side-effecting aspects.
However, it is clear that the generated monadic code can be im-
proved in certain ways. Indeed, a closer examination of the monad-
ified code generated by our compiler for the tracing example re-
veals that most of the calls to add2Cache function can be opti-
mized away. Specifically, all such calls inside tracerFacM can
be eliminated since the variables receiving the call results, such
as s arg and str 1, are used only once therein. However, since
arg and arg2 are used more than once in the tracer aspect, the two
calls to add2cache for binding nmacc and nm1 inside facM cannot
be eliminated. Hence we plan to investigate how to optimize the
monadic code via some static analysis techniques. In particular, we
speculate that the type-based usage analysis developed in [14] can
be adapted to serve our purpose.

Another direction we intend to explore is how to support se-
lective monadification. Currently, our scheme requires full monad-
ification, namely all functions referenced in the program be either
monadified or be lifted to work in the monadic space. In practice,
this may not be acceptable, as many library functions, such as map,
are higher-order functions that cannot be simply lifted to work with
monadified functions. We shall look into the feasibility of devising
a type-directed approach to address the need of partial monadifica-
tion.

7. Acknowledgment
This work is partly motivated by a conversation between the first
author and Hidehiko Masuhara during AOAisa 2007.

197

References
[1] Kung Chen, Shu-Chun Weng, Meng Wang, Siau-Cheng Khoo,

and Chung-Hsin Chen. A compilation model for aspect-oriented
polymorphically typed functional languages. In Static Analysis, 14th
International Symposium, SAS 2007, volume 4634 of LNCS, pages
34–51. Springer-Verlag, 2007.

[2] Martin Erwig and Delin Ren. Monadification of functional programs.
Science of Computer Programming, 52(1-3):101–129, 2004.

[3] Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen.
The essence of compiling with continuations. In Proceedings of the
ACM SIGPLAN 1993 conference on Programming language design
and implementation, pages 237–247, 1993.

[4] John Hatcliff and Olivier Danvy. A generic account of continuation-
passing styles. In Proceedings of the 21st ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 237–247,
1993.

[5] Christian Hofer and Klaus Ostermann. On the relation of aspects and
monads. In Foundations of Aspect-Oriented Languages Workshop at
AOSD, pages 37–46. ACM Press, 2007.

[6] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey
Palm, and William G. Griswold. An overview of aspectj. In ECOOP
’01: Proceedings of the 15th European Conference on Object-
Oriented Programming, volume 2072 of LNCS, pages 327–353.
Springer-Verlag, 2001.

[7] Amir Kishon. Theory and Art of Semantics-Directed Program
Execution Monitoring. PhD thesis, Yale University, June 1992.

[8] Amir Kishon and Paul Hudak. Semantics directed program execution
monitoring. Journal of Functional Programming, 5(4):501–547,
1995.

[9] Ralf Lämmel. Reuse by program transformation. In Functional
Programming Trends 1999. Intellect, 2000. Selected papers from the
1st Scottish Functional Programming Workshop. Intellect, 2000.

[10] Sheng Liang, Paul Hudak, and Mark Jones. Monad transformers and
modular interpreters. In Proceedings of the 22nd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages
333–343, 1995.

[11] W. De Meuter. Monads as a theoretical foundation for aop.
In International Workshop on Aspect-Oriented Programming at
ECOOP, 1997.

[12] Philip Wadler. The essence of functional programming. In
Proceedings of the 19th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pages 1–14, 1992.

[13] Meng Wang, Kung Chen, and Siau-Cheng Khoo. Type-directed
weaving of aspects for higher-order functional languages. In PEPM
’06: Workshop on Partial Evaluation and Program Manipulation,
pages 78–87. ACM Press, 2006.

[14] Keith Wansbrough and Simon Peyton Jones. Once upon a polymor-
phic type. In Twenty-sixth ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 15–28, January 1999.

198

