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Abstract 

We analyze the incentive to innovate for a patent holder under probabilistic patents. In 
a sequential innovation framework, actual patent infringement occurs and there exists 
uncertainty in litigation with the damage award been adjudicated as a reasonable 
royalty. It is demonstrated that complete profit transfer from the second generation 
innovator is feasible for medium degree of the second generation innovation. Whereas 
minuscule and significant innovation induces no pursuit of patent protection through 
infringement suits and hence no profit transfer. We discuss the effects of varying 
patent breadth, either by an adjustment in the written law or by application of the 
doctrine of the equivalents. 
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I. INTRODUCTION 
The division of profit between sequential innovators has attracted recently a great deal 
of attention not only from economists but also from the legal experts. Despite the fact 
that economists have been working on issues of intellectual property rights for a long 
time, the approach taken by the “patent race” literature so far cannot identify all the 
complex effects of patent protection when innovation is cumulative and the ensuing 
intellectual property rights are probabilistic (Lemley and Shapiro, 2005). An 
important research agenda aiming for critical assessment of patents has been pursued 
by Green and Scotchmer (1995). Their work examines the issue of optimal patent 
breadth and duration, and the role of different legal mechanisms for cumulative 
innovations. What emerges from their analysis as the major patent policy concern is 
the lack of incentive to innovate for the potential patent holder in the shadow of 
incomplete transfer of social value facilitated by basic research. Hence longer-lasting 
patents are called for as the remedy for insufficient innovation incentive. 

Green and Scotchmer (1995) confine themselves to the “fencepost” 
interpretation of the patent system upon which majority of the patent literature has 
been built. For example, Hortsmann et al (1995) study the propensity of a patent for a 
successful innovator (the sole winner of a patent race) by specifying a “limited but 
exact coverage” patent system. Almost by definition, important policy implications 
regarding the litigation process cannot be addressed within a perfect fencepost system. 
In reality, however, patent breadth is de facto a matter of Patent Office and court 
interpretation.  
 

This article aims to fill the void left by the fencepost patent literature and further 
dwell into the following important features of probabilistic patents. 
 

Uncertainty in Patent Litigation. Lemley and Shapiro (2005) recently emphasize 
that “uncertainty about validity and scope are critical when studying the enforcement 
and litigation of patents.” Our “signpost” interpretation of the patent system takes into 
account the fact that patent protection is imperfect. The patent system often cannot 
circumscribe its objects, individual patents, in a precise and unquestionable way in the 
phases of granting and enforcing patents. For instance, a patent is described by Kitti 
(1978) as a “lottery ticket”. 

In an earlier attempt to capture this aspect of reality, Waterson (1990) looks at 
uncertainty in patent infringement litigation and employed the concept of “limited but 
inexact patent coverage” in a horizontal product differentiation model. Pursuing this 
line of research one step further in a vertical product differentiation model, Chou and 
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Haller (2007) find that when the inherent uncertainty of a paten infringement case is 
taken into consideration, the division of profit between sequential innovators will 
depend on the degree of the improvement made by the subsequent innovator. In 
particular, within a wide range of model parameters, full rent extraction by the initial 
patent holder is possible. 
    Uncertainty in litigation is a common feature of our papers and the litigation 
literature. Also, the litigation process assumed here and in Chou and Haller (2007) is 
similar to the one most frequently used in the litigation literature. Among the 
precedents are Reinganum and Wilde (1986), Meurer (1989), and Aoki and Hu (1995). 
In their models, the plaintiff (the harmed party) makes a settlement offer to the 
defendant (the party who inflicts harm). The defendant then responds by either 
accepting the offer (take-it) or refusing the settlement proposal (leave-it) after which a 
court action may be taken. The most crucial modeling differences between Chou and 
Haller (2007) and the present paper on the one side and the aforementioned litigation 
literature on the other side are twofold. First of all, the litigation literature focuses on 
asymmetric information between patentees and infringes about costs (harm, damages) 
or benefits (surplus, profits).1 In the presence of asymmetric information, sequential 
equilibrium is the predominant solution concept. In contrast, our model assumes 
symmetric information hence renders subgame perfect equilibrium as the appropriate 
solution concept. Secondly, the conventional litigation literature works with a given 
invention and a fixed probability that the patentee wins a patent infringement suit 
whereas in our approach, the degree of improvement derived from a basic innovation 
determines the patentee’s probability of winning infringement litigation. 
 Asymmetric Bargaining Power. Green and Scotchmer (1995) assume that any 
agreement between the two parties means a equal split of the available surplus among 
them. Nevertheless anecdotal evidences and the more frequent use of preliminary 
injunction point to a paradigmatically shift toward empowering patent holders with 
substantial bargaining power. For instance, the Kodak-Polaroid dispute has been 
touted as the “most prominent example of an increasingly pro-patent sentiment in 
American courts”.2 In terms of procedural and doctrinal changes, the new attitude 
manifests itself through greater leniency of granting preliminary injunctions. Since a 
credible threat is at work in halting the subsequent innovator’s entire operation by 
means of the injunctive measure, a scenario in which patent holder makes the first 
move with a take-it-or-leave-it licensing offer seems worth exploring. 
 Royalties and Damage. The model of the present paper differs from Chou and 
Haller (2007) in an unobtrusive, but important detail: how profit is divided, if the 

                                                 
1 See, e.g., Bebchuck (1984), Reinganum and Wilde (1986), and Meurer (1989). 
2 Schmitt, E. “Business and the Law: Judicial Shift in Patent Cases,” New York Times, Jan. 21, 1986. 
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patent holder prevails in court. In Chou and Haller (2007), after rendering the verdict 
of infringement, the court always grants the patent holder what she has demanded as a 
licensing fee at the very beginning of bargaining. By and large, the analysis of that 
model remains robust by the additional stipulation that the court-imposed royalty 
must not exceed the total profit. Note that, prior to 1946 a patent holder was allowed 
to choose between the amount of damages she suffered and the amount of profit 
earned by the infringer. Since then, it is the courts rather than the plaintiffs who 
determine royalties and damages paid by infringers. One can argue, though, that in 
recent years the patent system has been leaning towards patent holders more heavily 
than ever (Dreyfuss, 1989; Merges, 1995). 
    If determination of royalties and damages is left to the courts’ discretion, then the 
issue of reasonable royalty arises and ought to be addressed. Since 1946, several 
doctrines of reasonable royalty have been applied.3 In the current model, we postulate 
that after a verdict of infringement the court awards a royalty equal to the profit made 
by the infringer. Given the other specifications of our model, this assumption proves 
consistent with the prevailing doctrines. One may contemplate that if the court is 
capable of assessing the right amount of reasonable royalty, the assumption of 
uncertain or unsound judgment associated with the legal system could render 
unjustifiable. Notice, however, that both in our model and in practice the sequencing 
in infringement suits is such that damages are awarded after the finding of 
infringement. Therefore, we consider the two functions of the court, verifying the 
validity of a patent and ruling on infringement versus awarding the damages, as two 
distinct events. 4  Whereas the model assumes uncertainty about who wins an 
infringement suit, it does not postulate stochastic damages in case the court finds the 
defendant guilty of infringement: the court, according to the ex post factual findings, 
always grants the consistent and accurate reasonable royalty.5 

  Doctrine of Equivalents. It has long been recognized that patent breadth is a viable 
instrument to influence inventors’ incentives to innovate. Though not explicitly stated, 
theorists interested in the design of an optimal patent system seem to suggest 
establishing the optimal patent breadth through an adjustment in the written law 
(Klemperer, 1990; Gilbert and Shapiro, 1990; Green and Scotchmer, 1995). However, 
patent protection can also be expanded (or conversely, contracted) overtime through 
legal doctrines without resorting to specific modification of the Patent Codes. In 
particular, the applications of the doctrine of equivalents and the reverse doctrine of 

                                                 
3 We provide a brief survey in appendix A.  
4 Typically, these functions are even exercised by two different courts, the CAFC and trial courts, 
respectively. 
5 Our theoretic underpinng of the reasonable royalty is also consistent with Hypothesis 1 (circularity of 
damage doctrines and licensing offer) discussed in Schankerman and Scotchmer (2001:205). 
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equivalents constitute important instances of such flexibility. The doctrine of 
equivalents apply to the patent representing a “pioneer invention” – which the US 
Supreme Court has defined as “a patent concerning a function never before performed, 
a wholly novel device, or one of such novelty and importance as to make a distinct 
step in the progress in the art,” [Boyden Power-Brake Co. v. Westinghouse, 170 U.S. 
537, 569 (1898)]. As a symmetric counterpart to the doctrine of equivalents, the 
reverse doctrine of equivalents “is and equitable doctrine invoked in applying 
properly construed claims to an accused device. Just as the purpose of the ‘doctrine of 
equivalents’ is to prevent ‘pirating’ of the ‘reverse doctrine of equivalents’ is to 
prevent unwarranted extension of the claim beyond a fair scope of the patentee’s 
invention” [Scripps Clinic & Research Fund. v. Genetech, Inc., 927 F.2d 1565, 18 
U.S.P.Q.2d (BNA) 1001, 18 U.S.P.Q.2d (BNA) 1896 (Fed. Cir. 1991)]. 
 

Summary of Results. Three major results in Chou and Haller (2007) are still 
obtained under the new specification of reasonable royalty. That is, (1) a complete 
profit transfer equilibrium is attainable under a wide range of model parameters, (2) 
higher patent infringement litigation cost may dampen the patent holder’s incentive to 
innovate, and (3) a broader patent breadth may not unreservedly improve the patent 
holder’s incentive to innovate. 
    Unlike in Chou and Haller (2007) where technical intractability forced us to 
focus exclusively on the sub-interval where a complete-profit-transfer equilibrium 
exists, we are now able to partition the interval of proclaimed patent protection into 
three areas that can be characterized by three types of equilibria: 
complete-profit-transfer Take-it equilibrium, incomplete-profit-transfer Take-it 
equilibrium, and No-Action equilibrium, respectively. The strength (effectiveness) of 
the patent system can thus be more comprehensively measured. The range of 
innovation which corresponds to the No-Action equilibria provides the strongest 
incentive to the infringing firm to “trespass” the intellectual property of the patent 
holder. This area consists of an interval adjacent to the basic innovation and an 
interval adjacent to the upper end point of the interval of proclaimed patent protection. 
In other words, “inventing around” (Gallini, 1992) with close imitation or “inventing 
enough” with quite a novel (though still infringing) product may be observed in our 
model without the patent holder taking legal action6. 
    In addition to the length of the complete-profit-transfer interval, the new 
framework allows for computing alternative measures of the efficacy of the patent 
system in transferring profits: the average expected payoff for the patent holder, both 

                                                 
6 Note that in Gallini (1992) imitation resulting from inventing around is costly but always 
non-infringing. 
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in absolute terms and percentage to average expected profit.  
    The paper is organized as follows. In Section 2 we set forth the model to be used 
to investigate the profit division between sequential innovation. In Section 3 we 
perform equilibrium analysis. Section 4 presents the comparative statics of raising and 
lowering infringement litigation costs. Moreover, we look at the instruments used by 
the courts to broaden (shorten) the patent breadth: the doctrine of equivalents and the 
reverse doctrine of equivalents. Some concluding remarks are offered in Section 5. 
Appendix A elaborates on doctrines of reasonable royalty. Appendix B contains more 
technical derivations of results. 
 

Ⅱ. The Model 

We begin with a development of the basic model. There are one research institution 
and one firm. The research institution has acquired a patent on its invention with 
quality x  and is called the patent holder (PH) hereafter. We set 0=x  without loss 
of generality. Through disclosure and examination processes, a patent breadth *y  is 
granted and becomes publicly known. If the firm subsequently develops a product of 
quality yx +  with  ],0[ *yy∈  then this product is perceived by PH as infringing 
upon the patent x . Quality x  is just a basic research outcome and has no market 
value per se.7 We analyze the cases where a commercially profitable product with 
quality y  whereas ∗≤≤ yyx  has been developed by the firm and thus 

infringement occurs.8 The cost of developing quality y  is yc . Once developed, the 

new product can be produced at zero cost and has potential market value yπ . 

The crucial elements of patent litigation can be described as follows: We assume 
that each party incurs the same litigation cost 0>L  for the ease of notations. An 
objective probability )( yf  of PH winning the litigation is assumed to feature 
imperfect patent protection.9 While both parties may agree privately whether or not 

                                                 
7 This type of invention fits into the categories of “research tools” (Schankerman and Scotchmer, 2001) 
and “essential inventions” (Encaoua et al., 2006) in the patent literature. As Chou and Haller (2007) 
find at the industry level, it is a rather typical aspect of R&D in the sense that a commercially profitable 
innovation often results from basic research. 
8 Although Lemley and Shapiro note that very small portion of patents are ever litigated, they argue for 
the importance of evaluating the incentive effects of a probabilistic patent litigation process. Our 
modeling approach focuses on this particular infringement aspect. 
9 Various definitions of “imperfect protection” have been proposed in the patent literature. Waterson 
(1990) employs a “court cost function” defining litigation costs and damage fees awarded to the patent 
holder to depict uncertainty in patent infringement litigation. In a sequential framework, Llobet (2003) 
also adopts this particular view. In addition, he assumes that the patent holder has private information 
about the size of the innovation and, consequently, the probability of winning in litigation. Crampes 
and Langinier (2002) consider patents as imperfect protection against entry if the patent holder cannot 
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an infringement occurs, the court may come to a different judgement. Occasionally, 
we treat y  as variable and )( yf  as a decreasing function of ],0[ *yy∈  with 
( ) 10 =f  and 0)( * =yf . The further away from x  a new invention is, the less 

likely will it get a verdict of infringement. If the court finds infringement in favor of 
the patent holder (the plaintiff), it assesses the extent of true damage )(y , and orders 
compensation of a reasonable royalty, 0≥R . According to the “analytical method” 
(see appendix A) and the model parameters, R  would amount to the actual profit 

made by the infringer, that is, yy cR −= π .10  

We model the strategic interaction as a strategic game between PH and the firm. The 
game lasts one period, which is defined as the time interval beginning when PH 
initiates the licensing offer and concluding when the infringement and damage award 
issues are resolved. The two players take several steps during the period. There is no 
discounting within the period. 

Both players enter the game with exogenously given and commonly known y . 
PH, as a first mover, makes a licensing agreement offer simply by specifying S  with 

[ )∞∈ ,0S , where S  is a fixed-fee royalty: S  represents the amount to be paid by 
the firm for the right to profit from the commercialization of the PH-sanctioned 
technology y . By proposing 0=S , PH tolerates the infringement without legal 
recourse. Knowing the proposed licensing offer, the firm has three strategic 
alternatives: (i) quit the project; (ii) pay the royalty proposed by PH; (iii) challenge 
the patent infringement allegation. In the latter contingency, PH has to make one more 
move: take no action or litigate. In accordance with U.S. practice and the doctrine of 
“lost profit,” we assume that the then-found-infringing firm retains the profit from this 
application while paying its litigation costs plus lost royalties.11 Figure 1 summarizes 
the extensive form of the game, showing the order of decisions and the resulting 
(expected) payoffs.12

                                                                                                                                            
observe infringement, cannot identify the infringer, or cannot afford costly enforcement. Anton and Yao 
(2007) also develop a model allowing for uncertainty in whether the infringement is detected. 
10 This is also compatible with what Anton and Yao (2007) describe as the “best case” enforcement 
regime. 
11 The payoff structure and the order of bargaining-then-litigating events described here is similar to 
what Schankerman and Scotchmer (2001:206, Figure 1) consider in their “licensing a research tool” 
game. However, since their interest is not on assessing probabilistic patents, in the infringement 
subgame with a given liability damage rule, firm 2 in their model is always deemed infringed if it stays 
in the market, that is, ],0[for  ,1)( *yyyf ∈=  in our notation. 
12 One crucial difference to Chou and Haller (2007) lies on the award to a winning PH. Chou and 
Haller (2007) stipulate that PH receives the amount he asks for, i.e. S  in our present notation. Notice 
that in equilibrium, PH never receives more than yy c−π , since the firm has the option to drop out. 
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                    Take-it        ( S , yπ Scy −− ) 

PH－Offer S   FIRM   Drop-out       (0,0) 
                 

Leave-it               
                     

PH－Litigation       ))(,)(( LRyfcLRyf yy −−−− π  
                             

    No-action      ),0( yy c−π  

 
Figure 1: The Extensive From 

Let M={No-action, Litigation} and N={Take-it, Leave-it, Drop-out}. Then the 
normal form of the game has strategy spaces ℜ×ℜ= MSPH for PH and 

ℜ= NSF for the firm. We consider strategy pairs that are Nash equilibria, i.e. each 
player chooses a strategy that maximizes its expected payoff given the other player’s 
strategy. Moreover, we require subgame perfection: Equilibrium pairs of strategies 
induce equilibrium play in all subgames.  

We distinguish four types of pure strategy equilibria. We note that which types 
emerges as the subgame perfect equilibrium of the game depends on the numerical 
specification of the model.13 
 
1.  The Take-it equilibrium is characterized by an offer tS  with  

 ,0≥−− tyy Scπ  

 ,)( LRyfcSc yytyy −−−≥−− ππ  and  

 .0)( ≥− LRyf  
The firm responds with Take-it to this offer. Should the firm play Leave-it in 
response to this offer, then PH would counter with Litigation.  
 

2.  The Leave-it equilibrium is characterized by an offer lS  with  

 ,0)( ≥−−− LRyfcyyπ  

 ,)( lyyyy ScLRyfc −−≥−−− ππ  and 

 .0)( ≥− LRyf  
                                                 
13 PH, as a leader in this game, has the sole interest in proposing the offer R so as to collect the highest 
possible profit share from the firm. The No-Action and Drop-out equilibria where PH cannot generate 
any positive gain are hence not the focus of the following analysis. However, in a more complicated 
many-firm setting, however, these potential types of equilibria may yield impact upon PH’s 
decision-making. 
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 The firm responds with Leave-it to this offer and PH counters with Litigation.  
 
3.  The No-Action equilibrium is characterized by the damage award R  with  

,0)( ≤− LRyf  and 

.0≥− yy cπ   
The firm responds with Leave-it to all offers 0>S  and PH counters with 
No-action. 
 

4.  The Drop-out equilibrium is characterized by an offer dS  with  

  ,0≤−− dyy Scπ  

  ,0)( ≥− LRyf  and  

  .0)( ≤−−− LRyfcyyπ  
The firm responds with Drop-out to this offer. If the firm responded with Leave-it 
to this offer, then PH would counter with Litigation. 

 
We proceed with the following simplifying assumption14: 

(A1) yccya yy ⋅=⋅= ;π  where a  and c  are constants satisfying .0≥> ca  

     A constant marginal revenue occurs in a standard vertical (quality) 
differentiation problem. There consumers have utility functions of the form 

pyU −= θ where θ  is a taste parameter and p  is the price charged for the product 
of quality y . The distribution of tastes across consumers is given by the uniform 
distribution along the interval [ ]θ,0  with 0>θ .Then, given y , the firm maximizes 

its gross profit by choosing the price level 
2
θyPy = . The resulting gross profit is 

4

2θπ y
y = . Put 

4

2θ
=a .  

III. EQUILIBRIUM ANALYSIS 

We first characterize the types of equilibrium of interest. Specifically the interval 
),0( y  can be partitioned into three areas each of which mapping to a particular type 

of equilibrium. Necessary and sufficient conditions for these three types of 
equilibrium outcomes are provided in Proposition 1.  

                                                 
14 Since PH’s sole interest is in maximizing the profit transferrable from the firm, he has no incentive 
to make an offer yy cS −> π . In other words, {Drop-out, Litigate} or {Drop-out, No-Action} can 
never be an equilibrium outcome since Drop-out is dominated by Take-it for the firm. 
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Proposition 1. (i) A Complete-Profit-Transfer Take-it equilibrium emerges, i.e., 
PH can extract all the profit it facilitates from the firm if and only if 

(a)
ca

Lyyfy
−

≤− )(  and  

(b) 
ca

Lyyf
−

≥)( . 

(ii) A No-Action equilibrium emerges, i.e., the firm can retain all the profit if and 
only if 

(c) ( )
ca

Lyyf
−

≤ . 

(iii) An Incomplete-Profit-Transfer Take-it equilibrium emerges, i.e., a licensing 

offer yy
i
t cyyfcaS −<−= π)()(  is proposed and accepted if and only if 

(b) 
ca

Lyyf
−

≥)(  and 

(d) 
ca

Lyyfy
−

>− )( . 

 
Several forces from various sources are at work in driving the above equilibrium 

configuration. Firstly inequality (a) and (d) determine how large a licensing fee would 
make the firm indifferent between acceptance and litigation. Secondly inequality (b) 
and (c) convey to what extent PH’s threat to litigate is credible. Some simple 
comparative statics can help develop further the intuition for Proposition 1. To begin 

with, suppose Lyca  and , , ,  are parameterized such that 
ca

Ly
−

≥  and )( yf  is 

treated as a variable. Note then (a) and (b) are simultaneously satisfied if and only 
if )( yf  is sufficiently large (or alternatively speaking, the degree of second 
generation innovation is sufficiently low). To achieve a full-profit-transfer 
equilibrium with a licensing offer ycaSt )( −= , PH’s threat of litigation in the 

Leave-it subgame has to be credible, that is, 0)( >− LRyf . Since 
ca

Ly
−

≥  can be 

translated as Lyca >− )(  and if ycaR )( −= , then the inequality 0)( >− LRyf  
holds trivially for the boundary case where 1)( =yf . By continuity, a high and only 
a high winning probability )( yf  sustains the full rent extraction equilibrium. 
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Moreover we observe that (a) and (b) together imply 
2
1)( ≥yf . This however reveals 

that a very innovative y  associated with a low winning probability for PH will not 
result in full rent extraction.  

On the other hand, when Lyca  and , , ,  are parameterized such that 
ca

Ly
−

< ,  

whereas (a) is always satisfied, (b) breaks down for all ( ) [ ]1,0∈yf . That is, a low 
degree of innovation (small y ) associated with a high winning probability for PH 
will drive a full-profit-transfer equilibrium either. In a similar vein, one reasonable 
conjecture is that the existence of an incomplete-profit-transfer Take-it equilibrium 
may hinge upon some “intermediate” )( yf . 

And it becomes immediate that when 
ca

Ly
−

≥ , only a sufficiently small )( yf  

could sustain a No-Action equilibrium. Conversely but not surprisingly, for 

ca
Ly
−

< , a No-Action equilibrium can be well expected since (d) holds trivially. To 

sum up, the preceding comments suggest there might exist specific bounds for those 
intervals of y  which permit each type of equilibrium in question. 

To extend the analysis further and derive such bounds, we next consider a 
situation with exogenously given ,  ,  ,  , *ycaL  and a function ]1,0[],0[: * →yf  
satisfying:  

 

(A2) 0)(,1)0( * == yff , and f  is twice differentiable with 0,0 ≤′′<′ ff . 

    
(A2) describes a decreasing winning probability (for PH) function in the 

innovation parameter y . A less obvious but equally plausible property exhibited in 
(A2) is that PH’s winning probability drops faster as y  moves further away from 

0=x , or the closer y  approaches the delimiter of patent protection, *y . From a 
different perspective, ceteris paribus, the firm is enjoying “increasing returns to 
litigation” (Chou and Haller, 2007) as y  improves.15 

For expositional purpose, we denote y  the “median” of )( yf , i.e. y  is implicitly 

given by the condition ( )
2
1

=yf . 

                                                 
15 Waterson (1990), the seminal paper in the “signpost” literature, implicitly imposes an property on 
the “court cost function” which is equivalent to our concavity of )( yf . 
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Proposition 2. Suppose (M) 
ca

Ly
−

≥
2

. Then there exist ly , my and ry  with 

the following properties: 

(i) ∗<≤≤< yyyy rml0 ; 

(ii) The highest-yield equilibrium for PH is a complete-profit-transfer Take-it 
equilibrium iff [ ]ml yyy ,∈ . 

(iii) A No-Action equilibrium emerges iff [ ] [ ]∗∪∈ yyyy rl ,,0 . 

(iv) The highest-yield equilibrium for PH is an incomplete-profit-transfer Take-it 

equilibrium with LyyfcaS i
t +−= )()(  iff ( ]rm yyy ,∈ . 

Corollary 1. Denote )(argˆ
],0[ *

yyfMaxMaxy
yy∈

= . 

(i) When )),ˆ(ˆ( ∞∈
−

yfy
ca

L  there only exist No-Action equilibria for ],0[ *yy∈ . 

(ii) When ( )( ]yfyy
ca

L ˆˆ,2∈
−

 there exist both Take-it and No-Action equilibria 

for ],0[ *yy∈ . 

Note that even when litigation is not that costly relative to the profit of the 
commercialized product, the “full strength” patent protection exists only in the 
interval [ ]ml yy , . Both low and high ends of the improvement would not induce actual 
patent litigation (No-Action). Because in both cases where “low y  hence high 

)( yf ” or “high y  hence low )( yf ” PH’s expected gain from litigation is less than 
his litigation cost. In our model, as a consequence, the firm has incentive to invent 
around with close imitation or invent enough with a quite novel (though still 
infringing) product because of the lack of effective patent protection.16  

It is obvious that our conclusions about the division of profit rely crucially on the 

relevant range that 
ca

L
−

 lies in. Under (M), with a relatively low 
ca

L
−

, three types 

                                                 
16 Empirically, as Mansfield et al (1981) point out, 60% of all patented and successful innovations 
were imitated within 4 years after introduction. Similar observations are also reported in Levin et al 
(1987). 
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of equilibria may emerge whereas a relatively high 
ca

L
−

 would only allow 

No-Action equilibria for all y  in the statutory claimed range of patent protection. 
Generally speaking, two factors counteract in driving PH’s expected profit transfer in 
the analysis so far: what the firm is capable of, i.e., the magnitude of y , and what the 
odds are for PH to win the infringement case, i.e., the range of )( yf . Thus 
hypothesis (M) and conditions in Corollary 1 correspond to the extent by which PH 
can master this balancing act and extract profit from the firm. 

IV. Comparative Statics 

Efficacy of the patent protection in terms of complete profit transfer. In this 
sub-section we focus on the comparative statics with respect to several key variables - 
within their most interesting range in our set-up. In the sequel we denote lm yy −≡λ  
the length of the interval of y where a complete-profit-transfer Take-it equilibrium can 
be obtained. λ  may serve as a measure of the efficacy of the patent system. We first 
investigate how λ  is responding to variations of the litigation cost L , the gross 
profit parameter a  and the product development cost parameter c . It suffices to see 

how L  depends on the compound parameter 
ca

Lk
−

≡ . 

Lemma 2. Suppose ( )yfyy ˆˆ
2
≠ , then 0<

∂
∂

k
λ  for ( )( )yfyyk ˆˆ,2∈ . Moreover, 

the corresponding intervals ( ) ( )[ ]kyky rm ,  are strictly nested. 

Intuitively, a higher litigation cost should have cast a stronger deterring effect upon 
the opportunistic firm turning down the offer. However, Lemma 2 says that even 
when the litigation cost is in the “favorable” range where a complete-profit-transfer 
Take-it equilibrium can be assured, higher litigation cost will diminish the effective 
patent protection measured by λ . Lemma 2 completes the description of ).(kλ  

Lemma 3. )(kλ  is strictly concave in k  and there exists a unique ( )2,0~ yk ∈  

such that )()~( kk λλ ≥  for all +∈ Rk . 
In a second type of comparative statics, we investigate how λ , the proposed patent 
protection measure, is affected by a change of patent protection. Intuition may suggest 
that the best way to help PH transfer profit from the firm is to grant PH a broad patent 
protection. Interesting enough, this is a premature conclusion as the next proposition 
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shows. One more simplifying assumption, (A3) is imposed to establish the result. 
Prior to that we have to extend the model appropriately by postulating that winning 
probability takes the more general form ( ) ∗∗ ≤≤ yyyyf 0,; , where the patent 
breadth 0>∗y  is treated as variable in the sequel. The extended notation );( *ykλ , 

( )∗yk~ , etc. will be used. 

(A3) ( ) )1;(; *yyfyyf =∗ , i.e., );( *yyf  is homogeneous of degree 0. 

(A3) stipulates that the winning probability for PH depends only on the ratio *yy , 
not on the absolute magnitude of y  or *y . An extremely high *y  might 
correspond to a very broad claim such as “All non-human transgenic mammals” or 
“all hand-use calculators.” It is well documented (Lemley and Shapiro, 2005) that a 
typical defendant’s strategy of countering infringement litigation is to argue that the 
patent is “invalid” in the sense that PTO has failed to identified the existence of “prior 
art” in the original claim. Hence it appears reasonable that a broader set of claims 
leave more room for purporting invalid patents.  

  Thus it is of economic significance to investigate how the specific features of 
probabilistic patents, i.e. the signpost interpretation of the patent system, respond to 
variations in patent breadth. In the present paper, imposing (A3) is a simple attempt to 
capture the effect of broadening patent protection, be it through a change of the 
written law or the doctrine of equivalents, and the reverse doctrine of the 
equivalents.17 Our focus here is to evaluate the impact upon the PH’s incentive to 
innovate from adjusting the patent protection under the doctrine of equivalents or 
other similar traits.  

Lemma 4. Suppose )2,0( yk ∈ , then the functions ( ) ( )∗∗ ykyyky rl ;,;  and 

);( *ykλ  are homogeneous of degree 1 in );( *yk  . The functions ( )∗yŷ  and 
( )∗yy  are homogeneous of degree 1 in 

*y . 

Let us first state a result that conforms to intuition: as patent protection becomes 
broader, );( *ykλ  increases, i.e. the size of the interval where PH can extract all the 
surplus increases. 

Proposition 4. The following three assertions hold: 

                                                 
17 Notice that here we are not concerned with the controversy over the judicial standard for 
infringement analysis under the doctrine of equivalents, e.g. tests like “element-by-element” and 
“invention as a whole” See, for example, Lau (1989) and Merges (1992). 
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(i) ( )∗
∂
∂ ykL
k

;  is strictly increasing in 0>∗y  as long as ( ) 20 ∗<< yyk . 

(ii) );( *ykλ  is strictly increasing in 0>∗y  as long as ( ) 20 ∗<< yyk . 

(iii) ( )∗yk~  is strictly increasing in 0>∗y . 

Let us now proceed to the promised, somewhat less intuitive result: As patent 
protection becomes broader, the relative size of the interval where PH can extract all 
the surplus decrease. 

Proposition 5. For any ∗∗∗ << yy0 , there exists ( ) 0, >∗∗∗ yyk  such that 

( ) ( )
∗

∗

∗∗

∗∗

<
y

yk
y

yk ;; λλ  for all ( )∗∗∗<< yykk ,0 . 

Proposition 5 states that even though );( *ykλ  increases as patent protection 

becomes broader, */ yλ , that is the relative size of the interval where PH can extract 

all the surplus, may be falling for certain k . In other words, the efficacy measure of 

patent enforcement defined as the fraction of the infringing y  that provide maximal 

incentive for PH to innovate, can apparently diminish when the court employs the 

doctrine of equivalents when the imperfect patent protection exhibits such feature as 

(A3). 

 

Efficacy of the patent protection in terms of average expected profit 
transferred.  In the sub-section we focus on the comparative statics with respect to 

);( *yk . In the sequel we denote 

( ) ( ) ( )[ ]∫∫ +−+−≡ ∗

r

m

m

l

y

y

y

yp dyLyyfcaydyca
y

E }{1π . 

pEπ  is the expected payoff for PH given that y  is uniformly distributed along the 

interval of proclaimed patent protection ],0[ *y . Recall that in Proposition 1 we have 
shown that the interval ],0[ *y  can be partitioned into three areas each of which is 
characterized by a particular type of equilibrium: the complete-profit-transfer Take-it 
equilibrium, the incomplete-profit-transfer Take-it equilibrium with 
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LyyfcaS i
t +−= )()(  or the No-Action equilibrium. We first investigate how pEπ  

is responding to variations of k . 

Lemma 5. Suppose ( )yfyy ˆˆ2 ≠ , then 0<
∂

∂
k

E pπ
 for ( )( )yfyyk ˆˆ,2∈ . 

Moreover the corresponding intervals ( ) ( )[ ]kyky rm ,  are strictly nested. 

Lemma 6.  Suppose ( )yfyy ˆˆ2 = , then there exists a unique ( )2,~ ykk ∈
o

 

such that ( )kE pπ  is decreasing in ⎥⎦
⎤

⎢⎣
⎡∈ 2, ykk
o

. 

Lemma 5 and 6 are in reminiscent of Lemma 2 and 3. In particular, the properties 

of )(kλ  and pEπ  follow directly from the concavity of )( yf , the probability of 

PH winning in litigation. In other words, the phenomenon observed here, that is, 
shrinkage of the interval of complete profit transfer and decrease in PH’s average 
expected profit with respect to certain k , can be attributed to a particular aspect of 
imperfect patent protection, increasing returns to litigation for the firm. 

Lemma 7. The efficiency ratio 
( )
( )∗

∗

ykE
ykE p

;
;

π
π

 is homogeneous degree of zero in 

);( *yk . 

Lemma 7, comparable to Proposition 5, reminds us of the potential drawback of an 
expanded patent protection: an increase in the relative profit transferred to PH as a 
result broadened patent breadth may not improve the efficacy of patent protection.18  

Some caution is warranted in interpreting Lemma 7. Namely, two alternative 
interpretations can be made with respect to the absolute average expected profit 
transferred from the firm to PH when patent breadth is adjusted. First, observe that 

);( *ykEπ , the average profit to PH under perfect patent protection with y  

uniformly distributed over ],0[ *y  is just ( )
2

∗

−
yca . Now suppose that under two 

patent protection regimes *y and *yλ  (w.l.o.g, 1>λ ), the innovation parameter y  

are distributed with uniform density ∗y
1  on [0, y*] and ∗yλ

1  on ],0[ *yλ , 

                                                 
18 Note that the application of the doctrine of equivalents may be associated with litigation cost in the 
following sense: (1) enforcement cost goes up as 

*y  is increased, and (2) the litigants have more 
burden of proof. 
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respectively, and suppose that the efficiency ratio 
( )
( )∗

∗

ykE
ykE p

;
;

π
π

 is equal to 1<α . 

Then Lemma 7 implies that 

( ) ( ) ( ) ( ) ( )∗
∗∗

∗∗ =−>−== ykEycaycaykEykE pp ;
22

;; παλαλλπαλλπ  

Alternatively, if the patent protection regime *y  can be viewed as a continuous 
contraction from the *yλ  regime, then the innovation parameter y  should be 

distributed with a uniform density  ∗yλ
1  on ],0[ *y   and ],0[ *yλ . Then Lemma 7 

implies  

( ) ( ) ( ) ( ) ( )∗∗

∗∗∗
∗∗ =⋅−>−== ykE

y
yycaycaykEykE pp ;

22
;; π

λ
αλαλλπαλλπ . 

While the former interpretation is better suited for the description of an adjustment in 
written law, the latter is more compatible with the application of the reverse doctrine 
of equivalents. In either case, PH is enjoying an increase in his absolute average profit 
transferred from the infringing firm under a broader patent protection. 
 

V. Concluding Remarks 

In this article, we investigate the division of profit between a patent holder and a 
derived product producer in an environment with uncertainty about the outcome of 
infringement but with certainty about the damage awards, a reasonable royalty 
granted to the prevailing plaintiff. Our analysis identifies the conditions on model 
parameters that permit a complete-profit-transfer Take-it equilibrium, an 
incomplete-profit-transfer Take-it equilibrium or a No-Action equilibrium. The 
interval of the proclaimed patent protection ],0[ *y  can be partitioned into three 
areas each of which is characterized by a particular type of equilibrium. Whereas the 
area in which complete-profit-transfer equilibria can be obtained gives a patent holder 
maximal incentive to innovate, the area in which No-Action equilibria prevail 
encourage a subsequent innovator to imitate either with a close substitute or with a 
much advanced but still infringing product. Comparative statics with respect to 
important policy parameters such as litigation costs and patent breadth is performed. 

In a broader context, while some litigation of the literature assumes litigation is 
always profitable for the plaintiff to rule out “nuisance” suits (Bebchuk (1984); 
Reinganum and Wilde, 1986), the current model accommodates inaction as one of the 
strategies the patent holder may choose (Nalebuff, 1987; Meurer, 1989). That is, a 
patent holder may not always be willing to use the court system. Consequently, 
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credible threats have a significant effect on the equilibrium outcome. Recall that 
which type of equilibrium will prevail depends crucially on (a) how large a licensing 
fee would make firm indifferent between acceptance and litigation and (b) how 
credible PH’s threat is to litigate in case the infringing firm were to turn down the 
offer. To maintain a credible litigation threat the patent holder must evaluate the 
potential gain and loss when the infringing firm refuses to settle. The issue of 
credibility may severely restrict the patent holder’s capacity of achieving the desired 
outcome - complete profit transfer. In addition, the particular phenomenon observed 
from the above comparative statics, that is, shrinkage of the interval of complete 
profit transfer and decrease in PH’s average expected profit with respect to certain k , 
is again a result of the dominance of effect (b) over effect (a). 

Our analysis pays special attention to the effects of the variations in patent breadth, 
either by an adjustment in the written law or by application of the doctrine of the 
equivalents and the reverse doctrine of equivalents. It is clear that the current paper is 
not suggesting the “optimal” patent system. Rather it aims at assessing the efficacy of 
the current patent system when uncertainty about the outcome of infringement 
litigation is taken into consideration. In particular, we are concerned with the 
incentive to innovate, not the harm (deadweight loss) caused by blocking patents as 
Merges and Nelson (1992) have emphasized. Therefore, it is not our intention to 
determine which y should be allowed to escape the “web of infringement” (Scotchmer, 
1996).
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Appendix A   

A Brief Review of the Doctrines on Reasonable Royalty.  Prior to 1946, a 
successful patent claimant could choose between the amount of damages she suffered 
and the amount of profits earned by the infringer (Chisum, 1980). However the high 
cost of determining an infringer's profits eventually led Congress to drop infringer 
profits as an alternative measure of recovery [Act of August 1, 1946, ch. 726 s 1, 60 
stat. 778 (current version at §35 U.S.C. s 284 (1952)). More sophisticated doctrines 
have been applied since. Despite the revision, an infringer’s profits continue to be 
crucial elements in computing the patent holder's damages - either as an 
approximation for the patent holder’s “lost profits” or as a factor in determining a 
reasonable royalty. In general, a successful patent claimant is entitled to recover the 
profits she would have made but for the infringement; if lost profits cannot be proven, 
she is entitled to a reasonable royalty.  
(A) Lost Profits: 
(1) The Cornerstone case for lost profits: Panduit Corp. v. Stahlin Bros. Fiber Works, 
Inc.575 F.2d 1152, 197 U.S.P.Q. (BNA) 726 (6th Cir.l978). 

Four factors enumerated in Panduit have been used as the primary guidelines for 
determining whether a patent holder is entitled to recover lost profits. 

(B) Reasonable Royalty: 

(1) The Benchmark case: Georgia-Pacific Corp v. United States Plywood Corp. 318 F. 
Supp. 1116, 166 U.S.P.Q. (BNA) 235 (S.D.N.Y. 1970), modified, 446 F.2d 295, 170 
U.S.P.Q. 369 (2d Cir.), cert. denied, 404 U.S. 870 (1971). 
Georgia-Pacific has been relied upon heavily for its fifteen factors, among others, to 
be verified in determining a reasonable royalty. 

(2) Variation of Georgia-Pacific: Hanson v. Alpine Valley Ski Area, Inc. 718 F.2d 
1075, 219 U.S.P.Q. (BNA) 679 (Fed. Cir.1983).                                              
In Hanson the Federal Circuit has stated: 'The reasonable royalty may be based 
upon,..., a hypothetical royalty resulting from arm's length negotiation between a 
willing licensor and a willing licensee.' 
Conceivably, problems with this hypothetical negotiation are manifold: First, the 
court is required to reconstruct a "fancy contract" based upon fantasy and flexibility 
[Fromson v. Western Litho Plate & Supply Co. 853 F.2d 1568, 1575-76,7 U.S.P.Q.2d 
1606 (Fed Cir. 1988)]. Secondly, it ignores the adverse impact upon converting 
property rule into liability rule at random wills [See Calabresi and Melamed (1972)]. 
That is, a flat reasonable royalty with no punitive effect would have reduced the 
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incentive to innovate at the first place. Though an infringer may not be completely 
indifferent between an ex-ante licensing agreement and the ex-post damage award 
since there may be conceivable loss of goodwill and substantial sunk costs. 
(3) What flows directly from the willing licensor/willing licensee model is the 
'analytical method' (or accounting method). It computes a reasonable royalty based on 
the infringer's pre-infringement projection of profits. See, for instance, TWM Mfg. Co. 
v. Dura Corp., 789 F.2d 895, 229 U.S.P.Q. (BNA) 525 (Fed. Cir. 1986). 

In reference to the current modeling approach, the following features are worth 
further investigation. 

To begin with, to be eligible for the lost profits compensation, the patent holder has to 
show she has capacity to produce the volume of potential sales lost due to 
infringement. However, cases have shown that no stringency has been maintained in 
this respect by the courts. For example, to prove its capacity to make the infringer's 
sales, the patent holder does not have to show that it had a plant ready and existing 
[See Livesay Window Co. v. Livesay Industries, Inc., 251 F.2d 469, 473, 116 U.S.P.Q. 
167, 171 (5th Cir. 1958): W. L. Gore & Associated, Inc. v. Carlisle Corp., 198 
U.S.P.Q. 353, 367 (D. Del. 1978).J The court even considered the possibility of 
subcontracting as the patent holder's potential capacity (see Gyromat Corp. v. 
Champion Spark Plug Co., 735 F.2d 549, 554 222 U.S.P.Q. 4, 7 (Fed. Cir. 1984). As 
a result, the patent holder in our model, though without marketing power, would still 
be entitled to lost profits, which figure may be drawn according to the infringer's 
actual profits. 

Secondly, despite the fact that the doctrines and their variations on reasonable royalty 
have been widely stated in patent damages cases, the analytical method seems to be 
the dominant guiding principle for computing reasonable royalty [See Conley (1987) 
citing that the courts giving only ‘lip service to the willing licensor/willing licensee 
model’]. Furthermore, as a simple rule, the courts just subtract the infringer's usual 
profit from the profit earned by the infringement, and award the entire difference to 
the patent holder. In a sense the analytical approach is a return to awarding to the 
patent holder the infringer's profits from the use of the invention. 

Note that in the context of our model, the value of the second generation product is 
completely attributable to the basic patented technology. Thus the doctrines of 'entire 
market value' and 'apportionment' would yield the same compensation figure for the 
patent holder [See, e.g. Westinghouse v. Wagner, §225 U.S. 604, 614 (1912)]. 
Specifically, in terms of the model parameters, the analytical approach amounts to a 
reasonable royalty ycaR )( −=  as we assume. 
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APPENDIX B 
Proof of Proposition 1: (i) For a licensing agreement to prevail, i.e., a Take-it 
equilibrium to exist, the following conditions are necessary and sufficient: 

,0≥−− tyy Scπ ,)( LRyfcSc yytyy −−−≥−− ππ  and .0)( ≥− LRyf  

We first explore the possibility that PH can extract all the profit from the firm, i.e., 
where and offer ycaS )( −=  gets accepted in equilibrium. Thus the previous 
conditions are equivalent to:  
    ,)( ycaS −=                                           (1) 

    
)(1 yf

LR
−

≤                                           (2) 

    
)(yf

LR ≥                                              (3) 

(2) and (3) are then equivalent to  

    
ca

Lyfy
−

≤− )](1[  and                                 (4) 

   
.

)(
ca

Lyyf
−

≥                                           (5) 

 
(ii) We proceed with the necessary and sufficient conditions for a No-Action 

equilibrium, i.e., 0≥− yy cπ , and 0)( ≤− LRyf . With (A1) they are equivalent to: 

  0≥− yy cπ , and  

 ( ) 0≤− LRyf . 
With (A1) they are equivalent to:  

 
.

)(
ca

Lyyf
−

≤                                         (6) 

(iii) We commerce with the necessity proof. Recall that for a licensing agreement to 
prevail, i.e., a Take-it equilibrium to exist, the following conditions must be satisfied: 

   ,0≥−− tyy Scπ  

,)( LRyfcSc yytyy −−−≥−− ππ  and  

.0)( ≥− LRyf  
Note that in and incomplete-profit-transfer Take-it equilibrium the firm enjoys 
positive payoff after the transfer of profit through licensing agreement, i.e., 

0≥−− tyy Scπ . We then explore the possibility that PH can extract profit by offering 
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LyyfcaSt +−= )()(  which gets accepted in equilibrium. With (A.1) and the 
assumption on reasonable royalty, the previous conditions can be rewritten as:    

,0])()[( >+−−− Lyyfcacyyπ ,00 ≥  and 
.

)(
ca

Lyyf
−

≥  

These are just conditions (d) and (b) 

     [ ]
ca

Lyfy
−

>− )(1 , and                                      (d) 

     
.

)(
ca

Lyyf
−

≥                                              (b) 

  Now we turn to the sufficiency proof. Suppose (b) and (d). Since only the Take-it or 
the Leave-it equilibrium has potential in generating payoffs for PH, we will focus on 
these two types of equilibria. We start with the possibility for PH to extract profit via a 
Take-it equilibrium. 
Define  
    LyyfcaSt +−≡ )()(  
Thus we can have  

    [ ]LyyfcacSc yytyy +−−−≥−− )()(ππ                         (7) 

Also, by (d), we can infer 

    Lyyfcacyy +−>− )()(π                                    (8) 

or  

    [ ] 0)()( >+−−− Lyyfcacyyπ , that is  

    0>−− Scyyπ .                                         (9) 

Next note that By (A.1) and the assumption on the reasonable royalty, (b) can be 
written as 
    .0)( ≥− LRyf                                          (10) 
(7), (9) and (10) establish that, indeed, tS  is a Take-it equilibrium offer. It is also 
obvious that such an licensing offer yields higher payoff for PH than any Leave-it 
equilibrium since LyyfcaLyyfcaSt −−>+−= )()()()( . We have shown that the 
combination of (b) and (d) is equivalent to the necessary and sufficient conditions for 
an Incomplete-Profit-Transfer equilibrium characterized by LyyfcaSt +−= )()( . 
Notice that strict inequality in (d) renders strict inequality in (8), that is 
incomplete-profit-transfer strictu sensu. This completes the proof. ■■ 
 
Proof of Proposition 2: First, we perform comparative statics with respect to 
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],0[ ∗∈ yy . For this purpose, we introduce the functions [ ])(1)(1 yfyyg −=  and    
)()(2 yyfyg =  which appear in (4) and (5) and, obviously, play a critical role in our 

analysis. Notice that 011 >′⋅−−=′ fyfg  and 021 >′′⋅−′−=′′ fyfg  in the interval 
),0( ∗y . Hence 1g  is strictly increasing and strictly convex in y with 0)0(1 =g  and 

∗∗ = yyg )(1 .  
Further notice that fyffyg ′⋅+=′⋅=′ )(2  and 02)(2 <′′⋅+′=′′⋅=′′ fyffyg . 
Thus 2g  is strictly concave in y  with 0)()0( 22 == ∗ygg . Consequently, 2g  
has a unique maximizer ŷ  in ),0( ∗y . This maximizer is given as the unique 
solution of the first order condition 
    ( ) ( ) ( ) 0ˆˆˆˆ2 =′+=′ yfyyfyg . 
Claim: yy ≤ˆ  and ∗∗ <<< yyy 20 . 
 
To show this claim, recall that )(2 yg  is strictly concave in y  with 0)0(2 =g  and 

0)(2 =∗yg . By Takayama (1985) Theorem 1.C.3: f is concave on ),0( ∗y  if and 
only for any ),0(, ∗∈ yyx : )()()()( yfxfyxyf −≥−⋅′ . 

Evaluate this inequality at yy =  and let 0→x . Then 
2
11)( −≥′− yyf  or 

.
2
1)( −≤⋅′ yyf  Adding 

2
1)( =yf  to the latter inequality yields 

0)()()(2 ≤+′⋅=′ yfyfyyg . Strict concavity of 2g  and 0)ˆ(2 =′ yg  imply the 
assertion yy ≤ˆ . Further, (A2) has the immediate implication ∗∗ <<< yyy 20 . 
This concludes the proof of the claim. 
Next, recall that )(1 yg  is strictly increasing and strictly convex in y with 0)0(1 =g  

and ∗∗ = yyg )(1 . Hypothesis (M) amounts to 
ca

Lyygyg
−

≥==
2

)()( 21 . 

Part (i): 
Recall that y  is defined as the intersection point of )(1 yg  and )(2 yg , i.e., 

2
)()( 21

yygyg == . By the hypothesis, the continuity and other properties of 2g , 

and the intermediate value theorem, there exist ( ]yzl ˆ,0∈  and [ )∗∈ yyzr ,ˆ  such that 

ca
Lzgzgyg rl −

==≥ )()()( 222 . 

    Next note that (M) implies 0)ˆ(2 >
−

≥>∗

ca
Lygy . Then, by the continuity and 

other properties of 1g  and the intermediate value theorem, there exists a unique 

),0( ∗∈ yz  with 
ca

Lzg
−

=)(1 . We then compare the magnitudes of lz  and z . 
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Now recall that 
2
1)( =yf  and therefore )()(

2 21 ygygy
ca

L
==≤

−
. Therefore, 

],[ rl zzy ∈ , by the strict concavity of 2g . Also, yz ≤ , by the strict monotonictiy of 

1g . Hence rzz ≤ . Moreover, )0()0(0 21 gg == , )()(
2
1

21 ygygy ==⋅ , strict 

convexity of 1g  and strict concavity of 2g  imply )(
2
1)( 21 ygyyg <⋅<  for 

),0( yy∈ . If lzy = , then lzyz == . If lzy > , then 
ca

Lzgzg ll −
=< )()( 21 . Thus 

lzz > . In any case, therefore, ],[ rl zzz∈ .  
Now set ll zy = , zym =  and rr zy = . Then (i) is satisfied. •••  
 
Part (ii): 
We commence with the sufficiency proof. When condition (M) holds and 

],[],[ zzyyy lml =∈ , then ],[ rl zzy∈  and the strict concavity of 2g  implies (b) 

ca
Lyyf
−

≥)( . Further ],[ ml yyy∈  implies zy ≤ . Since )(1 yg  is an increasing 

function in ],0[ ∗∈ yy , condition (a) [ ]
ca

Lyfy
−

≤− )(1  holds as well. 

Now we turn to the necessity proof. (b) implies that ],[ rl zzy∈ . (a) implies that 
zy ≤ . Together (a) and (b) imply ],[}],min{,[ mlrl yyzzzy =∈ . Note that we know 

from Proposition 1 that by offering ycaRt )( −= , PH can extract all the profit it 
facilitates form the firm if and only if (a) and (b) both hold. We have shown that under 
the hypothesis (c), the combination of (a) and (b) is equivalent to ],[ ml yyy∈ . •••  
Part (iii): 
We commence with the sufficiency proof. When condition (M) holds and 

],[],0[ ∗∪∈ yyyy rl , then ],[\],0[ rl zzyy ∗∈  and the strict concavity of 2g  

implies (c) 
ca

Lyyf
−

≤)( .  

Now we turn to the necessity proof. By the strict concavity of 2g , (c) implies 

that ],[\],0[ rl zzyy ∗∈  which in turn implies ],[],0[ ∗∪∈ yyyy rl . Note that we 

know from Proposition 1 that a No-Action equilibrium is attainable if and only if (c) 
holds. We have shown that under the hypothesis (M), (c) is equivalent to 

],[],0[ ∗∪∈ yyyy rl . •••  

Part (iv): 
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We commence with the sufficiency proof. When condition (M) holds and 
],( rm yyy∈ , then ],( rzzy∈  and the strict concavity of 2g  implies (b) 

ca
Lyyf
−

≥)( . Further ],[ rm yyy∈  implies zy > . Since )(1 yg  is an increasing 

function in ],0[ ∗∈ yy , condition (d) 
ca

Lyfy
−

>− )](1[  holds as well. 

Now we turn to the necessity proof. (b) implies that ],[ rl zzy∈ . (d) implies that 
zy > . Together (b) and (d) imply ],( rm yyy∈ . Note that we know from Proposition 

1 that an incomplete-profit-transfer Take-it equilibrium is attainable if and only if (b) 
and (d) both hold. We have shown that under the hypothesis (M), the combination of 
(b) and (d) is equivalent to ],[ rm yyy∈ . This completes the proof. ■■ 
 
Proof of Lemma 2: Suppose a , c , y , and )(yf  are given such that 

( )⎟
⎠
⎞

⎜
⎝
⎛∈ yfyyk ˆˆ,

2
. Together with the supposition )ˆ(ˆ

2
yfyy

≠  they imply that 

kyg >)ˆ(2  thus lr zyz >> ˆ . It can also be  inferred that ],[ rl zzy∉  by the strict 
concavity of 2g  and yz >  by the strict monotonictiy of 1g . By Lemma 1, yy ˆ≥  
and ],[ rl zzy∉  imply rzy > .  
Thus rzyz >> . So lrlrlm zzzzzyy −=−=−= ],min[λ . The strict concavity and 

the other properties of 2g  imply that for all 21,kk  such that )ˆ(ˆ
2 21 yfykky

<<<  

the corresponding )(),(),( 211 kzkzkz rlr  and )( 2kzl  have the following order: 
    )()(ˆ)()( 1221 kzkzykzkz rrll <<<<  or 
    )()]()([)]()([)( 222111 kkzkzkzkzk lrlr λλ =−>−= . 
This implies the assertion.  
We need a technical auxiliary result to proceed: 
 
Lemma A. Suppose that )(ygk =  is strictly increasing, concave (convex) and twice 
continuously differentiable in the interval ),( ba  and suppose that 0)( ≠′ yg  for 

),( bay∈ . Then )(1 kgy −=  exists and is monotone, convex (concave), and twice 
continuously differentiable with respect to k . 
 
Proof: The existence, monotonicity, and twice continuous differentiability of 1−g   
are assured by the inverse function theorem; see Fleet (1966; Th.10.9.5). Moreover, 

we have ( ))(
1)(' 1

1

kgg
kg −

−

′
= . 

Now, the only task left is to prove the concavity (convexity) conversion. 
Differentiation of and application of the chain rule to the foregoing formula for 
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( )
( )[ ]31

1
1

)(
)()("

kgg
kggkg

−

−
−

′

′′
−= ,  

which has sign opposite to that of ( ))(1 kgg −′′ . This implies convexity (concavity) of 
)(1 kg − . 

 

Proof of Lemma 3: We consider three cases where 
2

)(2
yygk == & . 

Case (i): ( )( )∞∈ ,ˆˆ yfyk . Then trivially 0)( =kλ  by Corollary 1-(i), that is, there 
does not exist such interval ],[ ml yy . 

Case (ii): ( )⎥⎦
⎤

⎜
⎝
⎛∈ yfyyk ˆˆ,

2
. Then, by Lemma 2, )()( kk λλ ≥ . (This is, however, a 

little more than what Lemma 2 states. When )ˆ(ˆ yfyk = , )(kλ  is equal to zero since 

ly  and ry  coincide. So we include this boundary point in the statement.) 

Case (iii): ⎟
⎠
⎞

⎜
⎝
⎛∈

2
,0 yk . Since both 1g  and 2g  are continuous, monotone, and twice 

differentiable, by the inverse function theorem, the following functions are well 
defined, unique, and twice differentiable: 

    [ ]yykh ,0
2

,0:)(1 a⎥⎦
⎤

⎢⎣
⎡  which ( ) yygh =)(11  for all [ ]yy ,0∈ , 

    [ ]yykh &a ,0
2

,0:)(2 ⎥⎦
⎤

⎢⎣
⎡  which ( ) yygh =)(22  for all [ ]yy &,0∈ . 

Furthermore, by Lemma A, 1h  is monotone and strictly concave while 2h  is 
monotone and strictly convex. Therefore )()()( 21 khkhk −=λ  is strictly concave in 

k . Notice that 1h′  is continuously decreasing from ∞=′ )0(1h  to 
)(

1)(
1

1 yg
kh

′
=′  

and 2h′  is continuously increasing from 1)0(2 =′h  to 
)(

1)(
2

2 yg
kh

&′
=′ . By Lemma 1 

we already know yy ˆ≥  which implies 0)()()(2 ≤′+=′ yfyyfyg . Since
2
1)( =yf , 

2
1)( −≤′ yfy  or 

2
1)( ≥′− yfy . Then 1

2
1

2
11)()(1)(1 =+−≥′−−=′ yfyyfyg . Thus 

( ) ( )kh
yg

kh
yg 2

2
1

1 )(
11

)(
1 ′=

′
<≤′=

′ &
. 

Set )()()( 21 khkhkH ′−′= .  

H  is strictly decreasing and continuous with 0)0( >H  and ( ) 0<kH . By the 
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intermediate value theorem, there exists a unique ⎟
⎠
⎞

⎜
⎝
⎛∈

2
,0~ yk  such that 

( ) ( ) ( ) 0~~~
21 =′−′= khkhkH , that is ( ) 0~' =kλ . By strict concavity of )(kλ , such k~  

will be the unique global maximizer in ⎥⎦
⎤

⎢⎣
⎡∈

2
,0 yk . 

    Case (i), (ii), and (iii) together imply ( ) )(~ kk λλ ≥  for all +ℜ∈k . This 

completes the proof.  
 

Proof of Lemma 4: Consider 0,0 >> ∗yα  and 0≥k . Then: 

 ( ) ( )[ ]kyykyy rl ;,; ∗∗∈ ααη   

 yαη =⇔  and ( ) ( )[ ]kyykyyy rl ;,; ∗∗∈  

 yαη =⇔  and ( ) kyyfy ≥⋅ ∗;  and ( )( ) kyyfy ≤−⋅ ∗;1  
 yαη =⇔  and ( ) kyyfy ≥⋅ ∗αα ;  and ( )( ) kyyfy ≤−⋅ ∗αα ;1  
 yαη =⇔ and ( ) kyyfy αααα ≥⋅ ∗;  and ( )( ) kyyfy αααα ≤−⋅ ∗;1  
 ( ) kyf ααηη ≥⋅⇔ ∗; and kyf ααηη ≤−⋅ ));(1( *  

 ( ) ( )[ ]kyykyy rl ααααη ;,; ∗∗∈⇔ . 

This shows that in the relevant range, ( )kyyl ;∗  and ( )kyym ;∗  and, consequently, 

( )ky ,∗λ  are homogeneous of degree 1 in ),( ky∗ .  

Moreover, ( )( ) ( )( )
2
1;; == ∗∗∗∗ yyyfyyyf λλ  implies ( ) ( )∗∗ = yyyy λλ . 

Finally, (A3) implies ( ) );(; ∗∗ = yyfyyf λλ  and, hence, 

( ) ( )∗∗

∂
∂

=
∂
∂ yyf

y
yyf

y
;1; λ

λ
λ . Therefore, ( )( ) ( ) ( )( ) 0;ˆˆ;ˆ =

∂
∂

⋅+ ∗∗∗∗∗ yyyf
y

yyyyyf  

if and only if ( )( ) ( ) ( )( ) 0;ˆˆ;ˆ =
∂
∂

⋅+ ∗∗∗∗∗ yyyf
y

yyyyyf λλλλλ .  

That means ( ) ( )∗∗ = yyyy ˆˆ λλ . 
 
Proof of Proposition 4: With (A3), ( ) =−⋅= ∗∗ );(1);(1 yyfyyyg ααααα  

( ) );();(1 1
∗∗ =− yygyyfy αα , i.e. 1g  is homogeneous of degree 1 in );( ∗yy  

Similarly, 2g  is homogeneous of degree 1 in );( ∗yy . Furthermore 1h , the inverse 
function of 1g  inherits the homogeneity of degree 1 in );( ∗yk , since 
( ) ( ) kyygyyg αααα == ∗∗ ;; 11  implies ( ) yykh ααα =∗;1  ( )∗= ykh ;1α . Similarly, it 
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can be demonstrated that h2, the inverse of 2g , is homogeneous of degree 1 in 
);( ∗yk . Therefore, by Euler’s theorem, 

    k
k
hy

yk
h

⋅
∂
∂

+⋅
∂∂

∂
= ∗

∗ 2
1

2
1

2

0 , 

With the strict concavity of 1h , we then have  

    02
1

2
1

2

>⋅
∂
∂

−=
∂∂

∂
∗∗ y

k
k
h

yk
h .                                     (9) 

Similarly, with the strict convexity of 2h , 

    02
2

2
2

2

<⋅
∂
∂

−=
∂∂

∂
∗∗ y

k
k
h

yk
h .                                     (10) 

Now );();();( 21
∗∗∗ −= ykhykhykλ  with 0)y;0( =∗λ . Clearly, 1h  and 2h  are 

2C  so that (9) and (10) imply that 0);();(
22

>
∂∂
∂

=
∂∂

∂ ∗
∗

∗
∗ yk

yk
yk

ky
λλ ; hence (Ⅰ) 

From 0);0( ≡∗yλ  follows 0),0( * ≡
∂
∂
∗ y

y
λ  which together with 

0);( *
2

>
∂∂
∂

∗ yk
yk

λ  yields 0);( >
∂
∂ ∗
∗ yk

y
λ  for all 0,0 >> ∗yk . Therefore (Ⅱ). 

Finally, 0));(~( =
∂
∂ ∗∗ yyk
k
λ  together with 0);(

2

>
∂∂

∂ ∗
∗ yk

ky
λ  and strict concavity 

of λ  in k implies that )(~)(~ ∗∗∗ < ykyk  for ∗∗∗ << yy0 , i.e. (Ⅲ). 

 
Proof of Proposition 5. We divide the proof into three parts: 
(i) From Lemma 3 and its proof, we know that for any 0>∗y , there exists a 

unique ( )2)(,0)(~ ∗∗ ∈ yyyk  such that );();( ∗∗ < ymyn λλ  for 

)(~0 ∗≤≤≤ ykmn . 

(ii) For ∗∗∗ << yy0 , set ∗∗∗∗ ⋅≡ ykyyk )1(~),( . Then ),(0 ∗∗∗<< yykk  implies 

( )1~0 kykyk <<< ∗∗∗ . Hence by (i), ( ) ( )1;1; ∗∗∗ < ykyk λλ . 

(iii) Let ∗∗∗ << yy0  and ),(0 ∗∗∗<< yykk . Then by Lemma 4 and (ii) 
( ) ( ) ∗∗∗∗∗∗∗∗∗ =<= yykykykyyk );(1;1;);( λλλλ  

Proof of Lemma 5: By Corollary 1, when ( )]ˆˆ,
2

( yfyyk∈ , only 

complete-profit-transfer Take-it equilibria yield positive payoffs for PH. Then 
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  ))((
2

1)(1 22
lm

y

yp yyca
y

ydyca
y

E m

l

−−=−= ∗∗ ∫π . Moreover,  

  ⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

−
∂
∂

−=
∂

∂
∗ k

y
y

k
y

yca
yk

E l
l

m
m

p )(1π
 

  ( ) ( ) 0)(1

22

<⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
′

−
′

−= ∗
l

l

m

m

yg
y

yg
y

ca
y

 

given that lm yyyy ≥≥≥ ˆ  and other properties of )(2 yg , i.e., 0)(2 <′ myg  and 
( ) 02 >′ lyg . 

 

Proof of Lemma 6: When ⎥⎦
⎤

⎢⎣
⎡∈

2
,0 yk , only complete-profit-transfer and 

incomplete-profit-transfer Take-it equilibria yield positive payoffs for PH, Thus 

    }])()([)({1 dyLyyfcaydyca
y

E r

m

m

l

y

y

y

yp +−+−= ∫∫∗π  

    ( ) ( )]})[())((
2
1{1 22

mr

y

ylm yykdyyfycayyca
y

r

m

−+−+−−= ∫∗  

It suffices to show ))((
2
1 22

lm yyca −−  and ( ) ( )])[( mr

y

y
yykdyyfyca r

m

−+− ∫  are 

both decreasing in k  to prove the claim. 
Denote  

( )
k

yy
kD lm

∂
−∂

≡
)( 22

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

−
∂
∂

=
k
yy

k
yy l

l
m

m2 ( ) ( )⎟
⎟
⎠

⎞
⎜⎜
⎝

⎛
′

−
′

=
l

l

m

m

yg
y

yg
y

22

2 . 

By the convexity of g1 and concavity of g2 we can infer ( ) ( ) 0,0 21 <′′>′′ lm ygyg  and 
( )
( )[ ]

( )
( )[ ] 03

2

2
3

1

1 <
′
′

−
′
′

l

l

m

m

yg
yg

yg
yg . Thus it is clear that )(kD  is decreasing in ⎥⎦

⎤
⎢⎣
⎡∈

2
,0 yk : 

    ( ) ( ) ( )
( )[ ]

( ) ( )
( )[ ] 03

2

22
3

1

11 <
′

′′−′
−

′
′′−′

=′
l

lll

m

mmm

yg
ygyyg

yg
ygyygkD  

Recall that )]~([)]~([ 21 kygkyg lm ′=′  at k~ , then 

    0)(
)(

2)~(
1

>−
′

= lm
m

yy
yg

kD . 

By lemma 3 we know 1)(1 ≥′ yg  and 0)(2 =′ yg  so that 

   0)
)(

1
)(

1(2
2 21

<
′

−
′

⋅=⎟
⎠
⎞

⎜
⎝
⎛

ygyg
yyD  

Thus by the intermediate value theorem, there exists a ⎟
⎠
⎞

⎜
⎝
⎛∈

2
,~ ykk

o

such that 
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0=⎟
⎠
⎞

⎜
⎝
⎛ o

kD  and ( ) 0≤kD  for ⎟
⎠
⎞

⎜
⎝
⎛∈

2
, ykk

o

. It is then immediate that 

))((
2
1 22

lm yyca −−  is decreasing in ⎥⎦
⎤

⎢⎣
⎡

2
, yk

o

 since its first order derivative is 

non-positive in the relevant range. 

Now we verify that the second term, )]()()[( mr

y

y
yykdyyfyca r

m

−+− ∫  is decreasing 

in k . Observe that 

( ) ]}}
)(

1
)(

1[
)(
)(

)(
)(){()(

2
1{1

121

2

2

2

mrm

m

r

rp

ygyg
k

yg
yg

yg
ygcakDca

yk
E

′
−

′
+

′
−

′
−+−=

∂

∂
∗

π
. 

It is easy to verify that both 
)(
)(

)(
)(

1

2

2

2

m

m

r

r

yg
yg

yg
yg

′
−

′
 and ]

)(
1

)(
1[

12 mr ygyg ′
−

′
 are both 

negative by the convexity (concavity) of )( 21 gg  for k  in the relevant range. This, 

together with the term ( ) )(
2
1 22

lm yyca −−  decreasing, implies that there exist 

⎟
⎠
⎞

⎜
⎝
⎛∈

2
,0 yk

o

 such that ( )kE pπ  is decreasing in ⎥⎦
⎤

⎢⎣
⎡

2
, yk

o

.■■ 

 
Proof of Lemma 7:  
Denote 

    
);(
);(

);( ∗

∗
∗ ≡

ykE
ykE

ykE p

π
π

, then 

    
( ) ( )

ydyca
y

dyLyyyfcaydyca
yykE

y

y

y
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)(1
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);(
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22
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)]();([2)(
∗

∗∫ −++−
=

y

yykdyyyyfyy r

m

y

y mrlm
 

Let 0>λ . Then by the homogeneity of ly , my , ry  and );( ∗yyf  from Lemma 4, 

we know that 
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