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Introduction
Data mining for knowledge discovery is a new and rapidly developing area of research towards applications in this information age.  Although this area falls into the field of multivariate data analysis, there is a tendency to consider alternative techniques to traditional multivariate statistical techniques, which are borrowed from computer science and artificial intelligence, such as neural networks, and rough sets theory(see, e.g., [5], [7]).  This emerging technique are somewhat ad-hoc and lack theoretical foundations.  As Elder [2] pointed out, there is a compelling reason to look at statistical perspectives of knowledge discovery in databases(KDD).  This is mainly due to the fact that recent statistical contributions to multivariate data analysis did not fully spread out to the KDD community.  Needless to say, the advantage of using statistical methodology is that it will provide a firm theoretical foundation for deriving inference procedure in decision-making.  

In this research project, we will show that a relatively new area of probability theory and statistics, namely random sets theory(see, e.g., [4], [7], and [15]), is suitable as a framework for data mining problems.
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Theorem 2.2. Let 
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Applications with the RRI data

The data analyzed here comes from the ICU of Taipei Veterans General Hospital, 2001. The data records RRI of the dead patients and survival patients for the first four days of ICU. The RRI data for each patient is measured with 30 minutes. By discarding the first 100 observation, we analysis the 101 to 600 observations from each patient which contains about 1800 ~ 3000 observations of RRI. The purpose of this study is to extract features and identify nonlinear time series for the ICU patients. Figure 4.1 (a) and (b) plot respectively the dead and survival patients’ RRI.
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The 2nd Day for 1st Survival Patient 
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The 2nd Day for 2nd Survival Patient 
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The 2nd Day for 3rd Dead Patient 
	The 2nd Day for 3rd Survival Patient [image: image89.png]si2
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The 2nd Day for 4th Dead Patient 
	The 2nd Day for 4th Survival Patient [image: image91.png]s2
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The 2nd Day for 5th Dead Patient 
	The 2nd Day for 5th Survival Patient [image: image93.png]iz
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Figure 4.1  Plots of RRI for dead and survival patients

For the 500 observations, we can find the cluster centers for each data set. Now, under the significant level 
[image: image37.wmf]a

= 0.9, we can construct our kernel sets by the proposed procedures in the Section 3. In following, the dead patients’ and the survival patients’ cluster centers, radiuses of kernel set and ratios are showed in Table 4.1.

Table 4.1  The dead and the survival patients’ cluster centers, radiuses and ratios

	Patient
	Cluster center
	Radius of
kernel set
	Its ratio
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	623.734
	0.734
	0.348
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	750.546
	0.546
	0.078
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	976.018
	1.018
	0.118
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	850.132
	0.868
	0.006
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	0.592
	0.088
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	561.882
	0.882
	0.066
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	651.442
	0.558
	0.046
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	0.570
	0.060
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The kernel set learned from the dead patients is
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. Then, we can give the following testing-hypothesis procedure:


[image: image53.wmf]0

H

: the data belongs to the dead patterns.

[image: image54.wmf]1

H

: the data doesn’t belong to the dead patterns.

Decision rule: for the new sample 
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Similarly, the kernel set learned from the survival patients is
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Now, we examine two new RRI samples of patients from ICU. First, we can find the cluster centers for each data set and construct their kernel sets under the significant level 
[image: image68.wmf]a

= 0.9. Then we can find radiuses of kernel sets for these samples. Finally, we can get their patterns according to their features by above the testing-hypothesis procedures.

For these two samples, we get the cluster centers 592.624 and 761.658 respectively. We can calculate the membership for each observation via the distance between observation and its cluster center. Under the significant level 
[image: image69.wmf]a

= 0.9, if the membership of observation is lager than 0.9, then this observation is a member of the kernel set. Therefore, the results of two new samples are showed in Table 4.2.

Table 4.2  The sample memberships and kernel set for RRI of new samples

	
	The sample memberships and kernel set for RRI of a new sample (I)(Cluster center: 592.624, 
[image: image70.wmf]a

= 0.9)
	The sample memberships and kernel set for RRI of a new sample (II)

(Cluster center: 761.658, 
[image: image71.wmf]a

= 0.9)

	
	Data
	Memberships
	Is a member of 
the kernel set ?
	Data
	Memberships
	Is a member of
 the kernel set?

	1
	569
	0.042
	no
	751
	0.094
	no

	2
	573
	0.051
	no
	740
	0.046
	no

	3
	571
	0.046
	no
	760
	0.603
	no

	4
	529
	0.016
	no
	734
	0.036
	no

	5
	622
	0.034
	no
	730
	0.032
	no

	6
	598
	0.186
	no
	729
	0.031
	no

	7
	609
	0.061
	no
	718
	0.023
	no

	8
	614
	0.047
	no
	713
	0.021
	no

	9
	608
	0.065
	no
	708
	0.019
	no

	10
	605
	0.081
	no
	741
	0.048
	no
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	491
	591
	0.616
	no
	737
	0.041
	no

	492
	591
	0.616
	no
	725
	0.027
	no

	493
	591
	0.616
	no
	722
	0.025
	no

	494
	595
	0.421
	no
	717
	0.022
	no

	495
	598
	0.186
	no
	721
	0.025
	no

	496
	598
	0.186
	no
	721
	0.025
	no

	497
	595
	0.421
	no
	717
	0.022
	no

	498
	592
	1.000
	yes
	725
	0.027
	no

	499
	598
	0.186
	no
	736
	0.039
	no

	500
	596
	0.296
	no
	728
	0.030
	no

	Total
	
	
	47 (0.094 > 0.05)
	
	
	17 (0.034
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From Table 4.2 we can find that:
(1) For these two new samples, the radiuses of sample kernel sets are 0.624 and 0.658 respectively.  This information seems insufficient if we want to classify them by using the traditional identification method.

(2) For the new sample (I), the observations which belongs to the sample kernel set with respect to total observations is 0.094 (=47/500), which is larger than 0.05.  By the radius of sample kernel set and the ratio 0.094, we can say that the patient has the same features of dead patients.

From Table 4.1, we obtain the significant level 
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= 0.05. Under this condition, we find that the number of observations which belongs to the sample kernel set with respect to the number of 
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.  By the decision rule, the RRI of this patient will be identified into the learned dead pattern of RRI.

(3) Similarly, for new sample (II), the observations which belongs to the sample kernel set with respect to total observations is 0.034(=17/500), which is smaller than 0.05. By the radius of sample kernel set and the ratio 0.034, we can say that the patient has the same features of survival patients.

Under the significant level 
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= 0.05, we find that the number of observations which belongs to the sample kernel set with respect to the number of 
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is lager than 0.95. By the decision rule, the RRI of this patient will be identified into the learned survival pattern of RRI.
Conclusion

In the medical science analysis discussed above the time series data have the uncertain property. If we use the conventional clustering methods to analyze these data, it will not solve the orientation problem. The contribution of this paper is that it provides a new method to cluster and identify time series. In this paper, we presented a procedure that can effectively cluster nonlinear time series into several patterns based on kernel set. The proposed algorithm also combines with the concept of a fuzzy set. We have demonstrated how to find a kernel set to help to cluster nonlinear time series into several patterns.

Our algorithm is highly recommended practically for clustering nonlinear time series and is supported by the empirical results. A major advantage of this framework is that our procedure does not require any initial knowledge about the structure in the data and can take full advantage of much more detailed information for some ambiguity.

However, certain challenging problems still remain open, such as:

(1) Since hardly ever any disturbance or noise in the data set can be completely eliminated, therefore, for the case of interacting noise, the complexity of multivariate filtering problems still remains to be solved.

(2) The convergence of the algorithm for clustering and the proposed statistics have not been well proved, although the algorithms and the proposed statistics are known as fuzzy criteria. This needs further investigation.

Although there remain many problems to be overcome, we think fuzzy statistical methods will be a worthwhile approach and will stimulate more future empirical work in time series analysis.
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