行	武	红	完	國		家	科	學	委	員	會	神	前 E	功.	專	題	研	究	計	- 畫	主	成	果	報	告	
※	※	*	()	()	*	%	*	*	※	*	※	※	※	※	*	*	(%	※								
※																									*	
※										複	解	析:	動	態	系	統									※	
※																									※	
※	※	*	()	()	%	※	*	※	※	※	X	X	※	:	*	:	※									

計畫類別:☑個別型計畫 □整合型計畫

計畫編號: NSC 89-2115-M-004-003-

執行期間:88年8月1日至89年7月31日

計畫主持人: 陳天進 教授

本成果報告包括以下應繳交之附件:

□赴國外出差或研習心得報告一份
□赴大陸地區出差或研習心得報告一份
□出席國際學術會議心得報告及發表之論文各一份
□國際合作研究計畫國外研究報告書一份

執行單位:國立政治大學應用數學系

中華民國89年10月15日

行政院國家科學委員會專題研究計畫成果報告

複解析動態系統 Holomorphic Mappings on ℂ"

計畫編號: NSC 89-2115-M-004-003-

執行期限:88年8月1日至89年7月31日主持人:陳天進 國立政治大學應用數學系

一、中文摘要

本計劃乃延續去年的計劃,繼續探討 複空間之解析映射及動態系統,其主要探 討的領域描繪如下:

- (I). 探討複空間的一些特殊自同構,例如,Shears 和下三角映射。
- (II). 探討 Fatou-Bierberbach 域之幾何性及 邊界行為。
- (III). 探討 Fatou-Bierberbach 域與雙曲測度 之關係。

關鍵詞:自同構 Fatou-Bierberbach 域、複 Henon 寫像、吸引盤、Shear、下三角映像、 雙曲測度。

Abstract

In this project, we will continue the last project to study holomorphic mappings from C^n into C^n ($n \ge 2$) and their dynamics system. The most interesting research area are described as follows:

- (I) Some special automorphisms of C^n , for example, shears and lower triangular mappings.
- (II) The geometry of a Fatou-Bierberbach domain and its boundary behavior.
- (III) The relation of Fatou-Bierberbach domain and measure hyperbolicity.

Keywords: Automorphism of C^n , Complex Henon map, Basin of attraction, Fatou-

Bierberbach domain, Measure hyperbolic

二、內容

ASBTRACT. In this report, we will collect some well-known Automorphisms of \mathbb{C}^n and investigate the complex Henon maps and the Fatou-Bieberbach domains in \mathbb{C}^n .

§ 1 Automorphisms of \mathbb{C}^n

Let $\operatorname{Aut}\left(\mathbb{C}^{n}\right)$ denote the automorphism group of \mathbb{C}^{n} , i.e.,

$$\operatorname{Aut}\left(\mathbb{C}^{n}\right) = \left\{ F : \mathbb{C}^{n} \to \mathbb{C}^{n} \middle| \begin{array}{c} F \text{ is a biholo} \\ \text{morphic map} \end{array} \right\}.$$

With the composition of map, it is a group. For n=1, it is well known in complex analysis that $\operatorname{Aut}(\mathbb{C}^n)$ contains exactly the class of all affine linear maps of \mathbb{C} , i.e.,

$$\operatorname{Aut}(\mathbb{C}) = \left\{ f : \mathbb{C} \to \mathbb{C} \middle| \begin{array}{l} f(z) = az + b \\ \text{for some } a, b \in \mathbb{C}, a \neq 0 \end{array} \right\}$$

For $n \ge 2$, Aut (\mathbb{C}^n) is very large and complicated. In [3,5], the authors listed some automorphisms of \mathbb{C}^n , we collect them as follows:

(i) $F_t(z) = z + t f(T(z))u$, $z \in \mathbb{C}^n$, where $t \in \mathbb{C}$, $u = \mathbb{C}^n$ and $T : \mathbb{C}^n \to \mathbb{C}^k$ is a complex linear map, $1 \le k < n$, $f : \mathbb{C}^k \to \mathbb{C}^k$ is entire and T(u) = 0. Such F_t is called a shear in the direction u which was introduced by Rosay and Rudin.

(ii) $G_{t}(z) = z + \left(e^{tg(T(z))} - 1\right)\langle z, u \rangle u, z \in \mathbb{C}^{n}$, where $t \in \mathbb{C}$, $u \in \mathbb{C}^{n}$ and $T : \mathbb{C}^{n} \to \mathbb{C}^{k}$ is a complex linear map, $1 \le k < n$, and T(u) = 0, $g : \mathbb{C}^{k} \to \mathbb{C}^{k}$, $\langle z, u \rangle = \sum_{j=1}^{n} z_{j} \overline{u}_{j}$. Such G_{t} is called a generalized shear in the direction u.

(iii) $S_t(z) = z + t h(\omega(z,u))u, z \in \mathbb{C}^{2n}$ where $t \in \mathbb{C}$, $u \in \mathbb{C}^{2n}$, $h : \mathbb{C} \to \mathbb{C}$ is entire and $\omega = \sum_{j=1}^n dz_j \wedge dz_{n+j}$ is the sympletic form on \mathbb{C}^{2n} .

(iv) w = F(z), where $F(z) = (F_1(z), F_2(z), \dots, F_n(z)) \text{ and}$ $F_j(z) = z_j \exp(c_j f(z_1^{a_1} \dots z_n^{a_n})), \quad 1 \le j \le n,$ $z \in \mathbb{C}^n, \quad a_1, a_2, \dots, a_n, \text{ are nonnegative}$ integers, $c_j \in \mathbb{C}, \quad 1 \le j \le n, \quad \sum_{j=1}^n c_j a_j = 0$ and $f: \mathbb{C} \to \mathbb{C}$ is entire.

(v) $G = (g_1, g_2, \dots, g_n) : \mathbb{C}^n \to \mathbb{C}^n$, where $g_1(z) = c_1 z_1$ $g_2(z) = c_2 z_2 + h_2(z_1)$ \vdots $g_n(z) = c_n z_n + h_n(z_1, \dots, z_{n-1})$, $c_1, c_2, \dots, c_n \in \mathbb{C}$ are nonzero and $h_k : \mathbb{C}^{k-1} \to \mathbb{C}$ is entire for $2 \le k \le n$. Such automorphism is called a lower triangular map, which was introduced by Rosay and Rudin.

All these automorphisms are used in [3,5] to study the interpolation and density

problems. One can find the details there.

§ 2 Complex Henon Maps and Fatou-Bieberbach Domains

Definition.

A Fatou-Bieberbach domain in \mathbb{C}^n , $n \ge 2$, is a proper subdomain in \mathbb{C}^n which is biholomorphic to \mathbb{C}^n .

Definition.

Let $F \in Aut(\mathbb{C}^n)$, $p \in \mathbb{C}^n$ with F(p) = p and F^j are the *j*-fold composition $F \circ F \circ \cdots \circ F$ of F. The basin of attraction of F is define to be

$$\Omega = \left\{ z \in \mathbb{C} \middle| \lim_{j \to \infty} F^{j}(z) = p \right\}$$

If Ω is a Fatou-Bieberbach domain in \mathbb{C}^n , then F is called a complex Henon map.

In [1,2,4,5], the author constructed a collection of Fatou-Bieberbach domains and complex Henon maps in \mathbb{C}^n , we list some of them as follows:

Theorem 1 [4]

Given
$$a \in \mathbb{C}$$
, $0 < |a| < 1$. The map $F(z) = (z_1^2 + az_2, az_1), z \in \mathbb{C}^2$

is a complex Henon map in \mathbb{C}^2 whose basin of attraction at the origin is a Fatou-Bieberbach domain in \mathbb{C}^2 .

Theorem 2 [2]

Let
$$a \in \mathbb{C}$$
, $0 < |a| < 1$. The map
 $F(z) = (z_1^2 + az_2, z_2^2 + az_3, az_1), z \in \mathbb{C}^3$

is a complex Henon map in \mathbb{C}^3 whose basin of attraction at the origin is a Fatou-Bieberbach domain in \mathbb{C}^3 .

Combine Theorem 1 and 2, we obtain a collection of complex Henon maps and

Fatou-Bieberbach domains in \mathbb{C}^n , $n \ge 4$.

Corollary

- (a) if n is even, say n = 2k, then $F = (F_1, F_2, \dots, F_k)$, where F_1, F_2, \dots, F_k are complex Henon maps defined in Theorem 1 is a complex Henon map in \mathbb{C}^n whose basin of attraction at the origin is a Fatou-Bieberbach domain in \mathbb{C}^n .
- (b) if n is odd, say n = 2k + 1, then $F = (F_1, F_2, \dots, F_k)$, where F_1, F_2, \dots, F_{k-1} are complex Henon maps defined in Theorem 1 and F_k is a complex Henon map defined in Theorem 2, is a complex Henon map in \mathbb{C}^n whose basin of attraction at the origin is a Fatou-Bieberbach domain in \mathbb{C}^n .

Theorem 3 [5]

Suppose that $F \in Aut(\mathbb{C}^n)$, F(0) = 0 and all eigenvalues λ_i of DF(0) satisfy $|\lambda_i| < 1$, $1 \le k \le n$, where DF(0) is the complex Jacobian matrix of F at 0. Let Ω be the basin of attraction of F at 0, i.e.,

$$\Omega = \left\{ z \in \mathbb{C}^n \left| \lim_{j \to \infty} F^j(z) = 0 \right. \right\}$$

Then Ω is biholomorphic to \mathbb{C}^n .

Theorem 3 says only that Ω is biholomorphic to \mathbb{C}^n , therefore, F may not be a complex Henon map in \mathbb{C}^n , for example, $F(z) = (\lambda_1 z_1, \lambda_2 z_2, \dots, \lambda_n z_n)$, where $0 < |\lambda_i| < 1$, $1 \le j \le n$, is a complex linear map on \mathbb{C}^n , in this case, the basis of attraction Ω of F at the origin is \mathbb{C}^n itself, so F is not a complex Henon map in particular Ω is not a Fatou-Bieberbach domain in \mathbb{C}^n .

Now, we consider the class of lower triangular maps defined in (V), § 1.

Let $G(z) = (g_1(z), g_2(z), \dots, g_n(z))$ be a lower triangular map defined by $g_1(z) = \lambda_1 z_1$

$$g_2(z) = \lambda_2 z_2 + h_2(z_1)$$
:

 $g_n(z) = \lambda_n z_n + h_n(z_1, \dots, z_{n-1})$ where $\lambda_j \in \mathbb{C}$, $0 < |\lambda_j| < 1$ for all $1 \le j \le n$ and $h_j \in \mathbb{C}^{j-1} \to \mathbb{C}$ is entire, $h_j(0) = 0$, $2 \le j \le n$.

Clearly, G(0) = 0, i.e., 0 is a fixed point of G, and the eigenvalues of DG(0) are $\lambda_1, \lambda_2, \dots \lambda_n$ which satisfy $0 < |\lambda_i| < 1$ for all $1 \le j \le n$. Therefore, by Theorem 3, the basin of attraction of F at the origin

$$\Omega = \left\{ z \in \mathbb{C}^n \left| \lim_{j \to \infty} G^j(z) = 0 \right. \right\}$$

is biholomorphic to \mathbb{C}^n . Therefore, the following question arises naturally: when Ω is a Fatou-Bieberbach domain? Equivalently, can one put some sufficient conditions on $h_2, h_3, \dots h_n$ so that G be comes a complex Henon map in \mathbb{C}^n ? We will continue the study of this problem in the Fatou-Bieberbach domains are: the geometry of a Fatou-Bieberbach domain Ω in \mathbb{C}^n , especially, for $\partial\Omega$, the measure hyperbolicity of a such domain and how many complex lines can a Fatou-Bieberbach domain in \mathbb{C}^n contain?

三、参考文獻

- [1] S. Bochner and W. Martin, Several Complex Variables, Princeton University Press, NJ, 1948.
- [2] T. G. Chen, A Class of Fatou-Bieberbach, Submit to PMJ.

- [3] F. Forstneric, Holomorphic Automorphisms of \mathbb{C}^n ; A Survey.
- [4] S. Krantz, Function Theory of Several Complex Variables, 2nd ed. Wadsworth, Belmont, CA, 1992.
- [5] J. P. Rosay and W. Rudin, Holomorphic maps from \mathbb{C}^n to \mathbb{C}^n , trans. Amer. Math. Soc., 310(1988), 47-86.