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1 Abstract

In this report, we consider a general PH/G/1 queueing
system in which the interarrival time follows a phase-
type renewal process and service time distribution is
general. Correlation of consecutive interdeparture times
characterizing the output process will be studied. We
shall first construct a recursive procedure for calculating
the joint probability distribution of an arbitrary number
of consecutive indeparture times in a PH/G/1 queue.
Closed form solutions of the equilibrium distribution are
derived for this model and the Laplace-Stieltjes trans-
form (LST) of the distribution of interdeparture times is
presented. We then obtain explicitly the covariances of
nonadjacent interdeparture times, and display the corre-
lation coefficients that reveal the long-range dependence.
PH/G/1 Queueing, Matrix-geometric
solutions, Covariances of Departure
processes)
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2 Introduction
of GI/G/1

of many re-
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closed form solutions for the dlstrlbutlon of the depar-
ture process are nearly intractable. Burke [2] and Da-
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ley [6] investigated departure processes from a GI/M/1
queue and studied the correlation structure. He proved
that the output process of a stationary GI/M/1 queue-
ing system is a renewal process if and only if the input
process is a Poisson process, in which case the output
process is a Poisson process. Chang [3] discussed a gen-
eral phenomenon in queueing theory. He showed that
the Poisson process is the only stationary and ergodic
process that induces identical distributions on the inter-
departure times when the service times are exponentially
distributed. For a departure process in a specific model,
Takagi and Nishi [15] employed probability decomposi-
tion and Laplace-Stieltjes transforms to derive correla-
tion coefficients of interdeparture times for M /G/1 and
4G/1/K queues.

enkins [11] analyzed the correlation of consecutive
interdeparture times for an M/FE,,/1 queue, where E,,
denotes an Erlang distribution with m phases. For a

M/G / 1 queue, Conolly [4] gave the Jomt d1str1but1on

and Ishikawa [10] have studied the correlation structure
of the M/G/1/K queue. King [12] also had an investiga-
tion on the covariance structure of the output process.
But their results were only limited on the case where
the arrival process is Poisson. In the report, we will con-
struct a procedure for calculating the joint probability
distribution for the arbitrary number n consecutive in-
terdeparture times Dy, Ds, ..., D, for a general arrival
process. Our method provides a different approach by
taking advantage of a recursive structure in the set of
interdeparture times. The methodology is based on the
development of Luh [13].



The departure process

£ (sn,Sn—1,---,51) be the Laplace transform of
the joint probability density function for n consecu-
tive interdeparture times D; through D, where the
transform parameter s; corresponds to D,i1_;. Let
£(Sn,Sn-1,-.-,81 | k) be the LST of the joint prob-
ability density function for n consecutive interdeparture
times 79 through 7,, condition on k customers in the
queue at a departure time. It is an M dimensional
column vector whose elements are associated with each
phase of the arrival process. Let E;(y) be a probability
conditioned on y.
Obviously,

£ (s1 | 1) = (H* (1), H*(51), -, H*(s1))"

f1(81 | 0) = H*(sl)a*(sl)

f;(Sn,Sn_h...,Sl | k) = u*(8n78n_1,“_,51).
n—k—1
d*(sn [n=k)+ D Qilsn)-
i=0
fo_1(8ny8n—1,...,81 | n—k—1)
where ¢*(s) = (ai(s),az(s),...,an(s))T

Q; :/ e VEi(y)dH(y),1 <k <n—1
y>0

n—1

U (8p—1,8n-2,---,81) = H H*(s;)

=1

d*(s | m) = [di(s | m),d5(s | m),....d3 (s [ m)]"

aj(sm) = [ eyt )
y=z

£ (sn,Sn—1,-.-,81 | n) =
[ (Sny Sn—1y-- - 81), U (Spy Sn—1y---381)5-- -,
“*(Sn,sn_1,...,sl]T
£ (Sny Sn_t,...,51 | 0) =
Falsmsnotyeooys1 | DT - era(sn)"

We will now consider the joint p.d.f. of D,,_; and D,,.
Using conditional probabilities this joint p.d.f. is equal
to £5(sn, Sn—1,---,51 | k). The marginal joint p.d.f. of
D,_; and D,, is given by £:(spn,Sn—-1,-.-,51 | »). And
this will be obtained from the product of conditional dis-
tributions. Hence, on taking the product and summing
over k and j. We find then that the density

n—1
ZwkT-f;(sn,sn_l,...,sl | &)+
k=0

7r3;+ £ (Sny Sn—1,.--,81 | n)

i.e., the joint probability density function is the product
of the marginal p.d.f.’s.

From these considerations it easily follows that the
marginal distribution of D has Laplace transform when
N <1ie.,

mg - a*(s1) +mly (H*(S1), H*(S1), ..., H*(S1))T

4 Autocovariance of interdepar-
ture times

We shall first derive the stationary probability 7 at
departure point in K»;/G/1. Then we expect to obtain
Cov[D1,D,], for 1 < n < co. We define it to be weakly
stationary if the expected value of D; is a constant for
all t. The covariance matrix of (D1, Da,...,D,) for all
nonempty finite sets of indices denoted by (¢, %2, ... t,)
and all m such that ¢1,ts,...,t,,t1 +h,to+h,...,t,+h
are contained in the index set. The covariance of D;
and D14, depends only on the distance m and we may
write v(m) = Cov[Dy, Dy4pm],where

Cov[Dy,D,] =

ann(Sna S'n—17 A 781)
05,051

The autocorrelation of lag 1, is written as , m=1. It is
not worth writing out the precise form of f(D,_1 , D)
in the special Erlangian case. Instead, a measure of the
dependence in the departure process will be found by
taking the expectation of (Dy,—1 , Dy).

|3n:sn—1:~<:sl:O _(E[D])2

5 The correlation structure

By the recursive procedure given in section 3, we can cal-
culate the Laplace transform f,(sp, $p—1,---,s1) for the
joint distribution of n consecutive interdeparture times
Dy,Ds,...,D,. Such calculation is made possible by
symbolic formula manipulation software Mathematica

[14]. We can then obtain the covariance of Dy and D,,.
n this section, we present the result for a GI/G/1

queue. According to Takagi and Nishi [15], Cov[Dy, D,,]
is obtained for an M/G/1 queue. We display the
correlation coefficients of the interdeparture times
defined by «(m) for the Erlang-K distribution of the
service time which has the unit mean and squared



which is independent of the arrival rate A . Takegi
and Nishi [12] gives the expression for 7(3) for the
M/G/1 queue, which agrees with our special case. In
Fig.1, we plot v(m) for m = 1,2,...,5 respectively,
for EQ/E2/].,E3/E2/1,E4/E2/1,E5/E2/1. We observe
that v(m) is always nonnegative. Thus, we always have
limy(m) = 0. Given n and m finite, y(m) is a unimodal
function of A . Given A, r(m) increases with K and
decreases with m.

Dy D Ds
K=2 | -4.98328 | -4.98328 | -4.98328
K=3 | -4.99494 | -4.99494 | -4.99494
K=4 | -4.99792 | -4.99792 | -4.99792
K=5 | -4.99905 | -4.99905 | -4.99905

Dy, Dy | D1,Ds (1) 7(2)
K=2 | 24.7007 | 24.9001 | -0.2993 | -0.0999
K=3 | 24.6259 | 24.9476 | -0.3741 | -0.0524
K=4 | 24.5858 | 24.9666 | -0.4142 | -0.0334
K=5 | 24.5626 | 24.9762 | -0.4374 | -0.0238

6 The Variability of the Output
Process

One additional measure of interest is the variability of
the output process. In general the more variable the
output process is, the greater the amount of work-in-
process will be present in downstream subsystems. Two
possible measures for the variability of the output pro-
cess are the variance of the interdeparture distribution
and the asymptotic variance. The asymptotic variance
was introduced in a sequence of papers by Whitt [16,17],
Albin [1] and Hendricks [9]. The asymptotic variance is
the limiting variance, per departure, of the time of the
nth departure (measured arbitrarily from a departure e-
poch). Mathematically, the asymptotic variance(A Var)
is give by:

n—1
.1
AVar = Tllll)rh EVar(ZO D;)
]:

Now by Assumption of (the process is stationary) and by
assuming the lag j correlations are zero for j > ¢, where
q is finite, the asymptotic variance reduces to

q
AVar ~ Var(D)(1 + 2 Z Corr;).
j=1

Therefore, the asymptotic variance can be obtained from
the variance of the interdeparture distribution and the
correlation structure.

7 Conclusion

In this report, we present an efficient numerical method
for calculation the waiting time and idle time dis-
tributions of the algorithmic GI/G/1 queue. Our
method is based on the Matrix-algebraic techniques,
which is briefly reviewed. Compared to the related
methods suggested in the literature, our method seems
to perform very well, and it is often faster by several
orders of magnitude. A number of numerical examples
conclude the paper.
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