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Abstract. In this paper, we study the initial boundary value problem for a heat equation
with strong absorption. We first prove that the solution of this problem converges to the
unique singular steady state for a class of initial data. This gives an example of dead-core
which is developed in infinite time. Furthermore, we also derive the exact convergence rate
(the dead-core rate) by a matching process.

1. Introduction

In this paper, we study the following initial boundary value problem (P) for the heat

equation with a strong absorption:

ut = uxx − up, 0 < x < 1, t > 0,(1.1)

ux(0, t) = 0, u(1, t) = kp, t > 0,(1.2)

u(x, 0) = u0(x), 0 ≤ x ≤ 1,(1.3)

where p ∈ (0, 1), kp := [2α(2α − 1)]−α, α := 1/(1 − p), and u0 is a smooth function

defined on [0, 1] such that

(1.4) u′0(0) = 0, u0(1) = kp, u
′
0(x) ≥ 0, U(x) < u0(x) ≤ kp for x ∈ [0, 1).

We note that U(x) := kpx
2α is the unique steady state of (1.1)-(1.2). For convenience,

by abusing the terminology, we shall call this steady state U as the singular steady state.

Notice that U(0) = 0 which is “singular” in the sense that the reaction rate becomes

infinity there.

Problem (P) arises in the modeling of an isothemal reaction-diffusion process [1, 7]

and a description of thermal energy transport in plasma [5, 4]. In the first example, the

solution u of (P) represents the concentration of the reactant which is injected with a

fixed amount on the boundary x = ±1 (by a symmetric reflection), and p is the order

of reaction.

It is trivial that, for any u0 as above, problem (P) admits a unique global classical

solution.Also, it follows from the strong maximum principle that u > U and ux > 0 in

(0, 1) × (0,∞).
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The problem (P) with general boundary value (i.e., any k > 0) has been studied

extensively. We refer the reader to a recent work of Guo-Souplet [3] and the references

cited therein.

Recall that the region where u = 0 is called the dead-core and the first time when u

reaches zero is called the dead-core time.

By taking the special constant kp, we shall show that the solution of (P) is always

positive for all t > 0 and tends to the singular steady state U uniformly as t → ∞. In

particular, we have u(0, t) → 0 as t→ ∞. This means that the dead-core occurs at time

infinity.

Motivated by the recent works of Dold-Galaktionov-Lacey-Vazquez [2] and Souplet-

Vazquez [6], we shall investigate the exact convergence rate of u(0, t) to zero as t→ ∞.

We call this rate as the dead-core rate. We now state the main result of this paper as

follows.

Theorem 1.1. There is a positive constant µ such that

(1.5) lim
t→∞

{ln[u(0, t)]/t} = −µ.

The main idea to prove this main theorem is the so-called matching process (cf. [2, 6]).

In this process, we need to study the inner and outer expansions.

The paper is organized as follows. We first give some preliminary results in §2. In

particular, we prove that the dead-core is developed at time infinity. Some properties

of the associated steady states to (1.1) are also given. Section 3 is devoted to the study

of spectrum of linearized operator around the singular steady state and the regular

approximated operators to this linearized operator. Then we derive the so-caller inner

and outer expansions rigorously in §4. Finally, in §5, the idea of matching is applied to

prove the main theorem on the exact convergence rate of u(0, t) as t→ ∞.

2. Preliminaries

In this section, we shall give some preliminary results on the solution u of (P). First,

we have the following result of positivity of u. This also implies that the dead-core can

only be developed at time infinity.

Theorem 2.1. We have u > 0 for all 0 ≤ x ≤ 1 and t > 0.

Proof. For contradiction, we may assume that

T := sup{τ > 0 | u(x, t) > 0 ∀(x, t) ∈ [0, 1] × [0, τ ]} <∞.

By the maximum principle, we have u > U in (0, 1) × [0, T ]. In particular,

(2.1) u(1/2, t) > U(1/2) ∀t ∈ [0, T ].

Let {un}n≥1 be a sequence of functions defined on [0, 1] such that

u′′n = up
n on [0, 1]; un(0) = 0, u′n(0) = 1/n.
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It is easy to see that un ≥ un+1 ≥ U on [0, 1] for all n ≥ 1. Furthermore, un → U

uniformly on [0, 1] as n → ∞. It follows from (2.1) that u(1/2, t) > UN (1/2) for all

t ∈ [0, T ] for some sufficiently large N . By choosing N larger (if necessary), we also have

u0(x) > UN (x) ∀x ∈ [0, 1/2].

It follows from the maximum principle that u ≥ uN on [0, 1/2]×[0, T ]. Since u(0, T ) = 0,

we obtain that ux(0, T ) ≥ u′N(0) > 0, a contradiction. Hence the theorem is proved. �
The next theorem shows that u converges to the unique singular steady state U as

t→ ∞. As a consequence, the dead-core does occur at time infinity.

Theorem 2.2. There holds u(x, t) → U(x) uniformly for x ∈ [0, 1] as t→ ∞.

Proof. First, we show that u, ux, ut are bounded on [0, 1] × [0,∞). Indeed, the bound-

edness of u follows from the maximum principle. Since the function v := ut satisfies

vt = vxx − pup−1v, 0 < x < 1, t > 0,

vx(0, t) = 0, v(1, t) = 0, t > 0,

v(x, 0) = u′′0(x) − up
0(x), 0 ≤ x ≤ 1.

It follows from the maximum principle that v (and so ut) is bounded on [0, 1] × [0,∞).

Now, from (1.1) we see that uxx is bounded on [0, 1] × [0,∞). Consequently, ux is also

bounded, since ux(0, t) = 0 for all t > 0.

Now, we take any sequence {tj} with tj → ∞ as j → ∞. We define uj(x, t) :=

u(x, t + tj) for any j ∈ N. From the boundedness of u and ux it follows that {uj} is

uniformly bounded and equi-continuous on [0, 1] × [0,∞). It follows from the Arzela-

Ascoli Theorem that there exists a subsequence, still denoted by uj, such that uj → w

uniformly on [0, 1] as j → ∞ for some function w satisfying

wt = wxx − wp, 0 < x < 1, t > 0,

wx(0, t) = 0, w(1, t) = kp, t > 0.

We claim that wt ≡ 0. To do this, we introduce the energy functional

E(t) :=
1

2

∫ 1

0

u2
xdx+

1

p+ 1

∫ 1

0

up+1dx.

By a simple computation, we have

E ′(t) = −
∫ 1

0

u2
tdx.

For any fixed T > 0, an integration yields∫ T

0

∫ 1

0

u2
tdxdt = E(0) − E(T ) ≤ E(0) <∞.

It follows that ∫ ∞

0

∫ 1

0

u2
tdxdt <∞.



4 SHENG-CHEN FU, JONG-SHENQ GUO, AND CHIN-CHIN WU

This implies that

∫ ∞

0

∫ 1

0

u2
j,tdxdt =

∫ ∞

tj

∫ 1

0

u2
tdxdt→ 0 as j → ∞.

On the other hand, for any T > 0, since {uj,t}j∈N is uniformly bounded in L2([0, 1] ×
[0, T ]), it follows that uj,t converges weakly to wt in L2([0, 1]× [0, T ]). This implies that

∫ T

0

∫ 1

0

w2
t dxdt ≤ lim inf

j→∞

∫ T

0

∫ 1

0

u2
j,tdxdt = 0.

Hence wt ≡ 0 and so w = U .

Since the sequence {tj} is arbitrary, the theorem follows. �

The following theorem implies that the convergence of u(0, t) to zero is at least expo-

nentially fast.

Theorem 2.3. There exist positive constants C and β such that

(2.2) 0 < u(0, t) ≤ Ce−βt

for all t > 0.

Proof. First, we derive the following estimate

(2.3)

∫ 1

0

[u(x, t) − U(x)]2dx ≤ Ce−γt

for all t > 0 for some positive constants C and γ. To this end, we set w = u− U . Then

w satisfies

wt = wxx + Up − up ≤ wxx, 0 < x < 1, t > 0,

wx(0, t) = 0 = w(1, t), t > 0.

It then follows that ∫ 1

0

wwtdx ≤
∫ 1

0

wwxxdx.

Using an integration by parts and applying the Poincaré Inequality, we get

1

2

d

dt

∫ 1

0

w2dx ≤ −
∫ 1

0

w2
xdx ≤ −c

∫ 1

0

w2dx

for some positive constant c. Hence (2.3) follows.

By a comparison, it suffices to consider the case when u0(x) ≡ kp. Recall that ux > 0

on (0, 1) × (0,∞). It implies that

(2.4) u(x, t) ≥ u(0, t) ≥ U(x) = kpx
2α ∀x ∈ [0, h(t)],
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where h(t) := [u(0, t)/kp]
1/(2α) ≤ 1 for t > 0. Then it follows from (2.3) and (2.4) that

Ce−γt ≥
∫ 1

0

[u(x, t) − U(x)]2dx

≥
∫ h(t)

0

[u(0, t) − U(x)]2dx

=

∫ h(t)

0

k2
p[h(t)

2α − x2α]2dx

= k2
ph(t)

4α+1

∫ 1

0

(1 − s2α)2ds,

by a change of variable s := x/h(t).

Hence the theorem follows by taking β = 2αγ/(4α+ 1). �

Now, for any η ≥ 0, let Uη be the solution of

(2.5) u′′ = up, u > 0 ∀y > 0; u(0) = η, u′(0) = 0.

In particular, U0(y) = U(y) = kpy
2α for y ≥ 0. Note that, by a re-scaling, we have

(2.6) Uη(y) = ηU1(η
(p−1)/2y) ∀η > 0.

Also, by a simple comparison, we have Uη1 > Uη2 if η1 > η2 ≥ 0. Moreover, Uη → U0 as

η → 0+.

Remark 2.1. For η = 0, there are non-negative solutions in the form

Uε
0 (y) := kp(y − ε)2α

+

for any ε > 0. And these give all the possible non-negative non-trivial solutions of (2.5).

Concerning the asymptotic behavior of Uη as η → 0+, we have

Lemma 2.4. As η → 0+,

Uη(x) = U0(x) + aη(1−p)/2x2α−1(1 + o(1))

for any x > 0, where a is a positive constant.

Proof. First, we study the asymptotic behavior of U1(y) as y → ∞. For this, we write

U1 = U0 + v. Then v satisfies the equation

v′′ = by−2v + c2y
−2−2αv2 + c3y

−2−4αv3 + · · ·
for some constants ci, i ≥ 2, where b := (2α − 1)(2α − 2). Assume that v(y) ∼ yγ as

y → ∞ for some γ > 0. Then we must have

γ(γ − 1) = b.

By writing γ = 2α − δ, we obtain that either δ = 1 or δ = 4α − 2 > 2α (which is

impossible). Hence we obtain that

(2.7) U1(y) = U0(y) + ay2α−1(1 + o(1)) as y → ∞
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for some constant a. The constant a is positive, since U1 > U0.

Now, for any x > 0, from (2.6) and (2.7) it follows that

Uη(x) = ηU1(η
(p−1)/2x) = U0(x) + aη(1−p)/2x2α−1(1 + o(1)) as η → 0+.

The lemma is proved. �
In the sequel, for convenience we denote σ(t) := u(0, t).

Lemma 2.5. For all t sufficiently large, σ(t) is strictly decreasing and

(2.8) u(x, t) < Uσ(t)(x) in (0, 1].

Proof. Define

zη(x, t) := u(x, t) − Uη(x).

Then zη satisfies

(zη)t = (zη)xx + cη(x, t)zη,

where

cη(x, t) := −u
p(x, t) − Up

η (x)

u(x, t) − Uη(x)
.

Since zη(1, t) < 0 and (zη)x(0, t) = 0 for all t > 0, we see that the zero number Jη(t) of

zη defined by

Jη(t) := #{x ∈ [0, 1] | zη(x, t) = 0}
is non-increasing in t.

We first claim that there exists η∗ > 0 such that Jη(1) = 1 for all η ∈ (0, η∗]. Indeed,

since z0,x(1, 1) < 0, there exists δ > 0 such that z0,x(x, 1) < 0 for all x ∈ [1− δ, 1]. Since

zη,x(x, 1) → z0,x(x, 1) uniformly on [0, 1] as η → 0+. There is η0 > 0 such that

(2.9) zη,x(x, 1) < 0 ∀x ∈ [1 − δ, 1] ∀η ∈ (0, η0].

On the other hand, since u(x, 1) > U(x) on [0, 1− δ] and Uη → U uniformly on [0, 1− δ]

as η → 0+, there exists an η∗ ∈ (0, η0) such that

(2.10) zη(x, 1) > 0 ∀x ∈ [0, 1 − δ] ∀η ∈ (0, η∗].

Recall that zη(1, 1) < 0 for all η > 0. We conclude from (2.9) and (2.10) that Jη(1) = 1

for all η ∈ (0, η∗].
Next, we fix any η ∈ (0, η∗]. Note that Jη(t) ≤ 1 for all t > 1. We claim that

σ(t0) > η, if Jη(t0) = 1 for some t0 > 1. For contradiction, we suppose that σ(t0) ≤ η,

i.e., u(0, t0) ≤ Uη(0). Note that u(1, t) < Uη(1) for all t > 0. If u(0, t0) = Uη(0),

then u(x, t0) < Uη(x) for all x ∈ (0, 1], since Jη(t0) = 1. Since Jη(t) = 1 for all

t ∈ [1, t0], there exists x(t) ∈ [0, 1) such that u(x(t), t) = Uη(x(t) and u(x, t) < Uη(x)

for x ∈ (x(t), 1] for each t ∈ [1, t0]. By Hopf’s Lemma, ux(0, t0) < U ′
η(0) = 0, a

contradiction. On the other hand, if u(0, t0) < Uη(0), then there exists t∗ ∈ (1, t0) such

that u(0, s) < Uη(0) for all s ∈ [t∗, t0]. Since u(1, s) < Uη(1), we can find x(s) ∈ (0, 1)

such that u(x(s), s) = Uη(x(s)) and u(x, s) < Uη(x) for x 	= x(s) for all s ∈ [t∗, t0]. This
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is a contradiction to the maximum principle. This proves that σ(t0) > η, if Jη(t0) = 1

for some t0 > 1.

Now, since σ(t) → 0 as t→ ∞, there is t1 sufficiently large such that σ(t) ≤ η∗ for all

t ≥ t1. Hence Jσ(t)(t) = 0 for all t ≥ t1. This implies that

u(x, t) < Uσ(t)(x) on [0, 1]

for all t ≥ t1. Therefore, (2.8) follows. Moreover, Jσ(t)(s) = 0 for all s > t ≥ t1. Then

u(x, s) < Uσ(t)(x) for x ∈ [0, 1]. In particular,

σ(s) = u(0, s) < Uσ(t)(0) = σ(t)

and the lemma is proved. �

3. Spectrum Analysis

In the matching process, we need to study the following linearized operator

Lv := −v′′ + b

x2
v, b := (2α− 1)(2α− 2)

which is from the linearization of (1.1) around the singular steady state U .

Consider the eigenvalue problem

(3.1) Lφ = λφ, 0 < x < 1; φ′(0) = 0, φ(1) = 0.

We introduce the following Hilbert space and quantities:

H := {φ ∈ H1([0, 1]) |
∫ 1

0

φ2(x)

x2
dx <∞, φ(1) = 0},

J(φ) :=

∫ 1

0

φ2
x(x)dx+ b

∫ 1

0

φ2(x)

x2
dx,

I(φ) :=

∫ 1

0

φ2(x)dx.

Then the principal eigenvalue of (3.1) can be characterized by

(3.2) λ := inf{J(φ)/I(φ) | φ ∈ H, I(φ) > 0}.
It is easy to see that λ > b > 0. Also, by taking a minimization sequence, we can show

that this λ can be attained by a function φ∗ ∈ H which is the eigen-function of (3.1)

such that

φ∗ > 0 in (0, 1),

∫ 1

0

(φ∗(x))2dx = 1.

Note that φ∗(0) = 0. It is also easy to see that

(3.3) φ∗(x) = dx2α−1(1 + o(1)) as x→ 0

for some positive constant d.

On the other hand, it is easily seen that for any ε ∈ (0, 1) there exists the principal

eigen-pair (λε, φε) of the following regular eigenvalue problem:

(3.4) Lεφε = λεφε, ε < x < 1; φ′
ε(ε) = φε(1) = 0 < φε(x) ∀x ∈ (ε, 1),



8 SHENG-CHEN FU, JONG-SHENQ GUO, AND CHIN-CHIN WU

where

Lεv := −v′′ + b(1 − ε)

x2
v.

Without loss of generality, we may further assume that φε(ε) = ε.

Lemma 3.1. There holds λε → λ as ε→ 0+.

Proof. By the characterization of the principal eigenvalue λε of (3.4), we have

λε ≤ Jε(φ
∗)

Iε(φ∗)
,

where

Jε(φ) :=

∫ 1

ε

φ2
x(x)dx+ b(1 − ε)

∫ 1

ε

φ2(x)

x2
dx,

Iε(φ) :=

∫ 1

ε

φ2(x)dx.

But, Jε(φ
∗) → λ and Jε(φ

∗) → 1 as ε → 0+. We obtain that

(3.5) lim sup
ε→0+

λε ≤ λ.

On the other hand, we introduce a C∞-function θ by θ(s) = 0 for s ≤ 1/2, θ(s) = 1

for s ≥ 1, and θ′ ≥ 0 in [1/2, 1]. Let θε(x) := θ(x/ε) for any ε > 0. Set φ̃ε = φε in [ε, 1]

and φ̃ε = ε in [0, ε]. Then for ψε := θεφ̃ε we have

J(ψε) = Jε(φε) + bε

∫ 1

ε

φ2
ε(x)

x2
dx+ ε

(∫ 1

1/2

(θ′)2(s)ds+ b

∫ 1

1/2

θ2(s)

s2
ds

)
,

I(ψε) = Iε(φε) + ε3

∫ 1

1/2

θ2(s)ds.

Since λ ≤ J(ψε)/I(ψε) for all ε ∈ (0, 1), we conclude that

(3.6) λ ≤ lim inf
ε→0+

λε.

Therefore, the lemma follows by combining (3.5) and (3.6). �

Remark 3.1. The constant b(1 − ε) in Lε can be replaced by any constant bε with

0 < bε < b and bε ↑ b as ε ↓ 0+. Lemma 3.1 remains true.

4. Inner and Outer Expansions

In this section, we shall first derive the convergence of u(x, t) to Uσ(t)(x) near x = 0

as t→ ∞, where σ(t) := u(0, t). To do this, we make the following transformations:

(4.1) u(x, t) := σ(t)θ(ξ, τ), ξ := σ(t)(p−1)/2x, τ :=

∫ t

0

σ(s)p−1ds.

Then it is easy to check that θ satisfies the equation

(4.2) θτ = θξξ − θp − g(τ)

(
θ − 1 − p

2
ξθξ

)
,
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where g(τ) := σ′(t)σ(t)−p. Also, θ(0, τ) = 1 and θξ(0, τ) = 0 for all τ > 0. Moreover, it

follows from Lemma 2.5 and (2.6) that θ(ξ, τ) < U1(ξ).

We shall study the stabilization of the solution θ of (4.2). First, by considering the

function

J(x, t) :=
1

2
u2

x − Cup+1

for some positive constant C and applying a maximum principle (cf. p. 660 of [3]), we

can also derive the following estimate

(4.3) 0 ≤ ux ≤ Cu(p+1)/2 ∀x ∈ [0, 1], t > 0,

where C is a positive constant. Consequently, by an integration, we deduce from (4.3)

that

(4.4) u(x, t) ≤ [σ(t)(1−p)/2 + cx]2α ∀x ∈ [0, 1], t > 0,

for some positive constant c.

Using (4.4), (4.1), and ux = σ(1+p)/2θξ, we obtain the following estimate for the solution

θ of (4.2):

(4.5) 0 ≤ ξθξ(ξ, τ), θ(ξ, τ) ≤ C(1 + ξ)2α ∀ ξ ∈ [0, σ(p−1)/2(t)], τ > 0,

for some positive constant C.

Next, it follows from the Hopf Lemma that uxx(0, t) > 0 and so ut(0, t) > −up(0, t) by

(1.1). Hence g(τ) > −1 for all τ > 0. We conclude from Lemma 2.5 that −1 < g(τ) < 0

for all τ � 1. Note that ∫ ∞

0

g(τ)dτ = −∞.

Nevertheless, we have the following useful lemma.

Lemma 4.1. There holds limτ→∞ g(τ) = 0.

Proof. Otherwise, there is a sequence {τn} → ∞ such that g(τn) → −γ as n → ∞ for

some constant γ > 0. By using (4.5) and the standard regularity theory, we can show

that there is a subsequence, still denote it by {τn}, such that

θ(ξ, τ + τn) → θ̃(ξ, τ) as n→ ∞
uniformly on any compact subsets, where θ̃ solves the equation

(4.6) θ̃τ = θ̃ξξ − θ̃p + γ(θ̃ − 1 − p

2
ξθ̃ξ), ξ > 0, τ > 0,

with θ̃(0, τ) = 1 and θ̃ξ(0, τ) = 0. Moreover, it is easily to check that θ̃ ≤ U1 and θ̃ξ ≥ 0.

Furthermore, it follows from the so-called energy argument (cf. the proof of Proposi-

tion 3.1 in [3]) that θ̃(ξ, τ) → V (ξ) as τ → ∞ for some V satisfying

V ′′ − V p + γ(V − 1 − p

2
ξV ′) = 0, ξ > 0,

V ′(0) = 0, V (0) = 1.
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Note that V ≤ U1 and V ′ ≥ 0. Set

W (y) :=
(γ
α

)α

V (

√
α

γ
y).

Then W satisfies

W ′′ −W p + α(W − 1 − p

2
yW ′) = 0, y > 0,

W ′(0) = 0, W (0) = (γ/α)α.

Since W > 0, W ′ ≥ 0 for y > 0, and V ≤ U1 gives the polynomial boundedness of W ,

it follows from Proposition 3.3 of [3] that either W = U or W ≡ α−α. The first case is

impossible, since U(0) = 0. The second case is also impossible, since θ is unbounded by

Theorem 2.2. Hence the lemma follows. �

Again, by the standard limiting process with the estimate (4.5) and Lemma 4.1, for

any given sequence {τn} → ∞ we can show that there is a limit θ̃ satisfying

θ̃τ = θ̃ξξ − θ̃p, ξ > 0, τ > 0,

θ̃(0, τ) = 1, θ̃ξ(0, τ) = 0,

such that θ(ξ, τ + τn) → θ̃(ξ, τ) as n→ ∞ uniformly on compact subsets. Since we also

have

θ̃(ξ, τ) ≤ U1(ξ), θ̃(0, τ) = U1(0), θ̃ξ(0, τ) = (U1)ξ(0),

the Hopf Lemma implies that θ̃ ≡ U1. Since this limit is independent of the given

sequence {τn}, we see that θ(ξ, τ) → U1(ξ) as τ → ∞ uniformly on any compact

subsets. Returning to the original variables and using the relation (2.6), we thus have

proved the following so-called inner expansion.

Theorem 4.2. As t→ ∞, we have

u(x, t) = Uσ(t)(x)(1 + o(1))

uniformly in {0 ≤ σ(p−1)/2(t)x ≤ C} for any positive constant C.

For the outer expansion, we first derive the following lower bound estimate.

Lemma 4.3. There exists a small positive constant δ such that

(4.7) u(x, t) − U(x) ≥ δe−λtφ∗(x), x ∈ [0, 1], t > 1.

Proof. Write w = u− U . Then w(0, t) > 0, w(1, t) = 0, and w satisfies the equation

(4.8) wt = wxx − b

x2
w + F (x, w),

where

(4.9) F (x, w) := Up − (w + U)p +
b

x2
w =

1

2
p(1 − p)Ũp−2w2,
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for some Ũ ∈ (U,U + w). Note that F ≥ 0. Set ŵ(x, t) := δe−λtφ∗(x), where δ is a

positive constant to be determined later. Then

ŵt = ŵxx − b

x2
ŵ, x ∈ (0, 1), t > 0,

ŵ(0, t) = 0, ŵ(1, t) = 0, t > 0.

Recall that (φ∗)′(1) < 0. Also, note that ux(1, 1) − U ′(1) < 0, by the Hopf Lemma. By

the continuity, there exist positive constants δ and η such that

(4.10) ux(x, 1) − U ′(x) − δe−λ(φ∗)′(x) < 0

for all x ∈ [1 − η, 1]. It follows from (4.10) that w(x, 1) ≥ ŵ(x, 1) for all x ∈ [1 − η, 1].

Using u(·, 1) > U(·) in [0, 1 − η] and by choosing smaller positive δ (if necessary), we

obtain that w(x, 1) ≥ ŵ(x, 1) for all x ∈ [0, 1]. Therefore, by the comparison principle,

the estimate (4.7) follows. �
Now, following the proof of Lemma 3.2 in [3], we can also show that

(4.11) ux(x, t) ≥ ε̂xup(x, t) ∀x ∈ [0, 1], t > 0,

for some small constant ε̂ > 0. It then follows from (4.11) that

(4.12) u(x, t) ≥ [σ(t)1−p + cx2]α ∀x ∈ [0, 1], t > 0,

for some positive constant c.

Recall the principal eigen-pair (λε, φε) of (3.4) for any ε ∈ (0, 1). Then we have the

following lemma which is another part of the outer expansion.

Lemma 4.4. For each ε > 0, there exists a positive constant cε such that

(4.13) u(x, t) − U(x) ≤ cεe
−λεtφε(x), x ∈ [ε, 1],

for all t sufficiently large.

Proof. Again, we set w = u− U . We first estimate F as follows. Since Ũ ∈ (U,U + w),

we compute from (4.9) that

F (x, w) ≤ 1 − p

2
[U−1w][pUp−1w] =

1 − p

2
[U−1w]

(
b

x2
w

)
.

By Theorem 2.2, there is t0 sufficiently large such that

1 − p

2
[U−1(x)w(x, t)] ≤ ε ∀x ∈ [ε, 1], t ≥ t0.

Consequently, we obtain from (4.8) that w satisfies the following inequality

(4.14) wt ≤ wxx − b(1 − ε)

x2
w ∀x ∈ (ε, 1), t ≥ t0

and w(1, t) = 0 for all t > 0.
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Now, set ŵ(x, t) := cεe
−λεtφε(x), where cε is a positive constant to be determined.

Then

ŵt = ŵxx − b(1 − ε)

x2
ŵ, x ∈ (ε, 1), t > 0,

ŵx(ε, t) = 0, ŵ(1, t) = 0, t > 0.

Recall that (φε)
′(1) < 0. Then by the continuity there exist a small positive constant η

and a large positive constant cε such that

(4.15) ux(x, t0) − U ′(x) − cεe
−λεt0(φε)

′(x) > 0 ∀x ∈ [1 − η, 1].

It follows from (4.15) that w(x, t0) ≤ ŵ(x, t0) for x ∈ [1 − η, 1]. Then, by choosing cε
larger (if necessary), we obtain that w(x, t0) ≤ ŵ(x, t0) for x ∈ [ε, 1].

It remains to show that wx(ε, t) ≥ 0 for all t ≥ t0.

Q: can this be deduced from (4.12)?? or, need other ideas?? Check!!

Therefore, the lemma follows by applying the comparison principle. �

5. Rate of Convergence: Matching

In this section, we shall using the idea of matching to derive the exact convergence

rate of σ(t) := u(0, t) to zero.

For the lower bound, we recall from Lemmas 2.4 and 2.5 that for any x > 0:

(5.1) u(x, t) ≤ Uσ(t)(x) = U(x) + aσ(1−p)/2(t)x2α−1(1 + o(1)) as t→ ∞.

On the other hand, by (4.7) and (3.3), we have

(5.2) u(x(t), t) ≥ U(x(t)) + dδe−2αλt(1 + o(1)) as t→ ∞,

where x(t) := e−λt. Consequently, there exists a positive constants d1 such that

e−λt ≤ d1σ
(1−p)/2(t)(1 + o(1)) as t→ ∞

i.e.,

(5.3) σ(t) ≥ d2e
−2αλt(1 + o(1)) as t→ ∞

for some positive constant d2. This gives the lower bound estimate of σ.

For the upper bound, we apply Theorem 4.2 and (4.13) to deduce that for x ≥ ε

U(x) + cεe
−λεtφε(x) ≥ u(x, t) = U(x) + aσ(1−p)/2(t)x2α−1(1 + o(1)) as t→ ∞.

It follows that

(5.4) σ(t) ≤ d3e
−2αλεt(1 + o(1)) as t→ ∞

for some positive constant d3 for any ε ∈ (0, 1). Also, from Lemma 3.1, we have λε → λ

as ε→ 0+. From this, we conclude the proof of Theorem 1.1 with µ = 2αλ.
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