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Abstract. Let X have a multivariate, p-dimensional normal distribution (p > 2)
with unknown mean g and known, nonsingular covariance 2. Consider testing Hp :
bip <0, forsomei=1,...,k and bjp > 0, forsomei = 1,...,k, versus H: : bjp > 0,
foralli=1,...,kor bjp<0,foralli=1,...,k where b1,..., b, k > 2, are known
vectors that define the hypotheses and suppose that for each ¢ = 1,.. ., k there is an
j € {1,...,k} (j will depend on i) such that b/Xb; < 0. For any 0 < & < 1/2.
We construct a test that has the same size as the likelihood ratio test (LRT) and is
uniformly more powerful than the LRT. The proposed test is an intersection-union
test. We apply the result to compare linear regression functions.

Key words and phrases: Intersection-union test, likelihood ratio test, linear inequal-
ities hypotheses, uniformly more powerful test.

1. Introduction

Let X = (Xy,...,X,) {p > 2) be a p-variate normal random variable with mean
vector g = (py,..., 4p)" and known, nonsingular covariance matrix X. We consider the
problem of testing

Hy:bip<0 forsomei=1,....,k and bp>0 forsomei=1,...,k
(1.1) versus
Hy:blu>0 foralli=1,....k or &u<0 foralli=1,...,k.

Here by,..., b (k > 2) are specified p-dimensional vectors that define the hypotheses.
We assume H; is nonempty so the testing problem is meaningful. (We use the symbol
H; to denote the set of g vectors specified by the hypothesis, as well as the statement
of the hypothesis.) We also assume that the set {6, ..., b} has no redundant vectors
in it. That is, thete is no b; such that {g: blu > 0,i =1,... k} = {p: bjp > 0,i =
1,...,k,i # j}. Sasabuchi (1980} discusses conditions that are equivalent to our two
assumptions.

In this paper, for any testing problem of the form (1.1), we propose a new test that
has the same size as the size-a likelihood ratio test (LRT) and is uniformly more powerful
than the LRT. First we consider hypotheses that have only two linear restrictions (k =
2). A new test, ¢4, is proposed for the case b £bs < 0. In the case, the rejection region
of the new test is like Liu and Berger’s (1995) in that it contains the rejection region of
the LRT and an additional set, but the size of the new test is still . So the new test
is uniformly more powerful than the LRT. Berger (1989) proposed a more powerful test
for the X by < 0 case. The test, ¢y, is different than Berger’s test, and, in some cases,
appears to be more powerful. Then, recognizing that for & > 2, H; can be written as the
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intersection of two sets each defined by two inequalities, the intersection-union method
is used to obtain a test, ¢,, that is uniformly more powerful for the general problem
(1.1). One of differences between the work presented here and the work of Liu and
Berger (1995) is that we use various approach to show that the created two-sided test
is a size-a test. Since we consider two-sided testing problem in this paper, the Theorem
2.1 of Berger (1989) can not be applied. The other difference is the set D, defined in
Section 3, that makes the intersect-union method work.

Sasabuchi (1980) considered two-sided testing problem where both null and alter-
native hypotheses are determined by k linear inequalities. His problem is to test

Hos:blp>0 foralli=1,...,k where equality holds
for at least one value of {  and
biu<0 foralli=1,... &k where equality holds
for at least one value of 4.
(1.2) versus
Hig:bjp>0 foralli=1,2,...,k or bu<0 foralli=12,. ..,k

Sasabuchi (1980) showed that the size-« likelihood ratio test (LRT) of problem (1.2) for
acute cones cases is the test that rejects Hyg if

b X .
= Gpgya 2 Pralli=lok or

Z; < —zy, foralli=1,.. Kk

where 2z, is the upper 100« percentile of the standard normal distribution. Berger
(1989) shows that, althouth Hys C Hg and Hp is a much bigger set than Hog, the size-o
LRT in problem (1.1} for acute cones case is the same as Sasabuchi’s (1980}. The LRT
has some optimal properties which are admissible (Cohen et al. {1983); Twasa (1991))
and uniformly most powerful test among all monotone size-a tests (Lehmann {1952);
Cohen et al. (1983)). But the LRT is a biased test (Lehmann (1952); Berger (1989);
Liu and Berger (1995)). Iwasa (1991} also points out the LRT is d-admissible but not
a-admissible in one-sided bivariate problem. The o-admissibility would guarantee the
nonexistence of a uniformly more powerful test of size «r, but the d-admissibility does
not. So it is possible that we can find a nonmonotone test which is uniformly more
powerful than the LRT, and several researchers have developed such tests. However,
they most worked on one-sided testing problems.

Numerous researchers have found the uniformly more powerful tests for one-sided
testing problems under various conditions (Gutmann (1987); Nomakuchi and Sakata
(1987); Berger (1989); Twasa (1991); Shirley (1992); Li and Sinha (1995); Liu and Berger
(1995)). In the last one of these references gives a very general uniformly more powerful
test for one-sided hypotheses in normal random vector. In their paper, they show LRT
is uniformly dominated. In the same paper, Liu and Berger {1995) also give a restriction
on the construction of a size-o test in one-sided testing problem.

To simplify computation, we consider the transformed version of the original prob-
lem that is similar to the one used by Sasabuchi {1980), Berger (1989) and Liu and Berger
(1995). Let I' be a px p nonsigular matrix such that IEXY = I, the px p identity matrix.
So I~Y{I'~!) = . Make the transformation ¥ = I'X. Then Y ~ N,(6, 1), where
@ = Cu. Let {|a]| = (a'a)'/? denote the norm of a vector. Define k, = b/T1/||b/T 1.



UNIFORMLY MORE POWERFUL, TWO-SIDED TESTS 17

Then b/ = h/8|bT~1|. Therefore, problem (1.1) is equivalent to observing Y and
testing

Hy:hi8<0 forsomei=1,....k and hi@>0 forsomei=1,...,k.
(1.3) versus
I :hi@>0 foralli=1,....,k or hi@<0 foralli=1,...,k.

We will use ¥, h; and @ through the rest of the paper. In terms of these variables, the
size-a LRT of (1.1) or (1.3) is the test that rejects Hy if R/Y > z,, foralli=1,...,k
or BlY < —z,,foralli=1,.. k.

In Section 2 we propose a new test, ¢q, for the case k = 2 and b/ Xby < 0. We
compare the power of ¢y, Berger’s test and the LRT in an example. In Section 3, we
construct a uniformly more powerful, intersection-union test based on ¢4, for problem
(1.1) when k > 2. Section 4, we consider an example which is concerned about testing
whether linear regression functions are ordered.

2. Uniformly more powerful test

In this section, we will consider the testing problem (1.3) when & = 2 and b]Xbs =
R{hs | 6; 07 |||BAT 1 < 0, ie., hihy < 0. Let 7 be the angle between the vectors A
and hy. Since cos(t) = h{hy < 0, 7 is obtuse. But the angle in the cone 7 = {@ :
hi@ < 0,h;8 <0} is £ = = — 7, which is acute. So we say H; are two acute cones when
hihy; < 0. In this section we will describe a new test that is uniformly more powerful
than the LRT when the alternative hypothesis is an acute cone. We start by defining
the test, ¢4. Then we show that ¢4 is a size-o test and is uniformly more powerful than
the LRT.

Before describing the test, ¢y, we will define the functions and set which will be
used to construct the rejection region for the test ¢g.

DEFINITION 2.1, For —o0 < s €0, let Ly be the two dimensional set defined by

7. = L ut s > . 4+ sv
S\ FrE R e TR

Let ¢, = (V1 + 82 - 5)z,.
L, are two acute cones if 8 < 0. The vertices of two cones are {¢s, 2, ) and (—¢s, —2a)-

We will eventually express the LRT in terms of L,. Throughout the rest of the paper,
@(v) and ®(v) denote the standard normal pdf and cdf, respectively.

L =2,V < —za}.

DEerFINITION 2.2, For any u, —oo < u < oo, define
FPu)=0a— f w(v)dv
Lg(u}

where L,(u) = {v: (u,v} € L,}. Specifically, for s = 0,

Py(u) - O, —C <UL ;= Za,
¢ 0, u>c¢g=2z50ru< —c,.
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For s < 0,
r‘I’(w\/sza_u), u < —cs,
Py(u) =4 o, —s < u < Cg,
1-@(@), w> ey
{ s

The specific formulas for Py{w), are easily verified by using the definition of L,. 0 <
P,(u) € afor all u. Py(u) is the limit of P,{(u) as s — 0. And, if (I, V) ~ Nao((1,0), I3),
P({(U,V} € Ly) = [(e— Py(u))p(u — u)du. The line between (s, 25) and (—cs, —2a),
the vertices of L;, has the equation v = zau/es = (V1 + 82 + s)u. We now define a set
that contains this line, for s < 0.

DEFINITION 2.3. For ¢ <0 and 0 < d < 1, let A, be the set defined by

Ay = {(u,v) - B(u) < v <1u)],

where
& {a+dx Py(u)}, —Cs > U
Hu) = ¢ & HO((VI 1 52+ shu) +d x Po(w)},  —ca << Csy
& M1 (1~ d) x Ps(u}}, U > ey
and

fu) =2 Y2l (w) - a).

The following lemma is the key fact that will ensure that the probability of a type
I error on the boundary points of Hy is less than or equal to « for ¢g.

LEMMA 2.1. Let (U,V) ~ Na((4,0), ). Let s < 0 and 0 < a < 1/2. Then
PLo{(U,V) e A) < a.

Proor.

P(,u,()) ((U, V) = As)

+o0
(2.1) :f_ (/A ( )go(v)dv) plu — p)du

where A,(u) is defined as following
Au(w) = {v: (u,v) € A} = {v: §{u) < v <I(w)}.

The expression in parentheses in (2.1) is clearly bounded above by  for all 4 € (—00, 00).
Since

/A )= o)~ 2 ()
< B(1Hw) - B@ N @LW) - a)) = o
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So the expression in parentheses is bounded above by «, and, hence, P, (U, V) €
As) <O

Our new tests will be defined in terms of variables U1, V3, U3 and V5, that we now
define.

DEFINITION 2.4. Let h; and hy be noncolinear vectors (|hihy| < |hi|||hall =
1x1=1). Let g1 = hg — (h{h2)hy and g = by — (h{ha}he. (g1 and g, are vectors
spanned by hy and h; that are orthogonal to hy and hy; gihy = 0, gbhs = 0.) Define
hiy = v; and g/y/||gll = wi, i = 1,2. Also define the corresponding random vectors
hiY =V, and g/ Y /|| gi|| = U,

Note. |g1] = llg2ll = v/1 — (h{h2)?2. Since g/h; = 0, we know that U; and V; are

independent.

Now we define the test ¢y. In fact, we define a whole family of tests, indexed by
the constant d, 0 < d < 1, that appears in Definition 2.3.

DEFINITION 2.5. Consider the testing problem (1.3) for vectors hy and hy that
satisfy hihy < 0. Fix d, 0 < d < 1. Let s = hlh(l ~ (h{h2)?)~!/2. For any o that
satisfies 0 < o < 1/2, define ¢, as the test that rejects Hyp if ¥ € 8 N 5> where
S = {y : (ul,vl) € AS}, Sy = {y : (’Uq,’b‘z) o AS}.

Note. Infact, S) is defined by considering the subspace associated to a constraint as
a coordinate axis and S; by considering the subspace associated to the another constraint
as coordinate axis. From the definition, we know that S; N S is symmetric to line
v = 2au1 /e = (V1 + 8° + 8)uy according to U;-V) coordinate system (va = zatia/cs =
(V1 + 8% + s)up according to Us-V5 coordinate system).

Examples of the sets L, and A, and lines [$(u) and 14(u) are shown in Fig. 1.
In this figure, s = —2, d = 1/2 and @ = 0.1. The solid lines are I¢(u) and 1£(x).
The line I%(x) lies above the upper boundary of L,, which is given by the line v =
(V1+ 8%z, —u)/s for u > ¢; and v = —z, for w € —¢,;. This is true since for v > e,
B(1¢(u)) = 1 — (L = d)Py(u) = (V1 + 8224 — u)/5) + dPs(u) > ®({(V1 + %24 —u)/s)
and I$(u) = @ Y a+d x P,(u)} > &~ Ya) = —2z, for u < —c,. And, for u > ¢,, I(u) is
below the lower boundary of L; because the lower boundary is z, = @_1(1 —a) > 3(u)
for u > ¢; and ®71(P{u)) > 'I)‘l(d x Py(u)) = 13(u) for u € —¢,. Therefore, Ly C A,.

The following lemms will show that the rejection region for the LRT is a subset of
that for ¢g.

LEMMA 2.2. Consider the testing problem (1.3) when k = 2 and 0 < o < 1/2.
The rejection region for the size-a LRT is R = {y : iy > 2, and By > z,} U {y :
hiy < —z, and yhy < —2z,}. Let Li = {y : (wi,w;) € L} C Si, i = 1,2, where
s =hihy(1 - (R h2)*)' /2. Then L! = Ry, fori=1,2. Hence, the rejection region for
Paq, namely §) N S, containg Ry,.

2y —(hihz)hiy

Proor. Fori=1u; = ﬁ]n_ll byt and v1 = hiy. Smce = hihs,
then ||gi]l = /1 — (hih2)? = m. Hence,
U] + st ;

_.__..____7&’
it ¥
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v

Fig. 1. The set As, Ls and functions [${u) and 1$(u).

where

aj

! ! I
— (R hy)h
(B ol + oman ) = p
||91||
Therefore, L) = Ry. For i = 2, similar algebra yields %—1‘%’% = h{y and v = hly. So
L? = Ry, also. O

Another way to state Lemma 2.2 is to say that the three events, {¥ € R},
{{Th, W) € Ly} and {{T7, Va) € L,}, are all the same event.

The following theorem is going to show that ¢4 is a size-o test and uniformly more
powerful than the LRT. The proof was suggested by a referee.

THEOREM 2.1. For the testing problem (1.3) when k = 2, suppose that hihy < 0.
If 0 <« < 1/2, then ¢q has size exactly o, and ¢q is uniformly more powerful than the
size-x LRT.

PROOF. We can always consider, after making an orthogonal transformation, a
situation in which h; and h; become in the form (0,1,0,0,...) and (a3,a92,0,0,...Y
respectively, with as < 0. The whole problem can be stated in terms of the only two
first coordinates.

From Lemma 2.2 we know the rejection region of the size-ce LRT, Rz is a subset of
the rejection region of ¢4. Hence, ¢y is uniformly more powerful than the size-a LRT.
Also,

(2.2) the size of ¢4 > size of LRT = a.

From Lemma 2.1 we have got a set A, s < 0, which has a probability at most a as
the mean belongs to a ‘border subspace’. Consider now the line {y (v = (V1 + 82 + s)u)
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Fig. 2. a{u*) and b(u*).

and the set A} symmetric to A, respect to the line l;. By symmetry, from Lemma 2.1 we
also have a probability at most o for A} as @ belongs to the another ‘border subspace’.
Then the set A obtained as the intersection of A, and A%, satisfies Pp(A) < o for every
€ in the border of Hy. Also A is symmetric respect to the line [g.

Now, through a rotation that makes [y to become a coordinate axis, U* axis (the
corresponding orthogonal axis is V* axis). Consider 8 {8 = (0,8:)) € Hp, and & =
{#1,83) on the border of Hy. Let (u*,b(u*)) and (u*,a{u*)} be the boundary points of
set A such that b(u*) > a(u*) (see Fig. 2). Actually a(u*) = —b(u*), since the set A is
syminetric respect to the U™ axis. Then

- b(u*}
(2.3) Fy = / olu* — 91)/ p(v* = O)dv*du*
—o0 alu*)
o bu*)
<[ ew-t) [ - oot
—oo a(w*)}
= Fp(A) < ax.

Since, (2.3) is true for any 8 € Hy, the size of ¢4 < . With (2.2) this implies ¢4 has
size exactly . O

Consider the testing problem with k) = (0,1) and h} = (1/+/5, ~2/v/5), so that
{y1,92) = (uq,v1) and s = —2. Let d = 1/2 and & = 0.1. Then in Fig. 3, the solid lines
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Fig. 3. Rejection region of ¢4 when s = —1/2, d = 1/2 and a = 0.L.

are [¢(uy) and lg’ (u1) which are corresponding to U; — Vi axes and the region between
them is S7. The dotted lines are [$(uz) (lower line) and I4(us) (upper line) which are
corresponding to Ua — Va5 axes and the region between them is S;. The rejection region
is 81N 8y, and it contains Ly = K, the LRT’s rejection region. In Fig. 4, the rejection
region for Berger’s {1989) test, ¢y, for the problem is shown. The union of the diamond
shaped regions, L; U Ra U - -- U Ry, is the rejection region for ¢,. Note that the rejection
region for ¢, is almost completely contained in the rejection region for ¢4. In fact, ¢y
may be uniformly more powerful than ¢,. In general, as s decreases, the containment of
¢y in ¢g comes closer and closer to reality.

Ezample 2.1. Suppose Y, and Y, are independent and ¥; ~ N;j(#;,1). Consider
R = [0,1], b5 = [L1/V1+ s2,8/+/1+ s%], 3 < 0, so that we are testing Ho : 82 < 0 or
By + 86 <Oand @ >0 or 6y + 362 > 0 against Hy : 62 > 0and ¢ + st >0o0r 8 <0
and &, + s> < 0. Here we selected & = 0.1, s = —2.0 and d = 1/2 {as in Fig. 2) to
compute the power of ¢y and LRT. Let 3.(8) and 8,,(6) be the power functions of
the LRT and ¢4, respectively. Values of these two functions for certain & values are in
Table 1. These values are calculated by two steps. First, we calculate the cross-sectional
probability [ Ala) p{v — ba}dv = f{u, @) which is a function of u and 6,. Second, we

calculate fj;: f{u,82}p(1 — 61)du using the trapezoidal rule with 300 points. The first
part of the tables are for values of # = (6,0}, # > 0. These values are on the boundary of
Hy, s0 the powers are less than « = 0.1. If a test is unbiased, then the power is equal to
« for the values of # which are on the boundary of Hy. Here we can see that the LRT and
¢4 are biased, but the difference between o and the power of ¢, is considerably smaller
than that between o and the power of the LRT. The second part of the table is for values
of @ = ({v/1 + 52 —35)8,6) which are on the line from the origin to the vertex {¢s, zo). For
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Fig. 4. Rejection region of ¢4 and ¢ when s = -2, d=1/2 and o = 0.1.

Table 1. Power of LRT, ¢ and ¢4 for s = —2.0,d = 1/2 and o = 0.1.

)

0 1 2 3 4 5 6 7 8
BL(0,0) 0.000 0.000 0.000 0.000 0.002 0.014 0.040 0.071 0.089
B(0,0) 0.053 0.053 0.053 0.053 0.053 0.050 0.054 0.073 0.090
B4(8,0) 0.078 0.080 0.091 0.005 0.092 0.090 0.090 0092 0.096
BL(4.2368,8) 0.000 0010 0.528 0914 0.993 1.000 1.000 1.000 1.000
3,(4.2360,8) 0053 0177 0.528 0914 0.993 1.000 1.000 1.000 1.000
8,(4.2366,8) 0.078 0253 0.636 0.914 0993 1.000 1.000 1.000 1.000
B.(2.1186,8) 0.000 0.000 0.135 0481 0691 0830 0.020 0.968 0.989
3,(2.1180,6)  0.053 0.115 0.151 0.481 0.691 0.830 0.920 0.968 0.989
8,,(2.1180,6) 0078 0.219 0422 0528 0691 0830 0.920 09658 0989

23

example, f,,(4.236,1)/8,(4.236,1) =~ 25.3 and £§,,(4.236,1) > a > (31(4.236,1). B4, (8)
is clearly bigger than 87,(8) for & < 3. The largest difference is 0.108. The bottom of the
table is for values of & = (0.5(v/1+ 5% — $)8,8). [3,,(8) is clearly larger than 31.(6) for
8 < 3. As s increases, there is less space to add to the rejection region of the LRT. So
we can not improve the power as much when s is large.
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3. A more powerful test in the general problem

We will now describe a size-v test that is uniformly more powerful than the size-o
LRT for the general problem (1.3) and 0 < o < 1/2. We will denote this test by ¢,. The
intersection-union method will be used to construct ¢,. A summary of this method may
be found in Sections 8.2.4 and 8.3.5 of Casella and Berger (1990) or in Berger (1982).

To use the intersection-union method, Hy : h/@ > 0 foralli =1,...,k or R/# <0

for all i = 1,2,...,k, must be written as a intersection. Let D = {(i1,42), (i2,43),...,
(in—1,1n)} for a rearrangement (i, t2,...,%,) of (1,2,...,n) which satisfies h{ h;,,, <0
for all j = 1,2,...,n — 1. To construct a more powerful test, any such division of

{1,...,k} will work, but different divisions will lead to different tests.
For each (i,7) € D, consider testing Ho;; : (h/8 < 0 and hi@ > 0) or (K6 > 0
and hifl < 0) versus Hy;; @ (hj® > 0 and hi@ > 0) or {kj6 < 0 and hj§ < 0). If

hih; <0, let C;; denote the size-o rejection region of ¢y (for some d) from Section 2.
Since Hy = ﬂ(i! feD Hij, we can define an intersection-union test based on the Cj;.

DEFINITION 3.1. For the testing problem (1.3) and 0 < v < 1/2, let ¢, be the test
that rejects Hy if ¥ € n(i,j)ED Cij.

THEOREM 3.1. For 0 < a < 1/2, the test ¢, is a size-a test of Hy versus Hy, and
g s uniformly more powerful than the size-oo LRT.

PRrROOF. Since each of Cj; is a size-« rejection region for testing Ho;;, by Theorem 1
in Berger (1982), ¢, has size < o. But, the size-a LRT’s rejection region is

Ro={y:hy>z.i=1,.. .k} C{y: Ry >z, and hiy > z.} CCyy,

for every (i,7} € D. Hence Ry is contained in the rejection region of ¢4, the size of
¢y = size of the LRT = «, and ¢, is uniformly more powerful than the LRT. O

¢g 1s, in fact, strictly more powerful than the LRT because ¢,'s rejection region
contains an open set that is not in Ry. Let y denote a point satisfying hly = z,,
i=1,...,k (lf £ > p, thete is only one such y. If k < p, there are many such y’s.)
Every C;; contains an open set that contains the line from p to the origin. So the
intersection of the Cj;, ¢4’s rejection region, contains an open set containing this line,
and this open set is not in Ry,

4. Example-comparing linear regression functions

In this section, we will present an example by applying the above results to test
whether two or more linear regression functions are ordered. First, we consider regression
models for two populations; E(Y;) = ¢ + Sz and E(Y2) = as + B22. Because these
regression functions are linear in x, to determine whether n; + £ is greater or smaller
than ap + Gz on a finite interval T = [r,,z*|, one might test the hypotheses

Hoz: a1 + pia* < ap+ fox™, o0 + Bimy > ap + fox. or
ay + Biz" > ar + Bx”,0q + fra, < o + oz,
(4.1) versus
Hipp:ron+ pz" > oo+ fox®, on + frxy > 0 + Foz,  or
oy + B2" < o+ Bax”, 0 + Prae < ag + BaZ.
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These hypotheses are equivalent to problem (1.1), where b = [1,0], b, = [0,1], 4 =
i1, o], 1 = 00 + Bra* — ap — Box* and py = oy + B12. — ay — fFox.. Hence this testing
problem is actually a special case of problem (1.1) for ¥ = 2. Results derived for the
problem (1.1) can be applied to this comparison of regression lineat problem.

Given two independent sets of bivariate observations (X11,¥11),..-,{Xin,, Yin,)
and (X21,Y21),...,(Xon,, Yan,). We make the usual assumptions that given the X
values the ¥’s are independent and normal with E(Y;; | Xi; = #45) = o + Siri; and
Var(Yy; | Xi; = zi5) = 02, where (0, 3;), i = 1,2 and o > 0. Let W; and W, denote
the difference distance between the two estimated least squares regression lines at z”
and z,, respectively. Hence

(W1, Wa) ~ No((1, p2), T,

2
where p1 = a1 + Bi2® — g — Boz®, pp = 0y + H12. — g — Gox, and Xy, = 07 A nezs s
(5'_31*5':*)2
METEETNY

Tp—a}

+ zf;(xzj*ﬂ—:z)z »OGnyny T

where the diagonal elements of Ay, n,z, are {(gnyn, + >
(B1-2")? | (Z2—a")”
Ej(-":ij_il)z Zj(ﬂigj—ig)z

T —Tu ) (T —x" Eo—x« )(Ez—x" 1 1 ey Y
(515 —71) + 2 —23) and gn,n, = 55 +7;- The condition for ¢g is b X, by < 0.

In this example

) and off diagonal elements of the matrix are gn n, +

b1 Xy by = Cov(Wi, Wa) .
_ { L 1 (moz)@m o) (@)@ 1:*)} <o

—+—+ . -
o one ) (Ey - 3)? > (@ — 72)?

Hence the condition is

b S, by <0
L 1 @moz)@:—2) (@-z)E-a)
“ ny - n2 * 2@ — TP I D
1 1 (EF -z e —F) | (T2 —z)(r - T
(4.2) =4 - + e < Zj(zlj — 51)2 Zj(:z?j _52)2

The condition (4.2) is equivalent to s < 0. In fact, as the interval I = |z,,z*)] is narrowed
and the number of the observations becomes big, then s > 0, and condition {4.2) is not
satisfied. Hence ¢4 does not exit. But as the interval I is widened, the values of s hecome
negative. Therefore the uniformly more powerful test, ¢4, exists. We can improve on
the LRT in this regression problem.

Now we consider that there are k (> 2) simple linear regression functions and we
want to test whether those functions are ordered. That is, the null and alternative
hypotheses can be stated as following,

Ho:ppgs—g <0o0r pug; <0 forsomei=1,...,k—1 and
pas—y = 0or pg; >0 forsomei=1,...,k—1.

Hytppi1>0,p2; >0 foralli=1,...,k—1 or
foi—y < 0,p0; <0 foralli=1,...,6—-1

where po;_1 = o1 + Bipare — o — (s, pi2i = i1 + Biaz® — oy — Fiz*. Then
W ~ N(p, X)), with g = (1, 2, . . ., o(e—1y)’, where po; 1 = 04p1+ 8170 — 0 — iz
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and po; = i1+ Bimx" —o; — Gz fori =1,2,...,k — 1. Here we can choose set D as
1(1,2),(2,3),...,(2k — 3,2k — 2)}. The conditions that ¢, exists are Cov(W;, W;) < 0
for (#,7) € D. The conditions are equivalent to

1 L (Zaicr — 2 (@ — 2 1) | (&2 — 2.)(2* — Twy)
+ S - b — 3 1
Noi—1 N2 > (@21 — F21) 2 (@205 — Tai)

i=1,2,...,k-1.

1 < (% — z) (2 _—255,;)‘ =2,
T Zj(xsjfﬂfi)

The above conditions are similar to condition (4.2} as the interval I is widened, the values
of s become negative. Therefore the uniformly more powerful test, ¢,, exists. Then the
LRT can be dominated in comparing two or more simple linear regression functions.

5. Comment

Menéndez et al. (1992) points out the tests which are uniformly more powerful than
the LRT including the present one occur on one common situation—the size of the LRT
is attained at an infinite boundary point of the null hypothesis. In the abtuse cone case,
for two-sided testing hypotheses, the size of LRT occurs at a finite boundary point of
the null hypothesis. Hence the method we use in Section 2 can not apply to obtuse cone
case.
If D' is defined as same as in Section 4 of the Liu and Berger’s (1995), then the
intersection of Hy;, where (4, j) € D', will not equal to the alternative hypotheses, Hy,
of the problem (1.1} for k > 4. We explain it for k = 4. Actually, we can rewrite H; as
HY UHT, where H : h!/8> 0foralli=1,...,k, and, H :hl@<0foralli=1,... k.
Similarly, Hy;; can also be rewritten as Hﬁj U Hy;;, where Hl";j : hi# > 0 and R{# > 0,
and, Hy;, h/6 < 0 and h.J'-G < 0. Consider & = 4 and choose D' = {(1,2), (3,4)}. Then
n(i,j)ED" Hl,;j =HiaNHizy=HU (Hfﬁ M H1_34) Y/ (Hl—l2 ﬁH1+34) # H,. But I could
work for & = 3. In fact, D’ is exactly same as D, defined in Section 3, for k = 3.
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