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VALUATION AND HEDGING OF LIMITED PRICE INDEXED
LIABILITIES

By H.-C. Huang and A. J. G. Cairns

abstract

This paper considers the market or economic valuation and the hedging of Limited Price
Indexed (LPI) liabilities. This involves finding optimal static and dynamic hedging strategies
which minimise the riskiness of the investment portfolio relative to the liability.
In this paper we do not aim to find the perfect hedge in a perfect world. Instead, it is

assumed that optimisation is restricted to three commonly used asset classes in pension funds:
cash; long-term (or irredeemable) fixed-interest bonds; and long-dated index-linked bonds. The
economic value of the liability is then defined as the value of the best matching portfolio using a
mean/variance type of loss function. Specifically, we adopt the risk minimising approach of
Fo« llmer & Sondermann (1986) and Schweizer & Fo« llmer (1988). Even with such a simple loss
function, establishing the theoretically optimal solution can be difficult. We propose that a
practical solution close to the theoretical optimum can be found using two approximations. First,
we approximate the ‘true’ stochastic economic model by a vector autoregressive model of order
one. Second, we use a sequence of linearisations to approximate non-linear by straightforward
quadratic minimisation problems.
The proposed approach is illustrated with various numerical examples, and we compare the

results of the approximately optimal hedging strategy with static strategies.
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". Introduction

In this paper, we investigate some hedging methods for particular kinds
of pension liability. Unlike short-term hedging problems (for example,
derivative pricing, hedging and reserving), a pension fund normally requires a
long-term view, because of the long-term nature of the liabilities. The levels
of contribution income and benefit outgo are comparatively stable and
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predictable. Thus, pension fund investment strategies are less constrained
by short-term considerations, allowing the actuary and fund managers to
focus on long-term investment decisions. Pension fund income comes from
the investment returns, and the employer’s and the employees’
contributions. A central feature of the decision making process is the choice
of assets. These must strike the right balance between risk and return; for
example, by maximising the expected return subject to an acceptable level of
risk.

For a pension fund to meet a particular liability, it is important to choose
the most appropriate investment strategy. We can investigate the effects of
adopting a variety of investment strategies, and, in particular, establish the
likelihood of meeting the fund’s objectives. Nowadays, simulation can be
used to determine the possible effects of various investment strategies.
According to the results, actuaries can make well informed suggestions for
future contribution rates and the expected surpluses from pension funds, and
so choose a suitable investment strategy which provides the best balance
between risk and return for a particular scheme. (See, for example, Huang,
2000; Cairns & Parker, 1997; Cairns, 2000; Dufresne, 1988, 1989, 1990;
Haberman & Sung, 1994.)

Now, consider the valuation of liabilities and assets. Until recently, in the
United Kingdom, values of both assets and liabilities were determined by
discounting cash flows at an assumed rate, which is normally taken to
represent the future long-term rate of return on investments. In recent years,
ideas arising in financial economics have been applied to the valuation of
insurance related liability when taken along side the market value of the
assets. This is similar to estimating market prices for liabilities (the so-called
fair value or economic value). This is discussed further by Head et al. (2000).
They proposed various methods that take assets into the balance sheet at
market value. The principle of fair value is discussed further by Cairns
(2001).

From a practical point of view, pension funds are likely to review their
investment strategies only periodically; for example, annually. This suggests
the use of discrete time, stochastic investment models. In a discrete time
model, the number of outcomes after each time step is usually infinite (for
example, the Wilkie, 1995, model). This means that the market is incomplete;
that is, few of a pension fund’s liabilities can be precisely matched or
replicated. (If a liability or financial derivative can be replicated, we mean the
following. For the appropriate initial investment, in combination with a
suitable dynamic hedging strategy using standard traded assets, we are able
to reproduce exactly (that is, with certainty) the liability cash flow or the
derivative payoff without the need for further injections of cash ö positive or
negative.) As a benchmark, it is desirable to find the hedging strategy which
minimises the level of risk associated with a specific liability. (We stress, here,
the word benchmark. This is intended as an objective point of reference. The
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objectives of the pension fund trustees may mean that a different investment
mix from the benchmark is appropriate.) Where perfect hedging (matching)
is possible (for example, Black & Scholes, 1973), the measure of risk is
irrelevant. Under more realistic models, perfect hedging is not possible and
the measure of risk is relevant. Here we use the concept of mean/variance
hedging, well known to actuaries (see, for example, Wise, 1984a,b, 1987a,b,
1989; Wilkie, 1985; and Keel & Mu« ller, 1995). However, mean/variance
hedging is even more firmly established within the field of financial
mathematics (see, for example, Musiela & Rutkowski, 1997, Chapter 4, and
references therein). Alternative measures of risk include value-at-risk (in the
present context this means quantile hedging; see Fo« llmer & Leukert, 1999,
2000) and semi-variance (Clarkson, 1995). In general, these different risk
measures give rise to different hedging strategies and estimates of value.
However, in many situations these differences are small, and not worth the
considerable argument which rages around them. Cairns (2001) argues why,
out of these, mean/variance hedging is, perhaps, the most appropriate
choice, at least in a one-period setting.

In Section 2 we introduce the principles underlying mean/variance
hedging: in particular, variance minimising hedging and local, risk minimising
hedging. We propose that the value of the risk minimising portfolio be taken
as the economic, or fair value, of a liability.

Section 3 defines the limited price indexation (LPI) liability. Valuation of
this liability with reference to fixed and Retail Prices Index (RPI) linked
liabilities is the main aim of the paper.

Section 4 describes the hedging strategies to be considered later on for
pensions’ liabilities. The valuation and hedging problem involves a
combination of a potentially complex asset model and value functions which
are non-linear in the state variables. This makes analytical solution of the
optimal hedging problem virtually impossible. In order to circumvent this,
we introduce two key forms of approximation: to the stochastic investment
model (Section 5); and by linearisation of value functions (Sections 6
and 7).

Section 5 describes the vector-autoregressive model which we will use to
determine liability values and hedging strategies. This model is proposed as
an approximation to a more complex stochastic investment model (for
example, Wilkie, 1995).

Sections 6 and 7 focus on valuation and hedging of fixed and RPI linked
pensions. Here we introduce some linear approximations to the liabilities and
hedging strategies (which are essential for us to make any progress), as a
key step towards a practical solution for the optimal hedging problem. These
provide overlays for the valuation of LPI liabilities. Consequently they play
a key part in Section 8, in establishing values for the LPI liabilities. Finally,
in Section 9 we use simulation to compare static hedging strategies with the
(approximate) optimal hedging strategies.
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Æ. Basic Principles

In order to develop our ideas further, we introduce some notation:
ö V ðtÞ represents the economic value (also known as fair value or market

value) of the liability at time t. How we calculate this will be discussed
later.

ö FðtÿÞ represents the fund size just before any net injections of cash at
time t.

ö FðtÞ represents the fund size just after any net injections of cash at
time t.

ö S1ðtÞ represents the value of a cash account at time t. In our discrete
time model, S1ðtþ 1Þ=S1ðtÞ equals the return over each year on the one-
year, zero coupon bond (a quantity which is known at time t). It follows
that S1ðtþ 1Þ is known at time t. This gives rise to the commonly used
notion that S1ðtÞ represents the risk free investment; that is, risk free over
each one-year time horizon.

ö SkðtÞ for k ¼ 2; . . . ;m represents the value (with reinvestment of dividend
or coupon income) of a unit investment at time 0 in risky asset k. (In this
paper we will use m ¼ 3.)

ö We will assume that Sið0Þ ¼ 1 for all i ¼ 1; . . . ;m.
ö The vector uðtÞ ¼ ðu1ðtÞ; . . . ; umðtÞÞ

0 represents the numbers of units
held in each of the assets i ¼ 1; . . . ;m from time t to tþ 1 for all
t ¼ 0; . . . ; T ÿ 1. Besides their dependence upon t, the uiðtÞ can depend
upon the fund size at time t, current market conditions or on the history
of the process up to and including time t.

Using this notation we have:

FðtÿÞ ¼
Xm

i¼1

uiðtÿ 1ÞSiðtÞ

just before rebalancing at time t, and

FðtÞ ¼
Xm

i¼1

uiðtÞSiðtÞ

just after rebalancing at time t.
An asset-allocation strategy is said to be self-financing if FðtÿÞ ¼ FðtÞ for

t ¼ 1; 2; . . . ; T ÿ 1; that is, at no time t is there a net inflow or outflow of
cash.

There are two main approaches of mean/variance hedging (see, for
example,Musiela & Rutkowski, 1997):
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Variance Minimising Hedging
This type of hedging assumes that an investment strategy is self-financing

(that is, there are no external injections or removals of cash except at the
outset), and concentrates on minimising the tracking error at the terminal
date only. In other words, we aim to minimise:

Var
V ðT Þ ÿ FðT Þ

S1ðT Þ

� �
ð2:1Þ

subject to:

E
V ðT Þ ÿ FðT Þ

S1ðT Þ

� �
¼ 0

by choosing an appropriate initial fund size F̂ð0Þ, and asset strategies ûðtÞ.
When we are following a variance minimising strategy, F̂ð0Þ is regarded

as the appropriate price or value of the liability being hedged. Between times
0 and T the fund size is not likely to be equal to the liability value at that
time.

Risk Minimising Hedging
The second approach to establishing the economic value of a liability, by

reference to an optimal hedging strategy, was proposed by Schweizer &
Fo« llmer (1988) (see also Fo« llmer & Sondermann, 1986).

Valuation by reference to risk minimising hedging is more flexible, since
it is not necessarily self-financing, and it gives us the value of the liability at
all times t ¼ 0; . . . ; T ÿ 1, rather than just at time 0. In this case, an
optimality criterion is required at each date before the terminal date.

The values of the liabilities are determined backwards recursively. Let
V ðtÞ be the economic value of the liability at time t. Fðtÿ 1Þ represents the
funds available at time tÿ 1, made up of various numbers of units uiðtÿ 1Þ in
each of the assets.

We define KðtÞ to be the shortfall (or tracking error) at time t; that is:

KðtÞ ¼ V ðtÞ ÿ FðtÿÞ ¼ V ðtÞ ÿ
Xm

i¼1

uiðtÿ 1ÞSiðtÞ:

The local risk minimisation criterion requires that we minimise Var½KðtÞjFtÿ1�

over the uiðtÿ 1Þ subject to E½KðtÞjF tÿ1� ¼ 0 (where F tÿ1 represents the
available information up to and including time tÿ 1). (This is equivalent
to the unconstrained minimisation of E½KðtÞ2jF tÿ1�, since we can always
modify the amount invested in the cash account which is risk free over the
period tÿ 1 to t. Note also that, since S1ðtÞ=S1ðtÿ 1Þ is observable at time
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tÿ 1, the optimisation problem is the same as the minimisation of
Var½KðtÞ=S1ðtÞjF tÿ1�, subject to E½KðtÞ=S1ðtÞjF tÿ1� ¼ 0.) Schweizer & Fo« llmer
(1988) refer to this as ‘hedging by sequential regression’, because optimisation
of the uiðtÿ 1Þ is equivalent to solving a linear regression problem.
The optimal F̂ðtÿ 1Þ (given F tÿ1) then provides us with our liability value

at time tÿ 1; that is, we choose to define V ðtÿ 1Þ � F̂ðtÿ 1Þ. (In a complete
market, there will always exist suitable processes V ðtÞ and uðtÞ such that the
optimised KðtÞ are all equal to zero with certainty. Under such circumstances
the optimal strategy will be self financing and replicating, and the economic
or market value of the liability is unambiguous and equal to the risk
minimising price. In an incomplete market the definition of what we mean by
economic value of the liability is ambiguous, and a number of different
definitions exist, including the risk minimising price. However, in certain
circumstances (see, for example, Cairns, 2001) the definition of the risk
minimising price does coincide with the equilibrium price in a liquid market.
This provides strong support for the use of the risk minimising price as a
candidate for the economic value in the more general circumstances we find
ourselves in here.)

At each time t, additional finance of KðtÞ is provided, to ensure that
the fund size is at all times equal to the value of the liability; that is
FðtÞ ¼ FðtÿÞ þKðtÞ ¼ V ðtÞ. Thus, in contrast to variance minimising hedging,
this strategy is not self financing.

â. The Definition of LPI

The valuation of the accrued liability is an important part of a pension
scheme funding valuation. In recent years, Limited Price Indexation (LPI)
has, by law, become a necessary feature of United Kingdom pension schemes.
There are several forms of LPI, and we describe two of them:
ö Type 1 is the limited indexation of pensions in deferment introduced in

the 1986 Pensions Act. Deferred pensions of early leavers from final
salary pension schemes are increased at the lesser of some cap rate (U.K.
5% p.a.) compounded over the whole period, and the actual increase in
the RPI in the U.K. (consumer prices index in a more international
context), again measured over the full period. For an early leaver at time
t retiring at a later time T , the pension payable at a time T will be:

penðT Þ ¼ min
RPIðT Þ

RPIðtÞ
; 1:05Tÿt

� �
� penðtÞ

where penðtÞ is the deferred pension calculated at the date of exit before
statutory revaluation and RPIðtÞ is the value of the RPI at time t.

ö Type 2 is the limited indexation of pensions once in payment, introduced
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under the 1990 Social Security Act. Under this type of indexation, a
comparison is made, year-on-year, between the cap rate (U.K. 5% p.a.)
and the annual increase in the RPI, and the lesser of the two increases is
awarded. The pension at time t, penðtÞ, is then:

penðtÞ ¼ penðtÿ 1Þ �min
RPIðtÞ

RPIðtÿ 1Þ
; 1:05

� �
:

For some cases, we can additionally apply a floor (such as 0% p.a.
increases) to Types 1 and 2 as well as a ceiling. We will not consider this
possibility, because breaches of typical floors are not common in practice. In
contrast to liabilities in respect of active employees, LPI liabilities are well
defined (the former are subject to argument over the extent of salary risk and
over the division between past and future service liabilities).

ª. Hedging Strategies Considered

4.1 Static Hedging
In this section we investigate the use of static hedging to establish a first

approximation to the value of an LPI liability. The aim is to achieve this
using the standard asset classes used by pension funds, rather than achieve
perfect matching of assets and liabilities using a more complex and detailed
range of bonds. Here, static hedging means that we hold a fixed quantity of
each asset over the full term n (that is, buy and hold). In investigating the
LPI liability, we consider long-dated index-linked bonds, consols (that is,
U.K., irredeemable, fixed-interest bonds) and cash in the portfolio. Compared
to index-linked bonds, consols may be more volatile relative to inflation.
However, since LPI includes a fixed cap, consols may be found to provide a
useful asset for hedging outcomes where the cap locks in (see, for example,
Cairns, 1999).
An LPI liability is closely correlated with two other liabilities; that is, an

LPI liability is overlaid by both a liability with fixed percentage increases
(FP) and a liability with increases in line with the RPI. We can conclude that
it may be useful to take account of the pricing and hedging of these other
liabilities first, before tackling the LPI problem.

For an FP liability, the pension in payment is subject to fixed percentage
increases r each year; that is:

penðtÞ ¼ ð1þ rÞ
t
� penð0Þ:

For an RPI liability, the pension in payment increases in line with the
retail prices index; that is:
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penðtÞ ¼
RPIðtÞ

RPIð0Þ
� penð0Þ:

For an LPI liability, the pension in payment penðtÞ is governed by the
equation:

penðtÞ ¼ penðtÿ 1Þ �min
RPIðtÞ

RPIðtÿ 1Þ
; 1þ r

� �
:

We will assume here that r ¼ 0:05 or 5%, in line with U.K. regulations.
With an FP liability, we consider three cases of investment strategies in

the portfolio:
ö holding cash only in the portfolio;
ö holding consols only in the portfolio; and
ö holding cash, consols and index-linked bonds in the portfolio.

With an RPI liability, we consider two investment strategies in the
portfolio:
ö holding index-linked bonds only in the portfolio; and
ö holding cash, consols and index-linked bonds in the portfolio.

With an LPI liability, we consider only one case in the portfolio:
ö holding cash, consols and index-linked bonds in the portfolio.

Let S1ðtÞ; S2ðtÞ; S3ðtÞ be the prices at time t of one unit of a cash account
(invested in one-year zero-coupon bonds), an irredeemable fixed-interest
bond (consols) and an irredeemable index-linked bond respectively, with
Sið0Þ ¼ 1 for i ¼ 1; 2; 3. (Strictly, S2ðtÞ; S3ðtÞ are just two risky assets.
However, in the vector-autoregressive model which we will introduce, in
Section 5, their dynamics are determined in a way which is consistent with
their labels as fixed-interest and index-linked bonds.) We now define:
RiðtÞ ¼ SiðtÞ=Siðtÿ 1Þ ¼ total return on asset i from tÿ 1 to t, with i ¼ 1
(cash), i ¼ 2 (consols) and i ¼ 3 (index-linked bonds).

We also define Ma
ðtÞ ¼ liability index of type a, where a ¼ F;R; L

represents the type of liability (fixed, RPI and LPI respectively). Thus,
starting with Ma

ð0Þ ¼ 1, we have, for t ¼ 1; 2; . . . :

MaðtÞ ¼

ð1þ rÞMa
ðtÿ 1Þ ¼ ð1þ rÞ

t for a ¼ F

RPIðtÞ

RPIðtÿ1ÞM
a
ðtÿ 1Þ ¼ RPIðtÞ

RPIð0Þ for a ¼ R

min RPIðtÞ

RPIðtÿ1Þ ; 1þ r
� �

Ma
ðtÿ 1Þ for a ¼ L :

8>>><>>>: ð4:2Þ
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We now define the objective function for a liability of Ma
ðT Þ due at

time T :

SB ¼ Var
P3

i¼1 xa
i SiðT Þ ÿMa

ðT Þ

S1ðT Þ

 !
þ y E

P3
i¼1 xa

i SiðT Þ ÿMa
ðT Þ

S1ðT Þ

" # !2

: ð4:3Þ

We minimise SB over the xa
i (the amounts invested at time 0 in each

asset) to obtain the optimal asset allocation strategy. This approach is similar
to that of Wise (1984a,b, 1987a,b, 1989) and Wilkie (1985).
We can immediately note that xa

1 has no impact on the variance:

Var
��X3

i¼1

xa
i SiðT Þ ÿMaðT Þ

�
=S1ðT Þ

�
:

Thus, if y > 0, then the optimal solution is to minimise the variance over xa
2

and xa
3 first, before choosing xa

1 in a way which ensures that the expectation
E
ÿ�P3

i¼1 xa
i SiðT Þ ÿMa

ðT Þ
�
=S1ðT Þ

�
¼ 0. There is no unique solution when

y ¼ 0.
When y > 0, the optimal solutions are all the same, since, for any xa

2 and
xa
3, we are always able to find a value for xa

1 which results in the second
component of SB being equal to zero. This means that we get the same
optimal strategy for all y > 0. We will assume, therefore, that y ¼ 1, without
loss of generality.

If y ¼ 1, the objective SB is to minimise the expected value of the square
of the tracking error; that is:

E
P3

i¼1 xa
i SiðT Þ ÿMa

ðT Þ

S1ðT Þ

 !2" #
:

This optimisation problem will result in a variance minimising hedging
strategy, subject to constraints on the investment strategy.

For notational convenience, we define, for i; j ¼ 1; 2; 3 and a ¼ F;R; L :

ci ¼ E
SiðT Þ

S1ðT Þ

� �
oi;j ¼ Cov

SiðT Þ

S1ðT Þ
;
SjðT Þ

S1ðT Þ

� �
gai ¼ Cov

SiðT Þ

S1ðT Þ
;
Ma
ðT Þ

S1ðT Þ

� �
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ca
0 ¼ E

Ma
ðT Þ

S1ðT Þ

� �
oa

0 ¼ Var
Ma
ðT Þ

S1ðT Þ

� �
Xa ¼ ðxa

1; x
a
2; x

a
3Þ
0

O ¼ oi;j

ÿ �3
i;j¼1

Ga
¼ ga1; g

a
2; g

a
3

ÿ �0
C ¼ c1;c2;c3

ÿ �0
:

SB is quadratic in x1, x2 and x3; that is:

SB ¼ Xa 0OXa ÿ 2Xa 0Ga
þ oa

0 þ Xa 0Cÿ ca
0

ÿ �2
: ð4:4Þ

Now oi j ¼ 0 and gai ¼ 0 whenever i ¼ 1 or j ¼ 1. It follows that this
problem is solved by optimising first over x2 and x3, which gives us:

xa
2

xa
3

� �
¼ Ôÿ1Ĝa

ð4:5Þ

where:

Ô ¼
o22 o23

o32 o33

� �
and

Ĝa
¼

ga2
ga3

� �
:

We then optimise over x1, and get:

xa
1 ¼ cÿ11 ca

0 ÿ
X3

i¼2

xa
i ci

 !
ð4:6Þ

which ensures that Xa 0Cÿ ca
0

ÿ �
¼ 0.

4.2 Dynamic Hedging
4.2.1 Introduction

We generally find that the optimal static hedge has relative proportions in
each asset which vary with time to payment T and also with the prevailing
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economic conditions at time zero. This indicates that hedging strategies
which vary over both time and with changing economic conditions will
outperform static hedges.

The particular economic variables which we will make use of are as follows:

y1ðtÞ ¼ annualised inflation rate from time tÿ 1 up to time t

y2ðtÞ ¼ (historical) log dividend yield at time t

y3ðtÞ ¼ log consols yield at time t ð4:7Þ

y4ðtÞ ¼ 1
�

price at t for zero-coupon bond maturing at tþ 1

¼ 1þ the risk free rate of interest from t to t+1

y5ðtÞ ¼ log real yield on index-linked bonds at t

yðtÞ ¼ ðy1ðtÞ; . . . ; y5ðtÞÞ
0:

We will assume, in this paper, that the model for yðtÞ is Markov, and also
that it is time homogeneous; that is, the distribution of ðyðt1Þ; . . . ; yðtkÞÞ, given
yð0Þ ¼ y for any integers 0 < t1 < . . . ; tk, is the same as the distribution of
ðyðt1 þ sÞ; . . . ; yðtk þ sÞÞ, given yðsÞ ¼ y for all integers s > 0.

This choice of economic factors reflects the later use in this paper of the
Wilkie (1995) model. Specifically, the equity dividend yield is included here,
because of its importance within the cascade structure of the Wilkie model.
For other models, other factors may be appropriate.

Now, recall that Ma
ðtÞ equals the amount of a type-a liability payable at

time t (see equation 4.2). These expressions can now be defined in terms of
the yðtÞ:

MaðtÞ ¼

ð1þ rÞ
t for a ¼ FQt

s¼1ð1þ y1ðsÞÞ for a ¼ RQt

s¼1 minf1þ y1ðsÞ; 1þ rg for a ¼ L :

8>><>>: ð4:8Þ

4.2.2 True optimisation for dynamic hedging
For an LPI liability, we consider cash, consols and irredeemable index-

linked bonds as the available assets for hedging. Index-linked bonds and
consols are risky assets in the portfolio; that is, unlike the cash account (one-
year zero-coupon bonds), the values of these investments are not known one
year in advance. We suppose that the economic model governing future
liabilities and asset returns is Markov and time homogeneous. We then let
the vector yðtÞ represent relevant market conditions at time t; that is,
knowledge of yðtÞ is sufficient for probability forecasts of the future.
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Recall that RiðtÞ is the total return on asset i from tÿ 1 to t. Define the
vector RðtÞ ¼ ðR1ðtÞ;R2ðtÞ;R3ðtÞÞ

0.
Let ~xa

j ðt; yðtÞ; T ÿ tÞ be the optimal amount of asset j for a true optimisation
(based on risk minimising hedging) at time t for a type-a liability due in T ÿ t
years, given market conditions yðtÞ at time t.

Also, let ~V
a
ðt; yðtÞ; T ÿ tÞ be the economic value at t for the liability

Ma
ðT Þ payable at time T , given yðtÞ. By definition (using the Schweizer &

Fo« llmer, 1988, definition of fair value, discussed in Section 2), ~V
a
ðt; yðtÞ; T ÿ tÞ ¼P3

j¼1 ~xa
j ðt; yðtÞ; T ÿ tÞ.

Now, the economic model yðtÞ is Markov and time homogeneous. This
means that, for each s ¼ 1; 2; . . . , the distribution of the vector yðtþ sÞ, given
yðtÞ ¼ y, is the same as the distribution of the vector yðsÞ, given yð0Þ ¼ y.
This implies that, for each s ¼ 1; 2; . . . , Ma

ðtþ sÞ=Ma
ðtÞ, given yðtÞ ¼ y, has

the same distribution as Ma
ðsÞ=Ma

ð0Þ ¼Ma
ðsÞ, given yð0Þ ¼ y.

Consequently, if we take as given yðtÞ ¼ y and Ma
ðtÞ ¼ m, we have the

result:

~V
a
ðt; yðtÞ; T ÿ tÞ ¼ m� ~V

a
ð0; yðtÞ; T ÿ tÞ ð4:9Þ

meaning that it is sufficient for us to establish the form of ~V
a
ð0; y; T ÿ tÞ

only. We also note that, given yðtÞ ¼ y, Ma
ðtÞ ¼Ma, we can write

Ma
ðtþ 1Þ ¼D Ma

�Ma
ð1Þ, given yð0Þ ¼ y.

The ~xa
i ðt; yðtÞ; T ÿ tÞ and ~V

a
ðt; yðtÞ; T ÿ tÞ are established by means of a

backwards recursion starting at t ¼ T ÿ 1, and stepping backwards a year at
a time to t ¼ 0. Thus, for a general t, we let the ~xa

i ðt; yðtÞ; T ÿ tÞ be the
values of x1; x2; x3 that minimise:

E
��X3

i¼1

xiRiðtþ 1Þ ÿ ~V
a
ðtþ 1; yðtþ 1Þ; T ÿ tÿ 1Þ

�2����yðtÞ ¼ y;MaðtÞ ¼ m

�
:

Using the Markov property with Ma
ðtÞ ¼ m, this is equivalent to the

minimisation of:

E
��X3

i¼1

mxiRið1Þ ÿ mMað1Þ ~V
a
ð0; yð1Þ; T ÿ tÿ 1Þ

�2����yð0Þ ¼ y

�
:

The advantage of this second optimisation problem is that we have
reduced the dimension of the problem by one.

To develop formulae for the optimal asset allocation for the LPI liability,
we need to specify some model for the economic variables yðtÞ and RðtÞ.
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ä. Model Structure and Assumptions for Hedging

In this section we use multivariate regression to build a vector
autoregressive model of order one for the economic variables and a linear
estimated liability model.

5.1 The Vector Autoregressive Model
Let us suppose that there is some underlying stochastic economic model,

such as the Wilkie (1995) model or the TY model (Yakoubov et al., 1999).
Often such models are sufficiently complex to render optimisation infeasible.
Here, we propose the use of a simple vector autoregressive model (VAR(1))
as an approximation to these more complex models. The VAR model is fitted
by the use of multivariate regression on simulated data generated by the
more complex model. For the three assets under consideration, the Wilkie
(1995) model requires the five drivers ðy1ðtÞ; . . . ; y5ðtÞÞ defined in equation
(4.7).

Consider a long simulation run using the underlying stochastic economic
model running from time 0 to time N. This gives us values for the market
indicators yiðtÞ, for i ¼ 1; . . . ; 5 and t ¼ 0; 1; . . . ;N, and for the total returns
RiðtÞ, for i ¼ 1; 2; 3 and t ¼ 1; . . . ;N. Let:

XðtÞ ¼ ðX1ðtÞ; . . . ;X5ðtÞÞ
0

Y ðtÞ ¼ ðY1ðtÞ; . . . ; Y8ðtÞÞ
0

where:

XiðtÞ ¼ yiðtÿ 1Þ for i ¼ 1; . . . ; 5

and

YiðtÞ ¼
yiðtÞ for i ¼ 1; . . . ; 5

Riÿ5ðtÞ for i ¼ 6; 7; 8:

(

Let myi be the unconditional mean of XiðtÞ and mYi be the unconditional
mean of YiðtÞ. For i ¼ 1; . . . ; 5, we have mYi ¼ myi ¼ E½yiðtÞ� (the unconditional
expectation), and, for i ¼ 6; 7; 8, we have mYi ¼ mR;iÿ5 ¼ E½Riÿ5ðtÞ�.

This leads us to the following mutivariate regression model:

Y ðtÞ ÿ mY ¼ AðXðtÞ ÿ myÞ þ EðtÞ for t ¼ 1; . . . ;N

where A ¼ ðAijÞ is an 8� 5 matrix, and the random innovations denoted by
EðtÞ ¼ ðE1ðtÞ; . . . ; E8ðtÞÞ

0 are i.i.d. multivariate normal vectors with mean
ð0; . . . ; 0Þ0 and 8� 8 covariance matrix CE ¼ ðCijÞ.
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For convenience later, we will write:

A ¼
Ay

AR

� �
mY ¼

my

mR

� �
EðtÞ ¼

EðyÞðtÞ
EðRÞðtÞ

� �
where the 5� 5 matrix Ay is the first five rows of A, the 3� 5 matrix AR is
the last three rows of A, the vector EðyÞðtÞ is the first five elements of EðtÞ, and
the vector EðRÞðtÞ the last three elements of EðtÞ. We can then write:

yðtÞ ¼ my þ Ay½yðtÿ 1Þ ÿ my� þ EðyÞðtÞ

and

RðtÞ ¼ mR þ AR½yðtÿ 1Þ ÿ my� þ EðRÞðtÞ: ð5:10Þ

For the process to be stationary, we require that the eigenvalues of Ay

should all have magnitude less than one (see, for example, Wei, 1990).
Now, let U ¼ ðUijÞ be the 5� 5 simulation covariance matrix for XðtÞ and

W ¼ ðWijÞ be the 8� 5 simulation covariance matrix for Y ðtÞ and XðtÞ; that
is:

Uij ¼
1
N

XN

k¼1

ðXiðkÞ ÿ m̂yiÞðXjðkÞ ÿ m̂yjÞ for i; j ¼ 1; . . . ; 5

Wij ¼
1
N

XN

k¼1

ðYiðkÞ ÿ m̂YiÞðXjðkÞ ÿ m̂yjÞ for i ¼ 1; . . . ; 8 and j ¼ 1; . . . ; 5

where:

m̂yi ¼
1
N

XN

k¼1

XiðkÞ for i ¼ 1; . . . ; 5

and

m̂Yi ¼

m̂yi for i ¼ 1; . . . ; 5

1
N

PN

k¼1 YiðkÞ for i ¼ 6; 7; 8:

8<:
Then (for example, see Srivastava & Carter, 1983), the 8� 5 matrix A has

the estimate:

Â ¼ WUÿ1:
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Now, let ÊðkÞ ¼ Y ðkÞ ÿ m̂Y ÿ ÂðXðkÞ ÿ m̂yÞ. Then the 8� 8 matrix CE has
the estimate:

ĈE ¼ ðĈijÞ ¼
1
N

XN

k¼1

ÊðkÞÊðkÞ0

or

Ĉij ¼
1
N

XN

k¼1

ÊiðkÞÊjðkÞ for i; j ¼ 1; . . . ; 8:

å. Finding the Optimal Asset Allocation

In this section we consider the fixed and RPI liabilities (a ¼ F and a ¼ R
only). Our aim is to establish the optimal value function ~V ðt; y; T ÿ tÞ. From
the practical point of view, this is almost an impossible task. In particular,
suppose that we have a relatively complex model, where the state variable y
has several dimensions. Typically (as we have in the present context), no
analytical formula exists for ~V ðt; y; T ÿ tÞ, meaning that any numerical
method must evaluate ~V at every single value of y before we can move one
step backwards. In order to avoid this problem, we will approximate the true,
optimal solution by a function which is linear in y, and which is much easier
to evaluate. A second linearisation is then employed for each t, to help to
derive the optimal hedging strategy for the previous time step. Thus, we have
a sequence of linear approximations as we step backwards down the time
line. We will now describe this procedure in more detail. (Readers who are
more interested in the numerical results may choose to skip forward to
Section 7 and return to this theoretical section later.)

Previously, we defined the theoretical optima ~xa
i ðt; yðtÞ; T ÿ tÞ and

~V
a
ðt; yðtÞ; T ÿ tÞ. We will begin now to develop some approximations, which

will result in a set of allocations �xa
i ðt; yðtÞ; T ÿ tÞ, which will optimise a

linearised version of the one-step valuation problem. These then give us an
approximation to the true economic value by defining:

�V
a
ðt; yðtÞ; T ÿ tÞ ¼

X3

i¼1

�xa
i ðt; yðtÞ; T ÿ tÞ:

As before, the Markov, time homogeneous structure of the model implies
that, given yðtÞ ¼ y and Ma

ðtÞ ¼ m:

�xa
i ðt; y; T ÿ tÞ ¼ m �xa

i ð0; y; T ÿ tÞ for i ¼ 1; 2; 3

Valuation and Hedging of Limited Price Indexed Liabilities 641



and

�V
a
ðt; y; T ÿ tÞ ¼ m �V

a
ð0; y; T ÿ tÞ:

We derive these functions by backwards recursion. Suppose, then, that
the form of �V

a
ð0; y; T ÿ tÞ is known for all y and for all 0 � s � T ÿ t.

Step 1. Find �xai ðtÿ 1; yðtÿ 1Þ;Tÿ tþ 1Þ
For a general t, we first aim to find the �xa

i ðtÿ 1; yðtÿ 1Þ; T ÿ tþ 1Þ for
i ¼ 1; 2; 3, which minimise:

E
��X3

i¼1

�xa
i ðtÿ 1; y; T ÿ tþ 1ÞRiðtÞ ÿ �V

a
i ðt; yðtÞ; T ÿ tÞ

�2����yðtÿ 1Þ ¼ y

�
:

Since �xa
i ðtÿ 1; yðtÿ 1Þ; T ÿ tþ 1Þ ¼Ma

ðtÿ 1Þ �xa
i ð0; yðtÿ 1Þ; T ÿ tþ 1Þ and

�V
a
ðt; yðtÞ; T ÿ tÞ ¼Ma

ðtÞ �V
a
ð0; yðtÞ; T ÿ tÞ, this is equivalent to minimisation

over the �xa
i of:

E
��X3

i¼1

�xa
i ð0; y; T ÿ tþ 1ÞRið1Þ ÿMað1Þ �V

a
ð0; yð1Þ; T ÿ tÞ

�2����yð0Þ ¼ y

�
where Ma

ð1Þ equals either 1þ r (FP), or 1þ y1ð1Þ (RPI), or minf1þ r;
1þ y1ð1Þg (LPI).

For the purpose of constructing formulae for the optimal asset allocation,
we need to linearise Ma

ð1Þ �V
a
ð0; yð1Þ; T ÿ tÞ; that is:

Mað1Þ �V
a
ð0; yð1Þ; T ÿ tÞ � âa

Tÿtðyð1Þ ÿ myÞ þ b̂a
Tÿt

where âa
Tÿt is a row vector, where the jth component is:

âa
j;Tÿt ¼

@

@yjð1Þ

�
Mað1Þ �V

a
ð0; yð1Þ; T ÿ tÞ

����
yð1Þ¼my

ð6:11Þ

and b̂a
Tÿt is the scalar:

b̂a
Tÿt ¼Mað1Þ �V

a
ð0; yð1Þ; T ÿ tÞ

���
yð1Þ¼my

: ð6:12Þ

It would be useful to be able to quantify the accuracy of this
approximation. However, the complexity of the problem, even with a
relatively simple model as we have here, has left us unable to achieve this aim
even over just two time steps. Despite this, we believe that the approximation
is reasonable, and we comment further on this in Section 9.
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Since R1ð1Þ (the return on cash) is known at time 0, for any �xa
2 � �xa

2ð0; y;
T ÿ tþ 1Þ and �xa

3 � �xa
3ð0; y; T ÿ tþ 1Þ we can find an �xa

1 � �xa
1ð0; y; T ÿ tþ 1Þ,

for which:

E
�X3

i¼1

�xa
i Rið1Þ ÿ

�
âa

Tÿtðyð1Þ ÿ myÞ ÿ b̂a
Tÿt

�����yð0Þ ¼ y

�
¼ 0:

Thus, step 1 is equivalent to minimisation over �xa
2 and �xa

3 of:

Var
�X3

i¼2

�xa
i Rið1Þ ÿ âa

Tÿtðyð1Þ ÿ myÞ ÿ b̂a
Tÿt

� 	
yð0Þ ¼ y

����� ð6:13Þ

with �xa
1 � �xa

1ð0; y; T ÿ tþ 1Þ chosen subsequently to satisfy:

E
�X3

i¼1

�xa
i Rið1Þ ÿ âa

Tÿtðyð1Þ ÿ myÞ ÿ b̂a
Tÿt

� 	
yð0Þ ¼ y

�
¼ 0:

����
Then, given yðtÿ 1Þ ¼ y and Ma

ðtÿ 1Þ ¼ m, we have:

�xa
2ðtÿ 1; y; T ÿ tþ 1Þ ¼ m �xa

2ð0; y; T ÿ tþ 1Þ:

Recall (equation 5.10) that the multivariate regression model is given by:

yðtÞ ¼ my þ Ay½yðtÿ 1Þ ÿ my� þ EðyÞðtÞ

and

RðtÞ ¼ mR þ AR½yðtÿ 1Þ ÿ my� þ EðRÞðtÞ

where:

EðtÞ ¼
EðyÞðtÞ
EðRÞðtÞ

� �
�MVNð0;CEÞ:

Equation (6.13) can be rewritten as:

Var �xa
2E7ð1Þ þ �xa

3E8ð1Þ ÿ âa
TÿtE

ðyÞð1Þ
ÿ �

¼ ÿ1; �xa
2; �xa

3ð Þ

~C11ðT ÿ tþ 1Þ ~C17ðT ÿ tþ 1Þ ~C18ðT ÿ tþ 1Þ
~C17ðT ÿ tþ 1Þ C77 C78

~C18ðT ÿ tþ 1Þ C78 C88

0B@
1CA ÿ1

�xa
2

�xa
3

0B@
1CA
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where the optimal values for �xa
2 and �xa

3 give us �xa
i ð0; y; T ÿ tþ 1Þ for i ¼ 2; 3.

For convenience, we write X ¼ ð �xa
2; �xa

3Þ
0:

~C11ðT ÿ tþ 1Þ ¼ âa
Tÿt

C11 C12 C13 C14 C15

C21 C22 C23 C24 C25

C31 C32 C33 C34 C35

C41 C42 C43 C44 C45

C51 C52 C53 C54 C55

0BBBBBBBB@

1CCCCCCCCA
âa

Tÿt

0

~C17ðT ÿ tþ 1Þ ¼ âa
Tÿt

C17

C27

C37

C47

C57

0BBBB@
1CCCCA and ~C18ðT ÿ tþ 1Þ ¼ âa

Tÿt

C18

C28

C38

C48

C58

0BBBB@
1CCCCA:

In order to develop the formula for the asset allocation �xa
i ð0; y; T ÿ tþ 1Þ,

we define:

CX ¼
C77 C78

C78 C88

� �
and hXðT ÿ tþ 1Þ ¼ ÿ

~C17ðT ÿ tþ 1Þ
~C18ðT ÿ tþ 1Þ

 !
:

Then, the objective function becomes:

f ðXÞ ¼ Var
�X3

i¼2

�xa
i Rið1Þ ÿ âa

Tÿtðyð1Þ ÿ myÞ ÿ b̂a
Tÿt

����yð0Þ ¼ y

�
¼ X0CXXþ 2hXðT ÿ tþ 1Þ0Xþ ~C11ðT ÿ tþ 1Þ:

To establish the optimal values �xa
2ð0; y; T ÿ tþ 1Þ and �xa

3ð0; y; T ÿ tþ 1Þ,
we minimise the objective function f ðXÞ over �xa

2 and �xa
3; that is:

@f ðXÞ

@X
¼ 2CXXþ 2hXðT ÿ tþ 1Þ ¼ 0:

We then obtain the optimal asset allocation of consols and index-linked
bonds at time zero as follows:

X̂ ¼
�xa
2ð0; y; T ÿ tþ 1Þ

�xa
3ð0; y; T ÿ tþ 1Þ

� �
¼ ÿCÿ1X hXðT ÿ tþ 1Þ:
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We note that CX is constant and that hXðT ÿ tþ 1Þ depends upon
T ÿ tþ 1 and my, but not on y. It follows that �xa

2ð0; y; T ÿ tþ 1Þ and
�xa
3ð0; y; T ÿ tþ 1Þ depend upon T ÿ tþ 1 and my only, and not on y. This lack

of dependence on y happens because of the linear approximation in the one-
year ahead estimate of the liability. This means that the variance of the
hedging error at the end of the present year, given x2 and x3, is independent
of the current value of y. Thus, the values of x2 and x3, which minimise the
variance of the hedging error, do not depend on the current value of y.

With the values of �xa
2ð0; y; T ÿ tþ 1Þ and �xa

3ð0; y; T ÿ tþ 1Þ established,
we can find �xa

1ð0; y; T ÿ tþ 1Þ to satisfy the identity:

E
�X3

i¼1

�xa
i ð0; y; T ÿ tþ 1ÞRið1Þ ÿ âa

Tÿt yð1Þ ÿ my

ÿ �
þ b̂a

Tÿt

� 	����yð0Þ ¼ y

�
¼ 0:

Hence, the optimal asset allocation of cash at time tÿ 1 is:

�xa
1ðtÿ 1; y; T ÿ tþ 1Þ ¼Maðtÿ 1Þ �xa

1ð0; y; T ÿ tþ 1Þ

¼
Ma
ðtÿ 1Þ

E½R1ð1Þjyð0Þ ¼ y�

�
âa

TÿtE½yð1Þ ÿ myjyð0Þ ¼ y� þ b̂a
Tÿt

ÿ �
ÿ �xa

2ð0; y; T ÿ tþ 1ÞE½R2ð1Þjyð0Þ ¼ y�ð Þ

ÿ �xa
3ð0; y; T ÿ tþ 1ÞE½R3ð1Þjyð0Þ ¼ y�ð Þ

�
where:

E½R1ð1Þjyð0Þ ¼ y� ¼ ½y�4

E½R2ð1Þjyð0Þ ¼ y� ¼
�
mR þ ARðyÿ myÞ

�
2

E½R3ð1Þjyð0Þ ¼ y� ¼
�
mR þ ARðyÿ myÞ

�
3

E½yð1Þ ÿ myjyð0Þ ¼ y� ¼ Ayðyÿ myÞ

where ½. . .�i represents the value of the ith component of the vector ½. . .� and
Ay and AR are the regression matrices in equation (5.10).

In contrast to �x2 and �x3, it is clear that �xa
1ðtÿ 1; yðtÿ 1Þ; T ÿ tþ 1Þ does

depend on yðtÿ 1Þ.

Step 2. Set up the estimated economic value of the liability
Once we have determined the optimal asset allocation at a given time, the

estimated economic value of the liability is then defined as the sum of the
values of the holdings in the three assets. Thus:

V̂
a
ðtÿ 1; yðtÿ 1Þ; T ÿ tþ 1Þ ¼

X3

i¼1

�xa
i ðtÿ 1; yðtÿ 1Þ; T ÿ tþ 1Þ:
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This will be non-linear in y. It represents the best estimate of the liability
at time tÿ 1, given the linear approximations at times t; tþ 1; . . . ; T . Thus,
the estimated economic value of the liability is:

V̂ aðtÿ 1; yðtÿ 1Þ; T ÿ tþ 1Þ

¼ �xa
2ðtÿ 1; yðtÿ 1Þ; T ÿ tþ 1Þ þ �xa

3ðtÿ 1; yðtÿ 1Þ; T ÿ tþ 1Þ

þ
1

y4ðtÿ 1Þ

�
Maðtÿ 1Þ âa

TÿtAyðyðtÿ 1Þ ÿ myÞ þ b̂a
Tÿt

ÿ �
ÿ �xa

2ðtÿ 1; yðtÿ 1Þ; T ÿ tþ 1Þ
�
mR þ ARðyðtÿ 1Þ ÿ myÞ

�
2

ÿ �xa
3ðtÿ 1; yðtÿ 1Þ; T ÿ tþ 1Þ

�
mR þ ARðyðtÿ 1Þ ÿ myÞ

�
3

�
:

Step 3. Linearise the estimated economic value of the liability
Let:

�V
a
ðtÿ 1; yðtÿ 1Þ; T ÿ tþ 1Þ ¼Maðtÿ 1Þ aa

Tÿtþ1ðyðtÿ 1Þ ÿ mÞ þ ba
Tÿtþ1

� �
where aa

Tÿtþ1 is a row vector, and

aa
j;Tÿtþ1 ¼

@V̂
a
ð0; y; T ÿ tþ 1Þ

@yj

����
y¼my

ba
Tÿtþ1 ¼ V̂

a
ð0; my; T ÿ tþ 1Þ:

Note that the linearisations involving the aa
Tÿtþ1 and ba

Tÿtþ1 are different
from the linearisations, introduced earlier in this section, involving the âa

Tÿtþ1

and b̂a
Tÿtþ1. However, the two linearisations and the a and b functions are

very closely linked, as we will see below.
The parameters of the linearised liability are as follows.
For j ¼ 1; 2; 3; 5:

aa
j;Tÿtþ1

¼
1
m4

X5

i¼1

âa
i;Tÿt½Ay�i;j ÿ �xa

2ð0; my; T ÿ tþ 1Þ½AR�2;j ÿ �xa
3ð0; my; T ÿ tþ 1Þ½AR�3;j

( )
:

For j ¼ 4:

aa
4;Tÿtþ1

¼
1
m4

X5

i¼1

âa
i;Tÿt½Ay�i;4 ÿ �xa

2ð0; my; T ÿ tþ 1Þ½AR�2;4 ÿ �xa
3ð0; my; T ÿ tþ 1Þ½AR�3;4

( )

ÿ
1
m2
4

b̂a
Tÿt ÿ �xa

2ð0; my; T ÿ tþ 1Þm7 ÿ �xa
3ð0; my; T ÿ tþ 1Þm8

ÿ �
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and the average liability is:

ba
Tÿtþ1 ¼ b̂a

Tÿtm
ÿ1
4 þ �xa

2ð0; my; T ÿ tþ 1Þð1ÿ m7m
ÿ1
4 Þ

þ �xa
3ð0; my; T ÿ tþ 1Þð1ÿ m8m

ÿ1
4 ÞÞ:

Now, for the purpose of constructing approximate formulae for the
optimal asset allocation one time-step further back, we aim to linearise:

Mað1Þ �V
a
ð0; yð1Þ; T ÿ tþ 1Þ � âa

Tÿtþ1ðyð1Þ ÿ myÞ þ b̂a
Tÿtþ1:

For the FP liability, the parameters of the linear liability with pension
increase f are:

âF
j;Tÿtþ1 ¼ ð1þ f ÞaF

j;Tÿtþ1

b̂F
Tÿtþ1 ¼ ð1þ f ÞbF

Tÿtþ1

and for the RPI liability, the parameters of the linear liability with pension
increase 1þ y1ð1Þ are:

âR
1;Tÿtþ1 ¼ bR

Tÿtþ1 þ ð1þ m1Þa
R
1;Tÿtþ1

âR
j;Tÿtþ1 ¼ ð1þ m1Þa

R
j;Tÿtþ1 j ¼ 2; 3; 4; 5

and

b̂R
Tÿtþ1 ¼ ð1þ m1Þb

R
Tÿtþ1:

Step 4. Reduce t by 1 and go to step 1
Using the backward method, we can derive the asset allocation step by

step from the last year back to the first year.

æ. Some Numerical Results

In Sections 5 and 6 we constructed formulae for approximately optimal
asset allocations for the FP and RPI liabilities using dynamic hedging. In
this section we provide some numerical results obtained using those
formulae.

Based on a single 10,000-year simulation of the Wilkie (1995) model
(using the parameter values quoted in that paper), we obtained values of A
and CE as follows:

Valuation and Hedging of Limited Price Indexed Liabilities 647



A ¼

Ay

: : :

AR

0BBB@
1CCCA ¼

0:58202 0:00167 0:00037 ÿ0:00558 ÿ0:00086

0:07273 0:56505 0:00310 ÿ0:11103 ÿ0:00805

0:35627 ÿ0:00500 0:93178 0:00303 ÿ0:05921

0:02054 0:00077 0:01200 0:73368 ÿ0:00252

ÿ0:00262 0:00058 ÿ0:00489 0:04145 0:54888

0 0 0 1 0

ÿ0:37395 0:00689 0:14036 0:04523 0:07199

0:60820 0:00131 0:00546 ÿ0:04873 0:51492

0BBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCA
:

(Recall that y1ðtÞ ¼ inflation rate from time tÿ 1 to t, y2ðtÞ ¼ log(dividend
yield) at t, y3ðtÞ ¼ log(consols yield) at t, y4ðtÞ ¼ 1þrisk free interest rate
from t to tþ 1, y5ðtÞ ¼ log(real yield on index-linked bonds) at t, while R1ðtÞ,
R2ðtÞ and R3ðtÞ equal the total returns on cash, consols, and index-linked
bonds respectively.)

CE ¼

0:00199 0:00332 0:00112 0:00006 0:00000 0 ÿ0:00113 0:00207

0:00332 0:02961 0:00525 0:00039 ÿ0:00010 0 ÿ0:00528 0:00356

0:00112 0:00525 0:00782 0:00059 0:00308 0 ÿ0:00789 ÿ0:00207
0:00006 0:00039 0:00059 0:00019 0:00020 0 ÿ0:00050 ÿ0:00014

0:00000 ÿ0:00010 0:00308 0:00020 0:00407 0 ÿ0:00309 ÿ0:00428

0 0 0 0 0 0 0 0

ÿ0:00113 ÿ0:00528 ÿ0:00789 ÿ0:00050 ÿ0:00309 0 0:00804 0:00207

0:00207 0:00356 ÿ0:00207 ÿ0:00014 ÿ0:00428 0 0:00207 0:00669

0BBBBBBBBBBBBB@

1CCCCCCCCCCCCCA
:

Consols and index-linked bonds are risky assets in the portfolio, whereas
cash is the riskless asset. The matrix of ĈE shows that the return on consols
has the largest conditional variance of 0:00804 or 0:0902.

The unconditional means of ðy1ðtÞ; y2ðtÞ; y3ðtÞ; y4ðtÞ; y5ðtÞÞ and ðR1ðtÞ;R2ðtÞ;
R3ðtÞÞ

0 are (to four significant figures):

m0y ¼ ð0:04827;ÿ3:197;ÿ2:570; 1:065;ÿ3:218Þ
and

m0R ¼ ð1:065; 1:084; 1:093Þ:

From the values of mR, we see that index-linked bonds offer the highest
mean return at 1.093. Cash provides the lowest mean return at 1.065.

The Wilkie model is used here for illustration only. In principle, the
vector autoregressive model could be used as an approximation to any
stochastic asset model or estimated directly from historical data.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Now we consider liabilities with terms of up to ten years for both FP and
RPI pensions.

In Table 7.1 we show the optimal asset allocation of cash, consols and
index-linked bonds for FP liabilities, with ten years down to one year to
maturity, given yð0Þ ¼ my.
For example, consider the row T ÿ t ¼ 8 years. The table tells us that, on

average, we require 0.4458 in cash, 0.3969 in consols and 0.0185 in index-
linked to hedge, from time zero to time one, a payment of 1:058 at time eight.
For a ten-year dynamic hedge, we multiply row s by 1:05s to account for
those pension increases which have already vested.

For the FP liability, we see from Table 7.1 that we should invest most
funds (about 61% of the total assets) in consols at the beginning of the term.
We also notice that, for FP liability, we should hold very few assets in
index-linked bonds in the portfolio, as we might expect. This is because, for
the FP liability, the pension liability increases by a fixed percentage (here 5%)
every year, and so we know the exactly liability at the end of the term.
Thus, consols are the more appropriate choice for this type of liability. We
also see that the optimal investments shift gradually from consols early on
into cash (100% in the final year). Again, this shift is intuitively reasonable;
year-on-year reductions in the duration of the liability ðT ÿ tÞ are being
matched by reductions in the mean duration of the assets. However, it is
interesting to note that the vector autoregressive model does not explicitly
take the duration of the consols into account, so it does not obviously follow
that it would be optimal to shift over time from one asset to the other.

Recall that the linear approximation to the liability is:

Table 7.1. Asset allocation for FP liabilities (5% increase) with terms up to
10 years: the �xF

1 ð0; yð0Þ; T ÿ tÞ are those for yð0Þ ¼ my;
the �xF

i ð0; yð0Þ; T ÿ tÞ for i ¼ 2; 3 do not depend upon yð0Þ; for a ten-year
liability the hedge quantities, �xF

i ðt; yð0Þ; T ÿ tÞ, are found by multiplying the
�xF

i ð0; yð0Þ; T ÿ tÞ by the relevant liability multiplier MF
ðtÞ

t

Term to
maturity

T ÿ t �xF
1 ð0;my; T ÿ tÞ �xF

2 ð0; yð0Þ; T ÿ tÞ �xF
3 ð0; yð0Þ; T ÿ tÞ

Liability
multiplier

0 10 0.2999 0.4972 0.0221 1
1 9 0.3722 0.4479 0.0204 1.05
2 8 0.4458 0.3969 0.0185 1.052

3 7 0.5206 0.3443 0.0162 1.053

4 6 0.5966 0.2902 0.0137 1.054

5 5 0.6736 0.2345 0.0110 1.055

6 4 0.7515 0.1773 0.0081 1.056

7 3 0.8300 0.1189 0.0052 1.057

8 2 0.9083 0.0595 0.0024 1.058

9 1 0.9855 0 0 1.059
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�V
F
ðt; yðtÞ; T ÿ tÞ ¼ ð1þ f Þ

t
aF

Tÿtðyÿ myÞ þ bF
Tÿt

ÿ �
or

�V
F
ð0; y; T ÿ tÞ ¼ aF

Tÿtðyÿ myÞ þ bF
Tÿt:

Values for the bF
Tÿt and aF

i;Tÿt are given in Table 7.2. The bF
Tÿt give the

basic liability (economic value) when yðtÞ ¼ my, while the aF
i;Tÿt indicate how

sensitive the liability is to deviations from my. Also shown is the implied
valuation interest rate when yðtÞ ¼ my:

iTÿt ¼
1:05Tÿt

bF
Tÿt

� �1=ðTÿtÞ

ÿ1:

When T ÿ t ¼ 1 this is equal to the cash rate. As ðT ÿ tÞ increases, so
does iTÿt towards the consols rate, as the balance between the two assets shifts.
With ten years to maturity, i10 ¼ 7:12%. This reflects both the predominance
of consols early on, shifting to heavier investments in cash later on.

We see from Table 7.2 that, for the FP liability, the linearised liability is
strongly related to the risk free return on one-year zero-coupon bonds (that
is, the column headed aF

4;Tÿt). Also, the liability is related to the consol real
yield, becoming larger as the term to maturity increases.

Consider next RPI liabilities with terms of up to ten years. Table 7.3
shows how the optimal asset allocations of cash, consols and index-linked
bonds for RPI liability vary with term to maturity. From Table 7.3, we see
that we should hold a very high proportion of assets in index-linked bonds,

Table 7.2. Liability valuation for 5% fixed pension liabilities: the bF
Tÿt

column gives the liability value for a ðT ÿ tÞ year liability starting from
yð0Þ ¼ my; the aF

i;Tÿt show how sensitive the values are to deviations in yið0Þ
from mi; the final column shows the implied valuation interest rate when

yðtÞ ¼ my, iTÿt ¼ 1:05=ðbF
TÿtÞ

1=ðTÿtÞ
ÿ 1

t T ÿ t bF
Tÿt aF

1;Tÿt aF
2;Tÿt aF

3;Tÿt aF
4;Tÿt aF

5;Tÿt

Implied
iTÿt (%)

0 10 0.8192 0.0002 ÿ0.0064 ÿ0.4169 ÿ1.5682 ÿ0.0374 7.12
1 9 0.8405 0.0010 ÿ0.0064 ÿ0.3601 ÿ1.7493 ÿ0.0342 7.05
2 8 0.8611 0.0017 ÿ0.0063 ÿ0.3034 ÿ1.9091 ÿ0.0305 6.98
3 7 0.8812 0.0022 ÿ0.0060 ÿ0.2472 ÿ2.0378 ÿ0.0265 6.91
4 6 0.9005 0.0026 ÿ0.0055 ÿ0.1925 ÿ2.1221 ÿ0.0220 6.85
5 5 0.9191 0.0026 ÿ0.0047 ÿ0.1403 ÿ2.1434 ÿ0.0172 6.79
6 4 0.9370 0.0024 ÿ0.0037 ÿ0.0925 ÿ2.0763 ÿ0.0122 6.72
7 3 0.9540 0.0017 ÿ0.0025 ÿ0.0509 ÿ1.8857 ÿ0.0072 6.66
8 2 0.9702 0.0008 ÿ0.0011 ÿ0.0188 ÿ1.5239 ÿ0.0029 6.60
9 1 0.9855 0 0 0 ÿ0.9250 0 6.54
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especially in the early years of the term. This makes sense, since, for an RPI
liability, IL bonds provide a reasonable match in the long run for the RPI-
linked pension increases. Like the FP liability, with the RPI liability we shift
gradually towards cash in the later years. For example, in the RPI liability
we should hold 0.7532 in index-linked bonds, 0.0420 in consols and short by
an average of 0.1047 in cash to minimise risk in the first year of the term. In
the last year of the term, we require 0.3836 in index-linked bonds, ÿ0.2393
in consols and an average holding of 0.8337 in cash. This presumably means
that cash is a better hedge for an RPI over one year than index-linked bonds.
It reflects the relative certainty of the liability one year ahead, the certainty
(in nominal terms) of cash versus the relative riskiness of the long-dated
index-linked bond (because of the variable real yield) in the short term.

The investments for the one-year liability can be interpreted in more
detail, as follows. The long investment of 0.3836 in index-linked bonds will
give a partial hedge against the inflation increase in the pension. The short
position of ÿ0.2393 in consols is a result of correlation between changes in
nominal and real yields in the model. Finally, the long position in cash acts
over the one year to remove any bias in the hedge. Similar arguments can be
applied to longer-dated liabilities. Values for the bR

Tÿt and aR
i;Tÿt are given in

Table 7.4. The bR
Tÿt are lower than the corresponding values of bF

Tÿt in Table
7.2. This is mainly due to the differences in mean returns on index-linked
bonds and consols in the Wilkie model, rather than the mean inflation
assumption, which is close to the fixed increases of 5%.

From Table 7.4, we notice that, for the RPI liability, the linearised
liability is affected by the price of one-year zero-coupon bonds (especially for
the later years of the term), by the real yield on index-linked bonds

Table 7.3. Asset allocation for RPI liabilities with terms up to ten years;
the �xR

1 ð0; yð0Þ; T ÿ tÞ are for yð0Þ ¼ my; the �xR
i ð0; yð0Þ; T ÿ tÞ for i ¼ 2; 3 do

not depend upon yð0Þ; for a ten-year liability the �xR
i ð0; yð0Þ; T ÿ tÞ should be

multiplied by the liability multiplier; in the present context the liability
multiplier MR

ðtÞ equals RPIðtÞ=RPIð0Þ

t T ÿ t �xR
1 ð0;my;T ÿ tÞ �xR

2 ð0; yð0Þ;T ÿ tÞ �xR
3 ð0; yð0Þ;T ÿ tÞ

Liability
multiplier

0 10 ÿ0.1047 0.0420 0.7532 1
1 9 ÿ0.0803 0.0305 0.7722 MR(1)
2 8 ÿ0.0456 0.0143 0.7866 MR(2)
3 7 0.0024 ÿ0.0081 0.7943 MR(3)
4 6 0.0679 ÿ0.0383 0.7928 MR(4)
5 5 0.1556 ÿ0.0778 0.7783 MR(5)
6 4 0.2714 ÿ0.1275 0.7454 MR(6)
7 3 0.4216 ÿ0.1849 0.6847 MR(7)
8 2 0.6104 ÿ0.2369 0.5779 MR(8)
9 1 0.8337 ÿ0.2393 0.3836 MR(9)
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(especially for the earlier years of the term; that is for large T ÿ t), and by
the inflation rate (especially for when T ÿ t is small). The fact that, for
example, aR

1;10 ¼ ÿ0:030 < 0 indicates that, even if the rate of inflation is
currently high (suggesting a higher liability), returns on the matching assets
must be correspondingly higher in the long run (that is, the liability is
actually lowered).

ð. Optimal Asset Allocation for LPI Liability

For an LPI liability, the pension increase rate is the lower of the fixed
rate (5%) and RPI; that is:

ML ðtÞ ¼ML ðtÿ 1Þmin
RPIðtÞ

RPIðtÿ 1Þ
; 1:05

� �
¼ML ðtÿ 1Þminf1þ y1ðtÞ; 1:05g:

It follows that an LPI liability has strong links with both the FP and RPI
liabilities (for example, we can immediately note that the liability will be
lower than the corresponding fixed and RPI liabilities). (Note that, if X and
Y are random variables, then E½minfX; Y g� � minfE½X�;E½Y �g with strict
inequality if Pr½X > Y � > 0 and Pr½X < Y � > 0.) We will use the RPI and FP
liabilities, developed earlier in this section, to propose approximate formulae
for an LPI liability, by choosing an appropriate function which satisfactorily
distributes the proportions of these two types of liability.

8.1 Model Setting for the LPI Liability
In this section we aim to build a suitable model to connect the FP and

RPI liabilities with the LPI liability. Since the main factor affecting the

Table 7.4. Liability valuation for RPI pension liabilities: the bR
Tÿt column

gives the liability value for a ðT ÿ tÞ year liability starting from yð0Þ ¼ my;
the aR

i;Tÿt show how sensitive the values are to deviations in yið0Þ from mi

t T ÿ t bR
Tÿt aR

1;Tÿt aR
2;Tÿt aR

3;Tÿt aR
4;Tÿt aR

5;Tÿt

Implied real
yield (%)

0 10 0.6905 ÿ0.0302 ÿ0.0015 ÿ0.0028 ÿ0.0296 ÿ0.8073 3.77
1 9 0.7225 ÿ0.0173 ÿ0.0014 0.0049 ÿ0.1714 ÿ0.8149 3.68
2 8 0.7552 0.0004 ÿ0.0012 0.0138 ÿ0.3379 ÿ0.8128 3.57
3 7 0.7886 0.0243 ÿ0.0008 0.0238 ÿ0.5256 ÿ0.7980 3.45
4 6 0.8224 0.0559 ÿ0.0001 0.0342 ÿ0.7263 ÿ0.7661 3.31
5 5 0.8561 0.0969 0.0008 0.0441 ÿ0.9233 ÿ0.7119 3.16
6 4 0.8894 0.1481 0.0018 0.0515 ÿ1.0874 ÿ0.6292 2.97
7 3 0.9214 0.2065 0.0029 0.0540 ÿ1.1708 ÿ0.5118 2.77
8 2 0.9513 0.2563 0.0034 0.0480 ÿ1.0987 ÿ0.3560 2.53
9 1 0.9780 0.2434 0.0026 0.0299 ÿ0.7601 ÿ0.1700 2.25
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relationship among these three liabilities is the inflation rate, we assume, for
simplicity, that this connection is a function only of the inflation rate.

We now assume that there exist two functions of ðT ÿ tÞ and the inflation
rate, pðT ÿ t; y1ðtÞÞ and qðT ÿ t; y1ðtÞÞ, which allow approximation of the
asset allocation for the LPI liability as follows:

x̂L
j ðt; yðtÞ; T ÿtÞ ¼ pðT ÿt; y1ðtÞÞ �x

R
j ðt; yðtÞ; T ÿtÞ þ qðT ÿ t; y1ðtÞÞ �x

F
j ðt; yðtÞ; T ÿtÞ

where j ¼ 1; 2; 3.
Note that it will not be possible, in general, to find a p and q such that

the linear combination of �xR
j and �xF

j is precisely equal to the true �xL
j . Instead,

we aim to find a p and q which make x̂L
j ¼ p �xR

j þ q �xF
j the best approximation

(in some sense) to �xL
j . Note also that �xR

1 and �xF
1 depend upon all of the yiðtÞ.

To this extent, x̂L
1 will also depend upon yðtÞ. x̂L

2 and x̂L
3 will depend on y1ðtÞ

and my only, since pðT ÿ t; y1ðtÞÞ and qðT ÿ t; y1ðtÞÞ are functions only of
y1ðtÞ and �xR

2 , �xF
2 , �xR

3 and �xF
3 are dependent on my.

Then, the estimated LPI liability is taken to be:

V̂ L ðt; yðtÞ; T ÿ tÞ

¼ pðT ÿ t; y1ðtÞÞ �V
R
ðt; yðtÞ; T ÿ tÞ þ qðT ÿ t; y1ðtÞÞ �V

F
ðt; yðtÞ; T ÿ tÞ:

As indicated earlier, pðT ÿ t; y1ðtÞÞ and qðT ÿ t; y1ðtÞÞ are functions only of
ðT ÿ tÞ and y1ðtÞ, the rate of inflation from ðtÿ 1Þ to t. If current inflation
rates are low (that is, much lower than 5%), then we anticipate that the LPI
liability will be closer to the RPI liability than if current inflation rates are
high, especially when ðT ÿ tÞ is small. In this case, pðT ÿ t; y1ðtÞÞ should be
near to one and qðT ÿ t; y1ðtÞÞ should be near to zero, and vice versa if recent
inflation has been high (much higher than 5%). Following this observation,
we propose these two functions to be:

pðT ÿ t; y1ðtÞÞ ¼
gp

Tÿt expðÿaTÿtðy1ðtÞ ÿ bp

TÿtÞÞ

1þ expðÿaTÿtðy1ðtÞ ÿ bp

TÿtÞÞ
ð8:14Þ

and

qðT ÿ t; y1ðtÞÞ ¼
gq

Tÿt expðaTÿtðy1ðtÞ ÿ bq

TÿtÞÞ

1þ expðaTÿtðy1ðtÞ ÿ bq

TÿtÞÞ
: ð8:15Þ

To establish pðT ÿ t; y1ðtÞÞ and qðT ÿ t; y1ðtÞÞ, we need to minimise the
Sðp; qÞ function, below, over p ¼ pðT ÿ t; y1ðtÞÞ and q ¼ qðT ÿ t; y1ðtÞÞ, where:
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Sðp; qÞ ¼E
�nÿ

p �xRðt; yðtÞ; T ÿ tÞ þ q �xFðt; yðtÞ; T ÿ tÞ
0
Rðtþ 1Þ

ÿ ~V
L
ðtþ 1; yðtþ 1Þ; T ÿ tÿ 1Þ

o2
yðtÞ; LPIðtÞ

�
:

����

This function is minimised for each y1ðtÞ, giving different values of p and
q for each y1ðtÞ. (This step is implemented before we parametrise p and q
according to equations (8.14) and (8.15).)

To obtain estimates for pðT ÿ t; y1ðtÞÞ and qðT ÿ t; y1ðtÞÞ, we differentiate
S with respect to p and q and equate to zero, in combination with 40,000
simulations of the vector autoregressive model as an approximation to
exact expectation. This is implemented for 21 values of y1ðtÞ (y

ðiÞ

1 ðtÞ ¼ my1þ

0:02ðiÿ 11Þ for i ¼ 1; . . . ; 21). The estimated p and q values for T ÿ t ¼ 1 are
plotted in Figure 8.1.

With the estimated optimal values of p̂ðT ÿ t; y1ðtÞÞ and q̂ðT ÿ t; y1ðtÞÞ, the
next step is to estimate the values of aTÿt, b

p

Tÿt, b
q

Tÿt, g
p
Tÿt and gq

Tÿt, introduced
in equations (8.14) and (8.15). These are determined by minimising:

Figure 8.1. Estimated p̂ (dots) and q̂ (triangles) against different inflation
rates for T ÿ t ¼ 1; fitted curves pð1; y1Þ (solid curve) and qð1; y1Þ (dotted

curve); for j ¼ 2; 3; 4; 5 we have yj ¼ my;j
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Sða; bp; bq; gp; gqÞ ¼
X21
i¼1

pðT ÿ t; y
ðiÞ

1 ðtÞÞða; b
p; gpÞ ÿ p̂ðT ÿ t; y

ðiÞ

1 ðtÞÞ
h i2

þ
X21
i¼1

qðT ÿ t; y
ðiÞ

1 ðtÞÞða; b
q; gqÞ ÿ q̂ðT ÿ t; y

ðiÞ

1 ðtÞÞ
h i2

: ð8:16Þ

We can see, from Figure 8.1, that the quality of fit for p̂ð1; y1ðtÞÞ and
q̂ð1; y1ðtÞÞ is good. We then can obtain graphs similar to Figure 8.1 for
t ¼ 0; . . . ; T ÿ 2. In Figure 8.2 we plot the liability values for T ÿ t ¼ 1. As
expected, we find that the LPI value is close to the RPI liability when y1 is
very low, and close to the 5% fixed liability when y1 is very high. We can also
see that the LPI liability is very much lower than both the RPI and fixed
liabilities when y1 is close to the LPI threshold of 5%, indicating that the
effect of the stochastic minimum (minf1:05;RPIð1Þ=RPIð0Þg) is significant.

The backward method is used to calculate, in sequence, the values for
aTÿt, b

p

Tÿt, b
q

Tÿt, g
p
Tÿt and gq

Tÿt for T ÿ t ¼ 1; . . . ; T . At each time T ÿ tþ 1, we
calculate p̂ðT ÿ tþ 1; y1Þ and q̂ðT ÿ tþ 1; y1Þ on the assumption that:

�V
L
ðt; yðtÞ; T ÿ tÞ

¼ pðT ÿ t; y1ðtÞÞ �V
R
ðt; yðtÞ; T ÿ tÞ þ qðT ÿ t; y1ðtÞÞ �V

F
ðt; yðtÞ; T ÿ tÞ

Figure 8.2. Estimated liability values for different values of y1; the liability
is due for payment in T ÿ t ¼1 year; for j ¼ 2; 3; 4; 5 we have yj ¼ my;j
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where the parametric forms for p and q (equations 8.14 and 8.15) are used
with the already estimated values for the function parameters.

The estimated values of aTÿt, b
p

Tÿt, b
q

Tÿt, g
p
Tÿt and gq

Tÿt for t ¼ T ÿ 1 to 0
are presented in Table 8.5. These estimates for t ¼ 0; . . . ; T ÿ 1 give us a
means of connecting the FP and RPI liabilities with the LPI liability. From
this, we are able to deduce the approximately optimal asset allocations for
the LPI liability.

In Figures 8.3 and 8.4 we plot the functions p and q and the liability

Table 8.5. Values of aTÿt; b
p

Tÿt; b
q

Tÿt; g
p
Tÿt and gq

Tÿt for T ¼ 10 and
t ¼ 0; . . . ; 9

t T ÿ t aTÿt bp

Tÿt bq

Tÿt gp
Tÿt gq

Tÿt

0 10 8.910 0.06997 0.08294 0.8726 0.7617
1 9 8.917 0.07028 0.08317 0.8824 0.7867
2 8 8.960 0.07032 0.08313 0.8925 0.8125
3 7 9.062 0.07014 0.08286 0.9028 0.8391
4 6 9.257 0.06898 0.08157 0.9132 0.8669
5 5 9.583 0.06538 0.07782 0.9242 0.8950
6 4 10.100 0.06032 0.07252 0.9380 0.9211
7 3 9.824 0.06213 0.07422 0.9531 0.9437
8 2 7.237 0.05264 0.07998 0.9775 0.9998
9 1 21.607 0.04649 0.05591 1.0000 1.0000

Figure 8.3. Estimated p̂ (dots) and q̂ (triangles) against different inflation
rates for T ÿ t ¼ 10; fitted curves pð10; y1Þ (solid curve) and qð10; y1Þ (dotted

curve)
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estimates for T ÿ t ¼ 10. In contrast to Figure 8.1, the p and q functions are
flatter and have upper limits which are below one (that is, gp

10 ¼ 0:8726 and
gq

10 ¼ 0:7617, see Table 8.5). Even more striking is the comparison with
Figure 8.2. The three liability curves are now almost independent of y1. The
difference between LPI and RPI amounts to a difference in the assumed rate
of increase in the pension of 1.5% p.a. The size of this difference reflects the
magnitude of the volatility in price inflation. It is also appropriate here to
compare RPI with 5% fixed increases. Average price inflation is just below
5%, whereas the liability values suggest something rather larger. The bigger
difference is a result of the hedging portfolio for each liability. In the case of
RPI, the liability is hedged with a much larger proportion invested in index-
linked bonds, which have a higher expected rate of return, resulting in a
lower liability.

Figure 8.5 displays illustrations of asset allocations in the three different
types of liabilities when yðtÞ ¼ my. We can see more clearly how the various
allocations change over time. For example, in all cases cash becomes more
important as term to payment ðT ÿ tÞ decreases. Also, we can see that longer-
term LPI liabilities make use of a mixture of consols and IL bonds, as we
might have expected.

8.2 The Efficiency of Dynamic Hedging
From the preceding sections we have derived the formula for the optimal

Figure 8.4. Estimated liability values for different values of y1; the liability
is due for payment in T ÿ t ¼10 years
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Figure 8.5. Asset allocations for a ten-year liability for the cases
of RPI, FP and LPI liabilities; values plotted are representative values

for yðtÞ ¼ my
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asset allocation x̂a
j ðt; yðtÞ; T ÿ tÞ, where a ¼ F;R; L and j ¼ 1; 2; 3. In this

section we can now use these formulae to examine the effectiveness of the
proposed (approximate) dynamic hedging strategy.

In dynamic strategies, the extra cash required at time t is:

Ca
t ¼ �V

a
ðt; yðtÞ; T ÿ tÞ ÿ

X3

j¼1

�xa
j ðtÿ 1; yðtÿ 1Þ; T ÿ tþ 1ÞRjðtÞ:

Thus, Ca
t is the difference between the new liability at t, �V

a
ðt; yðtÞ; T ÿ tÞ,

and the value at t of the available assets held from ðtÿ 1Þ to t.
Then, the present value at time zero of the total extra cash required up to

time T is:

TCa ¼
Xn

t¼1

Ca
t

S1ð0Þ
S1ðtÞ

where S1ðuÞ is the unit value of the cash account at time u (that is, S1ð0Þ ¼ 1
and S1ðuþ 1Þ ¼ S1ðuÞR1ðuþ 1Þ ¼ S1ðuÞy4ðuÞ). This measure is consistent with
those commonly used in financial mathematics (see, for example, Musiela &
Rutkowski, 1997, Chapter 4). It is, in particular, consistent with the risk
minimising approach taken in earlier sections, where we minimise variances
over each time step.

To test the efficiency of dynamic hedging, we need to calculate the values
of E½TCa

� and VarðTCa
Þ by making numerous simulations. Numerical results

of comparisons with other hedging strategies are shown in Section 9.

æ. Comparison of Hedging Strategies

In this section we will consider numerical results to allow comparison of
the static and dynamic hedging strategies.

To assess the effect of static strategies, as in dynamic hedging, we denote
TCa as the present value at time zero of total extra cash (total cost) for the
static strategies at time T for pensions a ¼ F;R; L . We have:

TCa ¼
1

S1ðT Þ

�
MaðT Þ ÿ

X3

i¼1

x̂
a
i

SiðT Þ

Sið0Þ

�
where a ¼ F;R or L . Our objective with static hedging was to minimise the
function SB (equation (4.3)), which is:

SB ¼ E
�
TCa2

�
:
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We will now consider how much of an improvement in SB is provided by
the switch to dynamic hedging (based on the linear approximations for 5%
fixed and RPI liabilities and the non-linear approximation for LPI liabilities).
We will assume that we are starting from neutral conditions at time zero
(that is, yð0Þ ¼ my) and T ¼ 10.
Results for a ten-year liability are presented in Table 9.6. The value of

TCa was calculated for each of 40,000 simulations.
First, we note that (with the exception of the RPI liability) static hedging

with all three assets proves to give a substantial improvement in performance
relative to investment in a single asset class (for example, consols only for
the fixed pension liability).

Second, we can observe from this that the proposed form of dynamic
hedging does reduce the primary objective function E½TCa2

�. However, the
improvement is not substantial, suggesting that dynamic hedging does not
help greatly over static hedging.

An important observation to note is that all of the dynamic hedging
strategies have E½TCa

� significantly different from zero (LPI especially so).
This is not the case (explicitly by construction) for static hedging. For the
5% fixed and RPI liabilities, this will be the result of the linear approximation,
but, in any event, the error is relatively insignificant. We remarked on this
point in Section 6; that is, we believe that the linear approximation is
reasonable. If the linear approximation was poor, then we would expect to
see a greater bias in E½TCa

� away from zero.

Table 9.6. Comparison of static and dynamic hedging strategies for a ten-
year liability; statistics are based on 40,000 simulations; starred (*) values
should theoretically be zero, but differ from zero because of simulation

error

E
�
TCa� Var

�
TCa� E

�
TCa2�

5% Fixed
Static (cash only) ÿ0.000873� 0.012321 0.012322
Static (consols only) ÿ0.024918 0.020034 0.020655
Static (three assets) 0.000278� 0.005150 0.005150
Dynamic 0.007496 0.004585 0.004641

RPI
Static (IL bonds only) ÿ0.006211 0.004409 0.004448
Static (three assets) ÿ0.000728� 0.003825 0.003825
Dynamic 0.005707 0.003527 0.003559

LPI
Static (cash only) 0.001417� 0.015153 0.015154
Static (consols only) ÿ0.029089 0.036549 0.037394
Static (IL bonds only) ÿ0.030400 0.014991 0.015915
Static (three assets) 0.000656� 0.004866 0.004866
Dynamic 0.039129 0.002924 0.004455
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The larger bias in the LPI liability is a significant factor, contributing to
the size of the objective function E½TCa2

�. In contrast, we can see that, of all
the liability types, dynamic hedging works best for LPI when we consider its
effect on the variance Var½TCa

�.
Further investigation suggests that much of the bias arises close to the

liability payment date. This indicates that we should focus our attention in
the future on improving both the dynamic hedging and our assessment of the
liability value for shorter-term liabilities. Conversely, longer-dated liabilities
(for example, 20 years) benefit more from dynamic hedging relative to static
hedging.

An alternative line of investigation is to replace consols and long-dated
index-linked bonds with zero-coupon fixed-interest and IL bonds maturing
on the same date as the pension liability.

"ò. Conclusions

In this paper we have proposed some methods for pricing and hedging
pensions’ liabilities using cash, consols and index-linked bonds. We use the
methods of static and dynamic hedging to hedge LPI liabilities. For static
hedging, we find that investing solely in cash, index-linked bonds or long-
dated bonds creates higher errors than when holding a suitable mixture of the
three assets in the portfolio.

With dynamic hedging, we develop formulae for finding an approximation
to the optimal asset allocation for hedging FP, RPI and LPI liabilities. For
the FP liability, it is shown that most of the portfolio should be invested in
consols at the beginning of the term, switching into cash later on, with very
few assets in index-linked bonds. This switch to cash reflects the decreasing
duration of the liability.

For an RPI liability, a high proportion of index-linked bonds should be
held, especially in the early years of the term. Like the FP liability, more
risky assets should be held in the early years of a term and more cash in later
years. When making comparisons between FP, RPI and LPI liabilities, all
the lines of asset allocation curves for the three types of liabilities are similar,
and especially for both RPI and LPI liabilities. When the current inflation
rate is very high (significantly above 5%), then the optimal asset allocation of
the LPI liability is closer to that of the FP liability. Also, if the inflation
rate is very low (always lower than 5%), then the optimal asset allocation of
the LPI liability will be closer to that of the RPI liability.
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