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For asymptotic posterior normality in the one-parameter cases, Weng [2003. On Stein's iden-
tity for posterior normality. Statist. Sinica 13, 495--506] proposed to use a version of Stein's
Identity towrite theposterior expectations for functions of a normalizedquantity in a form that
is more transparent and can be easily analyzed. In the present paper we extend this approach
to the multi-parameter cases and compare our conditions with earlier work. Three examples
are used to illustrate the application of this method.
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1. Introduction

The study of asymptotic posterior normality can be traced back to the time of Laplace and it has attracted the attention ofmany
authors. A conventional approach to such problems starts from a Taylor series expansion of the loglikelihood function around the
maximum likelihood estimator (MLE) and proceeds from there to develop expansions that have standard normal as a leading term
and hold in probability or almost surely, given the data. For contributions of previous work, see, for instance, Cam (1953), Walker
(1969), and Johnson (1970) for i.i.d. observations; Heyde and Johnstone (1979), Chen (1985), and Sweeting and Adekola (1987) for
stochastic processes. In these papers there are three basic conditions, which regard information growth, information continuity,
and the tail behavior of the likelihood function. More specifically, the information growth assumes that the norm of the observed
information matrix goes to infinity; the information continuity involves assuming that the information function is smooth over
either a fixed or a shrinking neighborhood of the maximum likelihood estimate (or the true underlying parameter value); and
the tail behaviors essentially concern with how fast the loglikelihood values decline outside the specified neighborhood. Earlier
papers consider fixed neighborhoods; later, Chen (1985) introduces the idea of shrinking neighborhood, but does not specify the
shrinking rate; Sweeting (1992) studies a two-parameter nonhomogeneous Poisson process, gives explicit shrinking rate, and
provides some workable conditions relating to the tail behavior of the likelihood. In fact, these two papers show that in practice
the first two conditions are relatively easy to checkwhile the third one for nonlocal behavior of the likelihood ismore complicated.

Recently, Weng (2003) proposed an alternative approach for posterior normality of stochastic processes in the one-parameter
cases. This approach begins with a suitable parameter transformation Zt , then for any bounded measurable function h, a version
of Stein's Identity is employed to isolate the remainder terms of the posterior expectations of h(Zt) so that the posterior normality
becomesmore transparent and can be easily established. For a detailed account of Stein's Identity, we refer readers toWoodroofe
(1989, 1992) and Woodroofe and Coad (1997). However, due to some technical difficulties (see Section 5), the conditions in
Weng (2003) cannot be directly modified for k-parameter models. The purposes of this paper are to extend this method to
multiparameter problems and provide comparisons of the conditions with earlier work. In the following section we introduce
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the model. Section 3 reviews Stein's Identity and gives some preliminary results. Model conditions and the main theorems are
provided in Section 4, where the asymptotic results are established first by assuming that the prior has a compact support and
is continuously differentiable onRk , and then extending to more general priors. Section 5 compares our conditions with Weng
(2003) and Sweeting (1992). Finally, we use three examples in Section 6 to illustrate the application of this approach: Section
6.1 gives a bivariate normal model in which our conditions hold, but Sweeting's (1992) fail; Sections 6.2 and 6.3 consider the
exponential family and a nonhomogeneous Poisson model, respectively.

2. The model

Let Xt be a random vector distributed according to a family of probability densities pt
�(xt), where t is a discrete or continuous

parameter and � ∈ �, an open subset ofRk . Let Pt
� and Et

� be the associated probability measure and expectation of pt
�. Assume

that the loglikelihood function �t (�)= log pt
�(xt) is twice continuously differentiablewith respect to �. Denote∇�t (�) as the vector

of first-order partial derivatives, and ∇2�t (�) as the matrix of second-order partial derivatives. Throughout let �̂t be the MLE,
satisfying ∇�t (�̂t ) = 0. Whenever such a root exists and −∇2�t (�̂t ) is positive definite, we define Bt and Zt as

B′
tBt = −∇2�t (�̂t ), (1)

Zt = Bt(� − �̂t ); (2)

otherwise, define Bt and Zt arbitrarily (in a measurable way).
Consider a Bayesian model in which � has a prior density �. Then the posterior density of � given data xt is �t (�) ∝ e�t (�)�(�),

and the posterior density of Zt is

�t (z) ∝ �t (�(z)) ∝ e�t (�)−�t (�̂t )�(�), (3)

where the relation of � and z is given in (2). Let Pt
� and Et

� denote the conditional probability and expectation given data xt .

Suppose that �0 is the true underlying parameter. The goal is to establish explicit conditions under which

Pt
�(Zt ∈ B) → �k(B) as t → ∞ in Pt

�0
-probability, (4)

where B is any Borel set inRk and �k is the standard k-variate normal distribution. In what follows, Pt
�0

is abbreviated as P�0
for

convenience.

3. Preliminary results

Tobegin,wereviewStein's Identity. Let�denotea finite signedmeasureof the formd�=f d�k,where f is a real-valued function

defined on Rk satisfying
∫ |f |d�k < ∞. Next, write �kh = ∫ hd�k for functions h for which the integral is finite, and similarly

write �h = ∫ hd�. For p�0, denote by Hp the collection of all measurable functions h : Rk → R for which |h(z)|�c(1+ ‖z‖p) for
some c >0, and define H =⋃p�0Hp. Given h ∈ Hp, let h0 = �kh, hk = h,

hj(y1, . . . , yj) =
∫
Rk−j

h(y1, . . . , yj, w)�k−j(dw),

gj(y1, . . . , yk) = e
(1/2)y2

j

∫ ∞
yj

[hj(y1, . . . , yj−1, w) − hj−1(y1, . . . , yj−1)]e−(1/2)w2
dw, (5)

for−∞ < y1, . . . , yk < ∞ and j=1, . . . , k. Then letUh= (g1, . . . , gk)′. Note that gj(y1, . . . , yk)=gj(y1, . . . , yj), which does not involve
yj+1, . . . , yk .

Proposition 3.1 (Stein's Identity). Let q be a nonnegative integer. Suppose that d� = f d�k , where f is differentiable onRk for which∫
Rk

|f |d�k +
∫
Rk

(1 + ‖z‖q)‖∇f(z)‖�k(dz) < ∞.

Then,

�h = �1 · �kh +
∫

(Uh(z))′∇f(z)�k(dz), (6)

for all h ∈ Hq.
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Proof. See Woodroofe (1989, Proposition 1). �

Lemma 3.1. If h is a boundedmeasurable function, then ‖Uh(z)‖�c0 for some c0 >0 and for all z ∈Rk .Moreover, if h(z)=‖z‖p, p�1,
then for some cp >0

‖Uh(z)‖�cp(1 + ‖z‖p−1).

Proof. See Woodroofe (1992) or Weng and Woodroofe (2000, Lemma 8). �

Some notations and calculations are needed. For converting the likelihood into a form close to normal, we first take a Taylor's
expansion of �t (�) at �̂t ,

�t (�) = �t (�̂t ) + 1
2 (� − �̂t )

′∇2�t (�
∗
t )(� − �̂t ),

where �∗
t lies between � and �̂t . Then, letting

ut(�) = − 1
2 (� − �̂t )

′[∇2�t (�̂t ) − ∇2�t (�
∗
t )](� − �̂t ), (7)

it follows that

�t (�) = �t (�̂t ) − 1
2 ‖zt‖2 + ut(�) (8)

and (3) can be rewritten as

�t (z) ∝ �k(z)ft (z), (9)

where ft (z) = �(�(z)) exp[ut(�(z))] and �k(z) denotes the standard k-variate normal density.
Throughout ∇� and ∇2� denote the gradient and Hessian of � with respect to �, ∇f and ∇2f the gradient and Hessian of fwith

respect to z, and (�2�t/��i ��j)(	
ij) denotes the Hessian matrix of �t with its (i, j)-component evaluated at 	ij , respectively. More

calculations are needed.

∇ft (Zt)

ft (Zt)
= (B′

t )
−1
[∇�(�)

�(�)
+ ∇ut(�)

]
, (10)

where from (8) we have

∇ut(�) = ∇�t (�) − ∇2�t (�̂t )(� − �̂t ). (11)

Moreover, by Taylor's expansions,

∇ut(�) =
[(

�2�t

��i ��j
(�∗ij)

)
− ∇2�t (�̂t )

]
(� − �̂t ),

where �∗il = �∗ir , i, l, r = 1, . . . , k, lie between � and �̂t . Therefore,

(B′
t )

−1∇ut(�) =
{

Ik − (B′
t )

−1
[
−
(

�2�t

��i ��j
(�∗ij)

)]
B−1

t

}
Zt . (12)

From (9), the posterior distribution of Zt is of a form suitable for Stein's Identity. The following two conditions on prior
are needed for Proposition 3.2 and Theorem 4.1. However, in Theorems 4.2 and 4.3 the asymptotic posterior normality can be
established for more general priors.

(P1) � is continuously differentiable onRk .
(P2) � has a compact support �� ⊂Rk .

In the proposition below, assume that there is a measurable �̂t = �̂t (Xt) and let

Dt = {∇�t (�̂t ) = 0, −∇2�t (�̂t ) is positive definite}. (13)

Proposition 3.2. Let q be a nonnegative integer. Suppose that � satisfies (P1) and (P2). Then, for all h ∈ Hq,

Et
�[h(Zt)] − �h = Et

�

{
[Uh(Zt)]′ ∇ft (Zt)

ft (Zt)

}
a.e. on Dt .
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Proof. Write �t (�) = ct exp[�t (�)]�(�) and �t (z) = c∗
t �k(z)ft (z), where ct and c∗

t are normalized constants which exist by (P1) and
(P2). Taking f in Proposition 3.1 as c∗

t ft , we have
∫

c∗
t ft d�k = 1. It then suffices to show that for fixed xt

Et
�

{
(1 + ‖Zt‖q)

∇ft (Zt)

ft (Zt)

}
< ∞.

To see it, first expand the above integral by using (10), (11), and the relation

Et
�

[ ‖∇�(�)‖
�(�)

]
=
∫
��

ct‖∇�(�)‖e�t (�) d�.

Then (P1) and (P2) imply that the integrands involved are continuous and bounded over �� so the desired result follows. �

Thus, we have the simple consequence: Suppose that � satisfies (P1)--(P2). Then, the necessary and sufficient condition for (4) to
hold is

Et
�

{
[Uh(Zt)]′ ∇ft (Zt)

ft (Zt)

}
→ 0 in P�0

-probability.

4. Main results

We begin with some notation. Let Dt be the event defined in (13),
p→ denote convergence in P�0

-probability as t → ∞, and

St = {z : z = Bt(� − �̂t ),� ∈ ��}. (14)

Next, for any k × k matrix A, the spectral norm is ‖A‖2 = 
max(A′A). Finally, denote by B(a; d) the k-dimensional open ball with
radius d centered at a. Hereafter, we assume that the prior � satisfies the following condition:

(P3) There exist �0 >0 and �0 >0 such that �(�) > �0 over B(�0;�0).

The following three conditions are required for the likelihood. In brief, the first two conditions regard information growth and
information continuity, respectively, and the last one concerns some integrability properties of exp[�t (�) − �t (�)] over St , which
essentially involves the tail behavior of the likelihood.

(L1) P�0
(Dc

t ) → 0, ‖B−1
t ‖ p→0, and �̂t

p→�0 as t → ∞.

(L2) There exists a sequence of positive constants {bt} increasing to ∞ such that sup	ij∈{�:‖zt‖�bt }‖Ik + (B′
t )

−1(�2�t/��i ��j(	
ij))

B−1
t ‖ p→0.

(L3) (i) Let bt be as in (L2). There exist constants r �1 and c�0 such that for all � ∈ {‖zt‖ > bt} ∩ ��, ‖(B′
t )

−1∇ut(�)‖�c‖zt‖r .

(ii) There exists a nonnegative function g : R+ × Rk → R for which, with P�0
-probability tending to 1 and ∀� ∈ ��,

[�t (�̂t ) − �t (�)]�g(t,�), mt(�) ≡ (det Bt)‖zt‖re−g(t,�) are uniformly integrable in t, and
∫
��

mt(�)d� are uniformly bounded

in t. Here the constant r is as in (i).

Note that the uniformly bounded condition of
∫
��

mt(�)d� in (L3)(ii) is guaranteed by the uniformly integrability, provided

that �� is bounded. The following facts related to conditions (L1)--(L3) will be used later.

(A) By rearranging (7) and (8) we obtain

�t (�̂t ) − �t (�) = 1
2 ‖zt‖2 − 1

2 z′
t [Ik + (B′

t )
−1(∇2�t (�

∗
t ))B−1

t ]zt .

So, if (L2) holds, there exist constants c1 >0 and c′
1 >0 such that

sup
�:‖zt‖� c1

[�t (�̂t ) − �t (�)]�c′
1 with P�0

-probability tending to 1. (15)

(B) Condition (L3)(ii) ensures that for some 0< M < ∞,∫
St

e�t (�)−�t (�̂t ) dz < M with P�0
-probability tending to 1, (16)

∫
St

‖z‖e�t (�)−�t (�̂t ) dz < M with P�0
-probability tending to 1, (17)
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and ∫
St∩{‖z‖>bt }

‖z‖re�t (�)−�t (�̂t ) dz
p→0, (18)

where bt → ∞ as in (L2).
(C) As an alternative condition to (L3)(ii), (L3)(ii′) also implies (16)--(18).

(L3)(ii′) There exists a nonnegative function g∗ : Rk → R for which, with P�0
-probability tending to 1 and ∀� ∈ ��, [�t (�̂t ) −

�t (�)]�g∗(zt) and
∫
Rk ‖z‖re−g∗(z) < ∞.

Note that the results in the lemma and theorems below remain valid if the condition (L3)(ii) is replaced by (L3)(ii′), since we
only need (16)--(18).

Lemma 4.2. Let ft be as in (9) and St as in (14). Suppose that � satisfies (P1)--(P3). We have (a) if conditions (L1) and (L2) hold, then
there exists C1 >0 such that

∫
St

�k(z)ft (z)dz > C1 with P�0
-probability tending to 1; (b) if (L3)(ii) holds, then there exists C2 >0 such

that
∫
St

�k(z)ft (z)dz < C2 with P�0
-probability tending to 1.

Proof. Throughout the proof, we need the following expression from (8) and (9):∫
St

�k(z)ft (z)dz = (2
)−k/2
∫
St

�(�(z))e−(1/2)‖z‖2+ut(�) dz

= (2
)−k/2
∫
St

�(�(z))e�t (�)−�t (�̂t ) dz.

Now consider (a). Let �0 and �0 be as in (P3), and recall that (L2) implies (15). By assumptions ‖B−1
t ‖ p→0 and �̂t

p→�0 in (L1),

we have P�0
({� : ‖zt‖�c1} ⊂ B(�̂t ;�/2) ⊂ B(�0;�)) → 1. Therefore, with P�0

-probability tending to 1, we have �(�(z)) > �0 over

‖zt‖�c1. So, (a) follows by taking C1 = (2
)−k/2�0e
−c′

1
∫
‖z‖� c1

dz.

Next, (b) follows by (16) and the boundedness of � (by (P1) and (P2)). �

From (8) and (9),

Et
�

( ‖∇�‖
�

)
=
∫
St

‖∇�‖�k(z)eut(�) dz∫
St

�k(z)ft (z)dz
=

(2
)−k/2 ∫
St

‖∇�‖e�t (�)−�t (�̂t ) dz∫
St

�k(z)ft (z)dz
.

Therefore, by boundedness of ∇�, (L3)(ii), and the arguments in Lemma 4.2, we have the following corollary.

Corollary 4.1. Under the same conditions as in Lemma 4.2, there exists 0< C < ∞ such that Et
�(‖∇�‖/�)�C with P�0

-probability

tending to 1.

Theorem 4.1. Let h be any bounded measurable function. Suppose that the prior � satisfies (P1)--(P3) and the likelihood satisfies

(L1)--(L3). Then, Et
�[h(Zt)] p→�h.

Proof. Throughout the proof, we note that Uh is bounded by Lemma 3.1, and � is bounded by (P1) and (P2). From (10) and
Proposition 3.2, for a.e. on Dt ,

Et
�[h(Zt)] − �h = Et

�

{
[Uh(Zt)]′B′−1

t
∇�
�

}
+ Et

�{[Uh(Zt)]′B′−1
t ∇ut(�)}

= It + IIt say. (19)

Since P�0
(Dc

t ) → 0 by (L1), it suffices to show (It + IIt )
p→0. First, It

p→0 follows from Corollary 4.1 and the assumption ‖B−1
t ‖ p→0

under (L1).
Next, consider IIt . Write

IIt =
∫
St

[Uh(z)]′B′−1
t ∇ut(�)�(z)ft (z)dz∫

St
�(z)ft (z)dz

,
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where by Lemma 4.2(a) the denominator is bounded below by some C1 >0; therefore, we need only to show that the numerator
p→0. Now, decompose the numerator into integrations over ‖z‖�bt and ‖z‖ > bt , and denote the corresponding integrals as II(1)

t

and II(2)
t , respectively. By (12), (P1)--(P2), and Lemma 3.1, there exists C >0 such that

|II(1)
t |�

∫
‖z‖�bt

|[Uh(z)]′B′−1
t ∇ut(�)|�(�(z))e�t (�)−�t (�̂t ) dz

�C

⎧⎨
⎩ sup

�:‖z‖�bt

∥∥∥∥∥Ik − (B′
t )

−1
[
−
(

�2�t

��i ��j

)
(�∗ij)

]
B−1

t

∥∥∥∥∥
⎫⎬
⎭
∫
‖z‖�bt

‖z‖e�t (�)−�t (�̂t ) dz.

So, II(1)
t

p→0 by (L2) and (17). Finally, by (P1)--(P2), (L3)(i), and Lemma 3.1, there exists C >0 such that

|II(2)
t |�C

∫
St∩{‖z‖>bt }

‖z‖re�t (�)−�t (�̂t ) dz,

which
p→0 by (18). �

Proposition 3.2 requires (P1) and (P2), which exclude priors such as uniform (not continuously differentiable on Rk) and
normal (not having compact support). The next two theorems consider more general priors. The following notation is needed:

S∗
t ≡ {z : z = Bt(� − �̂t ),� ∈ �}. (20)

Theorem 4.2. Let � be a prior on �. Suppose the following conditions hold:

(i) there exists a sequence of priors {�n, n�1} with supports ��n
such that (P1)--(P2) are satisfied, (P3) is satisfied with the same �0

and �0,
(ii) sup�∈� |�n(�) − �(�)| → 0 as n → ∞,
(iii) the likelihood satisfies (L1)--(L3), but with �� in (L3) replaced by ��n

,
(iv) there exists 0< M∗ < ∞, not depending on t, such that the likelihood satisfies the following:∫

S∗
t

e�t (�)−�t (�̂t ) dz�M∗ < ∞ with P�0
-probability tending to 1. (21)

Then, for any bounded measurable h we have Et
�[h(Zt)] p→�h.

Note that if ��n
in (iii) above is replaced by �, then (16) holds with St replaced by S∗

t , which is exactly (21).

Proof. To start, notice that one can assume |h|�1 without losing generality, and that by (i) and (iii) we can apply Theorem 4.1 to

obtain that for each n�1, Et
�n

h(Zt)
p→�h as t → ∞. Next, write

Et
�h(Zt) =

∫
S∗
t
�(�(z))h(z)e�t (�)−�t (�̂t ) dz∫
S∗
t
�(�(z))e�t (�)−�t (�̂t ) dz

=
∫
S∗
t
�n(�(z))h(z)e�t (�)−�t (�̂t ) dz + ∫S∗

t
[�(�(z)) − �n(�(z))]h(z)e�t (�)−�t (�̂t ) dz∫

S∗
t
�n(�(z))e�t (�)−�t (�̂t ) dz + ∫S∗

t
[�(�(z)) − �n(�(z))]e�t (�)−�t (�̂t ) dz

= (Nume)1 + (Nume)2
(Denom)1 + (Denom)2

. (22)

By (i), (L1), (L2), and a similar proof of Lemma 4.2(a) we can find a C∗ >0, independent of n, such that for each n�1

(Denom)1 =
∫
S∗
t

�n(�(z))e�t (�)−�t (�̂t ) dz�C∗ >0 with P�0
-probability tending to 1.

Then, by (ii) and (iv) we have that (Nume)2 and (Denom)2 are bounded by

sup
�∈�

|�n(�) − �(�)|
∫
S∗
t

e�t (�)−�t (�̂t ) dz� sup
�∈�

|�n(�) − �(�)|M∗ ≡ an → 0.
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Finally, dividing both the numerator and the denominator of (22) by (Denom)1, we have that for each fixed n

�kh − anC−1∗
1 + anC−1∗

� lim inf
t→∞ Et

�h(Zt)� lim sup
t→∞

Et
�h(Zt)�

�kh + anC−1∗
1 − anC−1∗

;

hence, the desired result follows since an → 0 as n → ∞. �

Conditions (i) and (ii) in the above theorem imply that �must be continuous and bounded; however, �neednot have a compact
support or be continuously differentiable on Rk . So, the theorem applies to priors such as normal, Gamma(p,
) with a shape
parameter p�1, and Beta(r, s) with (r, s) ∈ {(1,2)× (1, ∞)}∪ {(1, ∞)× (1,2)}. For unbounded or non-differentiable (onRk) priors
such as Beta(r, s) with r �1 or s�1, and Gamma(p,
) with a shape parameter p <1, we provide the following theorem.

Theorem 4.3. Let � be a prior on �. Suppose the following conditions hold:

(i) there exists a sequence of priors {�n, n�1} with supports ��n
such that (P1)--(P2) are satisfied, (P3) is satisfied with the same �0

and �0;
(ii) there exists a sequence of sets {An, n�1} such that �0 ∈ An, An ↗ �, and the Lebesgue measure of Ac

n ≡ �\An approaches 0;
(iii) sup�∈An

|�n(�) − �(�)| → 0;
(iv) |�n|� |�| on Ac

n;
(v) the likelihood satisfies (L1)--(L3), but with �� in (L3) replaced by ��n

;
(vi) there exists 0< M∗ < ∞, not depending on t, such that (21) holds;
(vii) there exists some n0 >0 such that (det Bt)�(�)e−g(�,t)1Ac

n0
is uniformly integrable in t, where g(�, t) is as in L3(ii).

Then, for any bounded measurable h we have Et
�[h(Zt)] p→�h.

Proof. We give only a sketch of the proof as it resembles that of Theorem 4.2. To begin, by (i) and (v) we can apply Theorem
4.1 for �n, n�1; and we can write Et

�h(Zt) as in (22). A similar argument shows that by (i), (L1), and (L2) there exists a C∗ >0,

independent of n, such that for each n�1

(Denom)1�C∗ >0 with P�0
-probability tending to 1.

Next, letting An,t = {z : z = Bt(� − �̂t ),� ∈ An} and S∗
t be as in (20), both (Nume)2 and (Denom)2 are bounded by∫

S∗
t

|�(�(z)) − �n(�(z))|e�t (�)−�t (�̂t ) dz

=
∫
An,t

|�(�(z)) − �n(�(z))|e�t (�)−�t (�̂t ) dz +
∫
S∗
t \An,t

|�(�(z)) − �n(�(z))|e�t (�)−�t (�̂t ) dz,

where by (vi) the first integral is bounded by sup�∈An
|�(�) − �n(�)|M∗, which approaches 0 as n → ∞ by assumption (iii); and by

assumptions (ii), (iv), and (vii) the second integral is bounded by∫
S∗
t \An,t

2�(�(z))e�t (�)−�t (�̂t ) dz� sup
t

∫
Ac

n

2�(�)(det Bt)e−g(t,�) d� ≡ m∗
n,

which approaches 0 as n → ∞. Then, the result follows. �

5. Comparison with earlier work

Since this work is closely related to Weng (2003) and Sweeting (1992), this section compares the present conditions with
these two papers. To compare with Weng (2003), we first note that she only considered the one-dimensional case. In such case,
one has the property that supz |zUh(z)| < ∞ for bounded h; therefore, by (12),

|[Uh(Zt)]′(B′
t )

−1∇ut(�)|�C

∣∣∣∣∣1 − �′′
t (�∗)

�′′
t (�̂t )

∣∣∣∣∣ , (23)

for some C >0, and the analysis of IIt in (19) is simpler. For multi-parameter cases, we have supz |zTUh(z)| < ∞ for any bounded
h; however, it does not lead to an inequality like (23) because here [Uh(Zt)]′(B′

t )
−1∇ut(�) involves cross terms zi(Uh)j(z), i �= j,

where (Uh)j denotes the jth component of Uh. Of course, if the Hessian matrix of the loglikelihood function is diagonal, we have
a multivariate version of (23).

Next, the prior conditions inWeng (2003) are quite restrictive. It is assumed that the prior � is continuous and strictly positive
on some closed interval [a, b], and is continuously differentiable on (a, b). Here we allow priors to be more general.
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To comparewith Sweeting's (1992) conditions, note that both have similar conditions on information growth and information
continuity, but our condition on the nonlocal behavior of the likelihood is different from his. More explicitly (using our notations)
his (C6) states that

C6 (Nonlocal behavior).

(det Bt)

∫
�∈Nc

t (�̂t ,ct )
e�t (�)−�t (�̂t )�(�)d� → 0,

where Nt(�, c) ≡ {� : |[(−∇2�t (�))1/2]′(� − �)| < c} and ct → ∞ such that

sup
�∈Nt(�̂t ,ct )

‖(−∇2�t (�̂t ))
−1/2(∇2�t (�) − ∇2�t (�̂t ))[((−∇2�t (�̂t ))

−1/2]′‖ → 0.

As he pointed out, condition C6 can be difficult to check in its present form; therefore, he proposed condition C6*(i)--(iii) that
reduces the region over which it is necessary to check nonlocal behavior of the posterior distribution. Furthermore, when infor-
mation on different parameters does not vary toowildly, he proposed Lemma 2.3, which is helpful to check C6*(iii). The stochastic
versions of C6* and Lemma 2.3 are his D6 and Lemma 3.3. The condition D6 states that

D6 (Nonlocal behavior). For each t ∈ T there exists a nonrandom open convex set Ct containing �0 which satisfies
(i) P�0

(−∇2�t (�) is positive definite on Ct) → 1.

(ii) �(�) eventually bounded on Ct .

(iii) (det Bt)
∫
�/∈Ct

e�t (�)−�t (�̂t )�(�)d�
p→0.

However, by the proof of his Lemma 2.2, for his C6 and C6* to be equivalent, it is necessary that �(�) be uniformly bounded in Ct ;
that is, D6(ii) is indeed the following:

sup
�∈Ct

�(�) < M < ∞ where M does not involve t.

So, D6 can be difficult to check when � is unbounded. In contrast, unlike his D6(iii), our L3(ii), (16), and (21) do not have � in the
integrand. In Section 6.1 we provide an example where our conditions hold, but his Lemma 3.3 and D6 fail. On the other hand, our
approach has some disadvantages too. Take the nonhomogeneous Poisson model in Section 6.3 as an example. With the choice
of g(t,�) in (34), when � has an unbounded support though it can be shown that

(det Bt)

∫
�

e�t (�)−�t (�̂t )�(�)d�< M < ∞,

for some M not involving t, it is difficult to see whether (21) holds. Therefore, we have to assume that the prior has a compact
support, which, however, is not required in Sweeting (1992).

6. Examples

Three examples are given to illustrate ourmethod in this section. First, we give an example for which the eigenvalue condition
for Lemma 3.3 in Sweeting (1992) does not hold but the conditions for our Theorem 4.3 do hold. Secondly, we consider an i.i.d.
sequence from exponential families, where Theorems 4.1--4.3 all apply. Then, we revisit a nonhomogeneous Poisson model.

6.1. A bivariate normal model

Consider a sequence of independent bivariate normal variables

Xn = (Xn1, Xn2)′ ∼ N(�1n−1/2,�2n−1/4 exp[ 12n1/2],1,1,0), n = 1, . . . , t.

It is easy to show that

�̂t = (�̂t1, �̂t2)′ =
(∑t

n=1n−1/2Xn1∑t
n=1n−1

,

∑t
n=1n−1/4 exp[ 12n1/2]Xn2∑t

n=1n−1/2 exp(n1/2)

)′
p→(�1,�2)′

and that

−∇2�t (�) =
(∑t

n=1n−1 0
0

∑t
n=1n−1/2 exp(n1/2)

)
,

not depending on the parameters. So,

Bt =
(

(
∑t

n=1n−1)1/2 0
0 (

∑t
n=1n−1/2 exp(n1/2))1/2

)
=
(

bt1 0
0 bt2

)
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and

(B′
t )

−1
(

�2�t

��i ��j
(	ij)

)
B−1

t = −Ik .

Therefore, (L1) holds easily; (L2) holds with arbitrary bt → ∞; by (12), (L3)(i) holds for any r �1 and c�0. Moreover, (L3)(ii) is

satisfied since �t (�̂t )−�t (�)=‖zt‖2/2 and
∫
Rk ‖z‖re−‖z‖2/2 dz < ∞ for any r �1. Hence, the asymptotic posterior normality holds

if � satisfies (P1)--(P3) or conditions (i)--(ii) in Theorem 4.2.
To illustrate how Theorem 4.3 works, below we consider the case where the prior distributions of �i, i = 1,2 are independent

Gamma(pi,
i) with pi <1. Note that the prior densities approach ∞ at 0. It is easily seen that the likelihood satisfies (L1)--(L3)
with�� in (L3) replaced by�, and (i)--(vi) in Theorem 4.3 are satisfied. So, it suffices to check condition (vii). Take An ={(�1,�2) :
�1�1/n or �2�1/n}.Denote the trueparameteras�0=(�01,�02)′. So,�0i >0, i=1,2. Letn0 be largeenoughsuch that1/n0 <�01/2
and 1/n0 <�02/2. Write

∫
�(�1,�2)e−‖z‖2/2(det Bt)1Ac

n0
d� =

∫ 1/n0

0

∫ 1/n0

0
�(�1,�2)e−(

∑2
i=1b2

ti
(�1−�̂t1)2)/2

bt1bt2 d�1 d�2. (24)

Note that if for i = 1,2 �i ∈ (0,1/n0), then {|�0i − �̂ti| <�0i/4} ⊆ {|�i − �̂ti| >�0i/4}; moreover, since �̂t
p→�0, we have that with

P�0
-probability tending to 1, |�i − �̂ti| >�0i/4; and therefore, with P�0

-probability tending to 1,

exp

⎡
⎣−

∑2
i=1b2

ti
(�i − �̂ti)

2

2

⎤
⎦ bt1bt2�C ∀t,

for some 0< C < ∞. Then, togetherwith (ii) in Theorem 4.3, condition (vii) follows since the integrand in (24) is bounded by C�(�),
which is integrable on Ac

n0
.

To compare with the conditions D1--D6 in Sweeting (1992), belowwe shall check his D6 and Lemma 3.3 (recall the discussion
at the end of Section 5). To start, we note that his Lemma 3.3 requires that

log 
max(Bt)


min(Bt)
is stochastically bounded,

which does not hold here because


max(Bt) =
⎧⎨
⎩

t∑
n=1

n−1/2 exp(n1/2)

⎫⎬
⎭
1/2

∼ [2(et1/2 − e)]1/2,


min(Bt) =
⎧⎨
⎩

t∑
n=1

n−1

⎫⎬
⎭
1/2

∼ (log t)1/2.

Next, in this case his D6(iii) becomes∫
�/∈Ct

�(�1,�2)e−(
∑2

i=1b2
ti
(�i−�̂ti)

2)/2
bt1bt2 d�

p→0,

which is much stronger than the integrability condition (vii) in our Theorem 4.3 and does not hold here because by D6(ii) the set
{� /∈ Ct} must contain a fixed region around the origin.

6.2. Exponential families

Consider an i.i.d. sample X1, . . . , Xt from a k-parameter standard exponential family defined by probability densities of the
form

p�(x) = e�
′
x−�(�),

where � is strictly convex and � ∈ �, the natural parameter space, assumed to be open. For references of exponential families,
see Brown (1986) and Lehmann (1983, 1986). So, �t (�)=�′Yt − t�(�) and ∇2�t (�)=−t∇2�(�) where Yt =∑t

i=1Xi. It is easily seen

that (L1) holds. Next, since Bt = √
t(∇2�(�̂t ))

1/2, (L2) holds with bt = t1/4. Then, by (12) and the assumption that � has a compact
support, (L3)(i) holds with r = 1. Finally, we claim that L3(ii′) holds with

g∗(zt) =
{

c‖zt‖ if ‖zt‖ > b,

0 otherwise,
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where c is some positive constant and b = 2[
max(∇2�(�0))]1/2. To see this, first observe that∫
Rk

‖z‖e−g∗(z) dz < M < ∞.

Now it suffices to show that �t (�̂t ) − �t (�)�g∗(zt). Apparently �t (�̂t ) − �t (�)�0 for all � ∈ �. Next, note that

‖zt‖�b implies ‖� − �̂t‖ >2t−1/2[
max(∇2�(�0))/
max(∇2�(�̂t ))]1/2,

which exceeds t−1/2 when t is sufficiently large; and moreover, for ‖� − �̂t‖ > t−1/2, by concavity of �t and Lemma 6.3 below we
have

�t (�̂t ) − �t (�)� 1
2

inf
‖u‖=1

{∣∣∣∣∣
(

∇�t

(
�̂t + t−1/2u

2

))′
u

∣∣∣∣∣
}

‖� − �̂t‖

= 1
2

inf
‖u‖=1

{∣∣∣∣∣
(

∇�

(
�̂t + t−1/2u

2

)
− ∇�(�̂t )

)′
u

∣∣∣∣∣
}

t‖� − �̂t‖.

Then, by mean value theorem the above line is bounded below by c‖zt‖, for some c >0. So, the desired result follows.

Lemma 6.3. Suppose that f(x) is strictly convex (or concave), xm is its unique minimum (or maximum), and c is some fixed positive
constant. Then, for all x such that ‖x − xm‖�c, we have

|f(x) − f(xm)|�
(
1
2

)
inf

‖u‖=1

{∣∣∣∣
(

∇f

(
xm + cu

2

))′
u

∣∣∣∣
}

‖x − xm‖.

Proof. For the univariate case, we have

|f(x) − f(xm)|�
∣∣∣∣f(x) − f

(
xm + x − xm

2

)∣∣∣∣
�
∣∣∣∣
(

d
dx

f

(
xm + x − xm

2

))(
x − xm − c

2

)∣∣∣∣
�
∣∣∣∣
(

d
dx

f

(
xm + c

2
sgn(x − xm)

))
1
2

(x − xm)

∣∣∣∣ .
The result for multivariate cases follows analogously. �

Note that the arguments above remain valid for any bt satisfying bt = o(t1/2) and bt → ∞. Note also that in the preceding
paragraph the compactness of�� is only needed for checking (L3)(i), and (21) holds in this case; hence, we can extend the results
to general priors by Theorems 4.2 and 4.3.

6.3. Nonhomogeneous Poisson process

Here we review the two-parameter nonhomogeneous Poisson process in Sweeting (1992). To begin, assume that the intensity
function is �(t) = 
e�+
t over the time interval, where 
>0 and � are two unknown parameters, and that, over the time period
(0, t), Nt events are observed by times x1, . . . , xNt

. So, for each fixed t, Nt is a Poisson with mean
∫ t
0 �(s)ds. Letting �= (
,�)′, then

the loglikelihood function is �t (�) = Nt(log 
 + �) + 

∑Nt

i=1xi − e�(e
t − 1), with derivatives

∇�t (�) =
⎛
⎝Nt/
 +

Nt∑
i=1

xi − te�+
t , Nt − e�(e
t − 1)

⎞
⎠

′
, (25)

−∇2�t (�) =
(

Nt/

2 + t2e�+
t te�+
t

te�+
t e�(e
t − 1)

)
. (26)

Suppose that � satisfies P and P∗, and �� is compact. In the following we shall verify our conditions (L1)--(L3). First, choose Bt in
(1) as

Bt =
(

b11 b12
0 b22

)
=
(

(Nt/
̂
2
t + t2e�̂t+
̂t t )1/2 te�̂t+
̂t t/b11

0 [det(−∇2�t (�̂t ))]1/2/b11

)
. (27)

Setting ��t/�� = 0, we obtain

e� = Nt/(e
t − 1). (28)
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Plugging this into ��t/�
 leads to

��t

�

= Nt/
 +

Nt∑
i=1

xi − te
tNt/(e
t − 1). (29)

Given data by time t, we have that lim
→∞��t/�
 =∑Nt
i=1xi − tNt , which is negative because xNt

� t and xi < t∀i < Nt ; and that

lim
→0+��t/�
 =∑Nt
i=1xi − tNt/2, which tends to ∞ w.p.1 (P�0

). Moreover, since (29) is strictly decreasing in 
, it has a unique

root 
̂t >0 w.p.1 under P�0
for t sufficiently large. Then from (28), �̂t = log{Nt/(e
̂t t − 1)}. From (26) one can verify that, for t

sufficiently large, −∇2�t is positive definite at �̂t = (
̂t , �̂t )
′; and therefore, �̂t is the unique MLE. The fact that ‖B−1

t ‖ p→0 can be
easily obtained by (26). For consistency of the MLE, we refer to Keiding (1974). Hence, (L1) holds.

Next, for (L2) it suffices to show that the supremum (over {� : ‖zt‖�bt}) for each component of the matrix Ik + (B′
t )

−1

((�2�t/��i ��j)(	
ij))B−1

t converges to zero in P�0
-probability. Define U as a 2 × 2 matrix with (i, j)-component

Uij ≡ �2�t (	ij)

��i ��j
− �2�t (�̂t )

��i ��j
.

So,f

Ik + (B′
t )

−1
(

�2�t

��i�j
(	ij)

)
B−1

t = (B′
t )

−1UB−1
t . (30)

By Taylor expansions,

Uij = �t,ij1(�ij)(	ij
1 − 
̂t ) + �t,ij2(�ij)(	ij

2 − �̂t ), (31)

where �t,ijk denote the third derivatives of �t and�ij = (�ij
1,�ij

2)′ lies between 	ij = (	ij
1,	ij

2)′ and �̂t . Simple calculations show that

(�t,111, �t,112) = (t�t,11 + 2Nt/

3 + tNt/


2, �t,11 + Nt/

2), and for (i, j) �= (1,1) the relation between (�t,ij1, �t,ij2) and (�t,ij, �t,ij)

can be easily obtained. Then, some algebra yields the following expression for the (1,1)-component of the matrix (B′
t )

−1UB−1
t :

[(B′
t )

−1UB−1
t ]11 = U11/�t,11(�̂t )

= [�t,11(�̂t )]−1{(	ij
1 − 
̂t )[t�t,11(�11) + 2Nt/(�11

1 )3 + tNt/(�11
1 )2]

+ (	ij
2 − �̂t )[�t,11(�11) + Nt/(�11

2 )2]}, (32)

where |	ij
1 − 
̂t |� |
 − 
̂t | and |	ij

2 − �̂t |� |� − �̂t |. Since Nt/e�0+
0t → 1 a.e. P�0
,

{‖zt‖�at} implies |
 − 
̂t |�at 
̂te−(�̂t+
̂t t)/2 and |� − �̂t |�at(1 + 
̂t t)e−(�̂t+
̂t t)/2. (33)

So, together with (26), the right-hand side of (32) approaches 0 in P�0
-probability over the supremum of the set {� : ‖zt‖� t}.

Similar arguments apply to the other components of the matrix. So, (L2) holds with bt = t.
Now consider (L3)(i). From (12) and (30), it suffices to show that each component of the matrix (B′

t )
−1UB−1

t is bounded by
‖zt‖s for some s�1 over the set {‖zt‖�bt}. Here we consider the (1,2)-component of the matrix. Write

[(B′
t )

−1UB−1
t ]12 = (U12b11 − U11b21)/(b211b22)

= [U12�t,11(�̂t ) − U11�t,21(�̂t )]/
[
�t,11(�̂t )

√
�t,11(�̂t )�t,22(�̂t ) − �2t,12(�̂t )

]
,

where Uij are as in (31). Direct calculations yield the desired result, noting that for t sufficiently large, if t = bt < ‖zt‖� t−2e
0t/2,

then from (33) there exist c1 >0 and c2 >0 such that t|
− 
̂t |�c1t−1 and |�− �̂t |�c2t−1; and hence te(	ij
1−
̂t )t �‖zt‖. Moreover,

if ‖zt‖ > t−2e
0t/2, then by the assumption that � has a bounded support, te(	ij
1−
̂t )t �‖zt‖s for some s�1. The same arguments

can be applied to the other components of the matrix. Hence, (L3)(i) holds with r = s.
For (L3)(ii), first we let 0<
1 <
0; and define the regions R1t = {� : 
�
1}, R2t = {� : 
>
1 and (� − �0) + (
 − 
0)t < ct},

and R3t = {� : 
>
1 and (� − �0) + (
 − 
0)t�ct}, where c can be chosen so that �t is concave over R2t . Actually, the idea of
choosing such regions is from Sweeting (1992). Since �t (�̂t ) − �t (�)��t (�0) − �t (�), it suffices to find suitable lower bounds on
either �t (�̂t ) − �t (�) or �t (�0) − �t (�). Then we claim that (L3)(ii) holds with

g(t,�) =
{

C‖Bt(� − �̂t )‖ if � ∈ R2t ∪ R3t ,

e
0t/2 if � ∈ R1t ,
(34)
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Fig. 1. Contour and 3D plots of a loglikelihood function.

whereC is somepositive constant. Sincedet Bt is of order exp(
0t) and�� is compact, it is easily seen that (det Bt)‖zt‖ exp{−g(t,�)}
is uniformly integrable in t and

∫
��

(det Bt)‖zt‖s exp{−g(t,�)}d�< M < ∞. So, it now suffices to show that �t (�̂t ) − �t (�)�g(t,�).

For R1t , with Nt replaced by its asymptotic expectation e�0+
0t , it can be shown that �t (�) − �t (�0)� − c0e

0t over R1t . Next,

consider R2t . Using the arguments in Lemma 2.2 of Sweeting (1992) but with ct there replaced by a constant c′
0, we obtain

�t (�̂t ) − �t (�)�
c′′
0
4

‖Bt(� − �̂t )‖ = c′′
0
4

‖Zt‖ (35)

for � ∈ R2t −{zt : ‖zt‖�c′′
0}. Finally, we consider the region R3t . Given �� = (
�,��)′ ∈ R3t , denote �b = (
b,�b)′ as the intersection

of 
 = 
� and (� − �0) + (
 − 
0)t = ct; therefore, �� >�b. Now, in view of

�t (�̂t ) − �t (�
�) = [�t (�̂t ) − �t (�

b)] + [�t (�
b) − �t (�

�)],
(35), and the triangular inequality, it suffices to show that

�t (�
b) − �t (�

�)�c′′′
0 ‖Bt(�

b − ��)‖.
To prove the above inequality, we first observe from (25) that

−��t

��
(�)�e�0+
0t+ct (1 − e−
1t ) − Nt ,

for � ∈ R3t , where the right-hand side exceeds [tr(B′
tBt)]1/2 with P�0

-probability tending to 1. Therefore,

�t (�
b) − �t (�

�) = ��t

��
(��)(�b − ��)� [tr(B′

tBt)]1/2‖�b − ��‖�‖Bt‖‖�b − ��‖.

Thus, from Theorem 4.1, if the prior satisfies conditions (P1)--(P3) then asymptotic posterior normality holds. We note, however,
that with the choice of g(t,�) in (34), one cannot verify (21), so conditions (iv) and (vi) of Theorems 4.2 and 4.3, respectively, will
fail to hold.

To gain more idea on the behavior of the loglikelihood function, we take (
0,�0)= (0.5,2.0) and generate a nonhomogeneous
Poisson process over the time period (0,8). The resulting loglikelihood function based on simulated data is

397(� + log 
) + 2446.3
 − e�(e8
 − 1),

and the maximum likelihood estimate is (
̂t , �̂t ) = (0.504,1.965). Fig. 1 shows the contour and three-dimensional plots of the
loglikelihood function. These plots give some insight for the selection of regions Rit in verifying L3(ii).
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