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Abstract

In the subfair red-and-black gambling problem, a gambler can stake any amount in his
possession, winning an amount equal to the stake with probability w and losing the stake
with probability 1−w, where 0 < w < 1

2 . The gambler seeks to maximize the probability
of reaching a fixed fortune (to be normalized to unity) by gambling repeatedly with
suitably chosen stakes. In their classic work, Dubins and Savage (1965), (1976) showed
that it is optimal to play boldly. When there is a house limit of � (0 < � < 1

2 ), so that the
gambler can stake no more than �, Wilkins (1972) showed that bold play remains optimal
provided that 1/� is an integer. On the other hand, building on an earlier surprising result
of Heath, Pruitt and Sudderth (1972), Schweinsberg (2005) recently showed that, for all
irrational 0 < � < 1

2 and all 0 < w < 1
2 , bold play is not optimal for some initial fortune.

The purpose of the present paper is to present several results supporting the conjecture that,
for all rational � with 1/� not an integer and all 0 < w < 1

2 , bold play is not optimal for
some initial fortune. While most of these results are based on Schweinsberg’s method, in
a special case where his method is shown to be inapplicable, we argue that the conjecture
can be verified with the help of symbolic-computation software.
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1. Introduction

In the subfair red-and-black gambling problem, a gambler can stake any amount s of his
fortune f, 0 ≤ s ≤ f < 1. If he stakes an amount s, his fortune becomes f +s with probability
w and f − s with probability 1 − w, where the win probability w satisfies 0 < w < 1

2 . The
gambler seeks to maximize the probability of reaching a fortune of 1 (the goal) by gambling
repeatedly with suitably chosen stakes. Dubins and Savage [2], [3] showed that it is optimal to
play boldly, i.e. to stake min{f, 1 − f } if the current fortune is f, 0 < f < 1. (In words, to
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play boldly is to stake on each play as much as possible without risk of overshooting the goal.)
The Dubins–Savage optimality result on the bold strategy has been extended in several ways;
see [7] for a brief review.

One of the extensions is subfair red-and-black with a house limit of � in which the gambler can
stake no more than �. Under the house limit constraint, to play boldly is to stake min{f, 1−f, �}
if the current fortune is f, 0 < f < 1. Since min{f, 1 − f } = min{f, 1 − f, �} for � ≥ 1

2 , the
bold strategy is optimal if � ≥ 1

2 . So we assume that 0 < � < 1
2 hereafter. Wilkins [6] proved

that it is optimal to play boldly if � = 1/j for some integer j ≥ 3. Heath et al. [4] showed,
however, that if � either satisfies 1/(j + 1) < � < 1/j for some integer j ≥ 3 or is irrational
with 1

3 < � < 1
2 , then there exists an ε > 0 such that, for all 0 < w < ε, the bold strategy is

not optimal for some initial fortune f . Their result has been improved by Schweinsberg [5],
who showed that, for all irrational 0 < � < 1

2 and all 0 < w < 1
2 , the bold strategy is not

optimal for some initial fortune f . While Schweinsberg’s result settles the case of irrational �,
the following conjecture remains open.

Conjecture 1. For all rational 0 < � < 1
2 with 1/� not an integer and all 0 < w < 1

2 , the bold
strategy is not optimal for some initial fortune f .

Let U�,w(f ) denote the maximum probability of reaching the goal with initial fortune f ,
which depends on � (house limit) and w (win probability of each bet). Let Q�,w(f ) denote
the probability that the gambler with initial fortune f reaches the goal under the bold strategy.
Then Conjecture 1 states that, for all rational 0 < � < 1

2 with 1/� not an integer,

{f ∈ (0, 1) : Q�,w(f ) < U�,w(f )} �= ∅ for all 0 < w < 1
2 . (1)

The purpose of the present paper is to present partial results in support of Conjecture 1. As
these results make extensive use of the tools developed by Schweinsberg [5], his method is
briefly reviewed in Section 2. Note that a rational � with 0 < � < 1

2 and 1/� �∈ {3, 4, . . . } has
a unique representation of the form

� = n

qn + r
with integers n > r ≥ 1, q ≥ 2, n and r coprime. (2)

In Section 3 we show that (1) holds provided that the integer r in (2) is even. In Section 4 we
consider the case in which � = n/(2n + 1) for n ≥ 2 (i.e. q = 2 and r = 1 in (2)). In addition
to its mathematical tractability, the essential reason for considering this special case is that if
(1) does not hold for some values of � then intuitively such values are likely to be close to 1

2 . In
other words, if Conjecture 1 is false, we would expect to find counterexamples with � close to
1
2 . By making use of simple number-theoretic results we prove that (1) holds if � = n/(2n+1)

satisfies the following condition.

There exists a positive integer k < 2n such that 2k ≡ 1 (mod 2n + 1). (3)

Since 2 and 2n+1 are coprime, we have 2φ(2n+1) ≡ 1 (mod 2n+1) by Euler’s theorem, where
φ(m), Euler’s totient function, is the number of positive integers less than or equal to m that are
coprime to m; see [1, p. 9]. Clearly, φ(m) ≤ m−1 for m ≥ 2 and φ(m) < m−1 if m > 1 is not
a prime. So (3) is satisfied if 2n+1 is not a prime. On the other hand, we show in Section 5 that
Schweinsberg’s method cannot be used to prove (1) when condition (3) is not satisfied, in which
case it is argued that (1) may still be established by using symbolic-computation software.
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2. Schweinsberg’s method

Denote by Xi = X
�,w
i the gambler’s fortune after i plays under the bold strategy. Then

{Xi : i = 0, 1, . . . } is a Markov chain with transition probabilities given by

P(Xi+1 = f + b(f ) | Xi = f ) = w, P(Xi+1 = f − b(f ) | Xi = f ) = 1 − w, (4)

where 0 ≤ f ≤ 1 and the function b : [0, 1] → [0, 1] is defined by b(f ) = min{f, 1 − f, �}
(the bold stake for the gambler when his fortune is f ). Note that the transition probabilities
depend on w and �, that the Markov chain has two absorbing states 0 and 1, and that

Q�,w(f ) = P(Xi = 1 for some i ≥ 0 | X0 = f ).

Define
S� = {f ∈ (0, 1) : P(Xi = 1 − � for some i ≥ 0 | X0 = f ) > 0}, (5)

the set of all f such that the gambler, with initial fortune f and playing boldly, could have a
fortune of 1 − � in a finite number of plays. Note that 1 − � ∈ S� and that, for 0 < � < 1

2 and
0 < w < 1

2 , the set S� depends on � but not on w.
Schweinsberg’s method consists of the following two key results.

(i) For given 0 < � < 1
2 , 0 < w < 1

2 , and f ∈ S�, there exists a constant C = C(�, w, f ) >

0 such that Q�,w(f ) − Q�,w(f − ε) ≥ C(1 − w)− log ε whenever 0 < ε < min{�, f }.
(ii) For given 0 < � < 1

2 , 0 < w < 1
2 , and f ∈ (0, 1) \ S�, for every C > 0, there exists a

δ > 0 such that Q�,w(f ) − Q�,w(f − ε) ≤ C(1 − w)− log ε whenever 0 < ε < δ.

For a given 0 < � < 1
2 , suppose that there exists an f ∈ (�, 1 − �) such that f − � ∈ S� and

f + � �∈ S�. Then, by (i) and (ii), for every 0 < w < 1
2 , we have

Q�,w(f − ε) = wQ�,w(f + � − ε) + (1 − w)Q�,w(f − � − ε)

< wQ�,w(f + � − 2ε) + (1 − w)Q�,w(f − �)

≤ U�,w(f − ε)

for sufficiently small ε > 0, from which the lemma below follows.

Lemma 1. ([5].) For a given 0 < � < 1
2 , if there exists an f ∈ (�, 1 − �) such that f − � ∈ S�

and f + � �∈ S�, then (1) holds.

3. The case in which � = n/(qn + r) with r even

In this section we assume that r is even in (2). Writing r = 2t , we have

� = n

qn + 2t
, q ≥ 2, 2 ≤ 2t < n, n and 2t coprime. (6)

Note that (6) implies that n is odd. Define two functions T+,� and T−,� : [0, 1] → [0, 1] by

T+,�(f ) =

⎧⎪⎨
⎪⎩

2f if 0 ≤ f ≤ �,

f + � if � < f < 1 − �,

2f − 1 if 1 − � ≤ f ≤ 1,

(7)

T−,�(f ) =

⎧⎪⎨
⎪⎩

2f if 0 ≤ f ≤ �,

f − � if � < f < 1 − �,

2f − 1 if 1 − � ≤ f ≤ 1.

(8)
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Note that T+,�(f ) = T−,�(f ) for f ∈ [0, �] ∪ [1 − �, 1] and that

P(Xi+1 ∈ {T+,�(f ), T−,�(f ), 0, 1} | Xi = f ) = 1 for 0 < f < 1, (9)

where {Xi} is the Markov chain defined in (4).
Let

A� =
{

j

qn + 2t
: j = 1, 2, . . . , qn + 2t − 1

}
. (10)

For notational simplicity, we will drop the subscript � in A�, S�, T+,�, and T−,� unless we need
to emphasize their dependence on �.

Lemma 2. Assume that � satisfies (6). Then

A ∩ S(= A� ∩ S�) = {1 − j� : j = 1, . . . , q − 1}.
Proof. We first show that B := {1 − j� : j = 1, . . . , q − 1} ⊂ A ∩ S. Note that B ⊂ A,

that 1 − � ∈ A ∩ S, and that, for 1 < j ≤ q − 1,

� = n

qn + 2t
<

(q − j)n + 2t

qn + 2t
= 1 − j� < 1 − �.

So, for 1 < j ≤ q − 1,

T
j−1
+ (1 − j�) = T

j−2
+ (T+(1 − j�)) = T

j−2
+ (1 − (j − 1)�) = · · · = 1 − �,

implying that, by the definition of S, (5), 1 − j� ∈ S. This proves that B ⊂ A ∩ S.
To prove A ∩ S ⊂ B, we claim that

T+(x), T−(x) ∈ A \ B for all x ∈ A \ B, (11)

which together with (9) implies that, if X0 ∈ A \ B, the Markov chain {Xi} can never leave
A \ B before it enters an absorbing state of {0, 1}. In particular, the Markov chain can never
visit the state 1 − � if it starts in A \ B. This shows that, by the definition of S, (5), no element
of A \ B is in S, so A ∩ S ⊂ B.

It remains to prove (11). Let

x = k

qn + 2t
∈ A \ B with k �= (q − j)n + 2t, j = 1, . . . , q − 1. (12)

It suffices to show that T+(x) �∈ B and T−(x) �∈ B for each of the three cases 0 < x ≤ �,
� < x < 1 − �, and 1 − � < x < 1. (Note that x �= 1 − � ∈ B.)

If 0 < x ≤ � (i.e. 0 < k ≤ n) then T+(x) = T−(x) = 2x = 2k/(qn + 2t). Since
n is odd by (6), we have 2k �= n + 2t = (q − (q − 1))n + 2t . Also, k ≤ n implies that
2k < (q − j)n + 2t for j = 1, . . . , q − 2. So T+(x) = T−(x) = 2k/(qn + 2t) �∈ B =
{((q − j)n + 2t)/(qn + 2t) : j = 1, . . . , q − 1}.

If 1 − � < x < 1 then (q − 1)n + 2t < k < qn + 2t , or, equivalently,

(q − 2)n + 2t < 2k − (qn + 2t) < qn + 2t. (13)

Also, T+(x) = T−(x) = 2x − 1 = (2k − (qn + 2t))/(qn + 2t). Since n is odd, we have
2k − (qn + 2t) �= (q − 1)n + 2t , which together with (13) implies that 2k − (qn + 2t) �=
(q − j)n + 2t, j = 1, . . . , q − 1. So T+(x) = T−(x) = (2k − (qn + 2t))/(qn + 2t) �∈ B.
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If � < x < 1 − � then n < k < (q − 1)n + 2t , which together with k �= (q − j)n + 2t, j =
1, . . . , q − 1 (by (12)), implies that n � (k − 2t). So n � (k + n) − 2t and n � (k − n) − 2t ,
implying that k ± n �= (q − j)n + 2t, j = 1, . . . , q − 1. It follows that

T+(x) = x + � = k + n

qn + 2t
�∈ B, T−(x) = x − � = k − n

qn + 2t
�∈ B.

The proof is complete.

Theorem 1. Assume that � satisfies (6). Then there exists an f ∈ (�, 1−�) such that f −� ∈ S

and f + � �∈ S.

Theorem 1 follows from Lemmas 3, 4, and 5, below. By Theorem 1 and Lemma 1, (1) holds
for � satisfying (6).

Lemma 3. Assume that � = n/(qn + 2t) satisfies (6) with q ≥ 3 (i.e. � < 1
3 ). Let λ =

(1 + (q − 5)�)/2. Then

(i) 0 < λ < 1 − 2�;

(ii) λ ∈ S;

(iii) λ + 2� �∈ S.

Consequently, we have λ + � ∈ (�, 1 − �), (λ + �) − � ∈ S, and (λ + �) + � �∈ S.

Proof. (i) Since q ≥ 3 and � < 1
3 , we have λ = (1 + (q − 5)�)/2 ≥ (1 − 2�)/2 > 0. Also,

since q < (qn+2t)/n = 1/�, we have λ < (1+ (1/�−5)�)/2 < 1−2�. So, 0 < λ < 1−2�.

(ii) If q = 3 (i.e. 1
4 < � < 1

3 ) then λ = (1 − 2�)/2 < �. So, by (8) and Lemma 2,
T−(λ) = 2λ = 1 − 2� ∈ A ∩ S, implying that λ ∈ S.

If q ≥ 4 (i.e. � < 1
4 ) then � < (1 + (4 − 5)�)/2 ≤ λ < 1 − 2� (by (i)). By (8) and a simple

induction argument, we have T
j
−(λ) = (1− (q −1)�)/2+ (q −3− j)� > � for 0 ≤ j ≤ q −4.

So T
q−3
− (λ) = (1− (q −1)�)/2 < � (since (q +1)� > 1) and T

q−2
− (λ) = 1− (q −1)� ∈ A∩S

(by Lemma 2), implying that λ ∈ S.

(iii) By (i) and (q + 1)� > 1, we have 1 > λ+ 2� = (1 + (q − 1)�)/2 > 1 − �. By (7) and (8),

T+(λ + 2�) = T−(λ + 2�) = 2(λ + 2�) − 1 = (q − 1)�. (14)

Since (q − 1)� ∈ A and (q − 1)� �∈ {1 − j� : j = 1, . . . , q − 1} = A ∩ S (by (6) and
Lemma 2), we have (q − 1)� �∈ S. By (9) and (14), the Markov chain {Xi} defined in (4)
satisfies P(X1 = 1 or (q − 1)� | X0 = λ + 2�) = 1, which together with (q − 1)� �∈ S and the
definition of S, (5), implies that λ + 2� �∈ S. The proof is complete.

While Lemma 3 concerns � ∈ (0, 1
3 ), we partition the interval ( 1

3 , 1
2 ) into disjoint subinter-

vals, (
1

3
,

3

7

)
,

[
3

7
,

7

15

)
,

[
7

15
,

15

31

)
, . . . ,

[
2k−1 − 1

2k − 1
,

2k − 1

2k+1 − 1

)
, . . . ,

so that, for each 1
3 < � < 1

2 , there is a unique k ≥ 2 such that

2k−1 − 1

2k − 1
≤ � <

2k − 1

2k+1 − 1
. (15)
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Lemma 4. Assume that � = n/(qn + 2t) satisfies (6) and (15) for some k ≥ 2 (implying that
q = 2). Furthermore, assume that � �= (2k − 1)/2k+1. Let µj = (1 − �)/2j , j ≥ 0. Then

(i) 0 < µk < 1 − 2�;

(ii) µk ∈ S;

(iii) µk + 2� �∈ S.

Consequently, we have µk + � ∈ (�, 1 − �), (µk + �) − � ∈ S, and (µk + �) + � �∈ S.

Proof. (i) By (15), � < (2k − 1)/(2k+1 − 1), which is equivalent to 1 − � < 2k(1 − 2�). So
0 < µk = (1 − �)/2k < 1 − 2�.

(ii) Since � > 1
3 , we have � > (1 − �)/2 = µ1 > µ2 > · · · > µk . By (7), T k+(µk) =

T k−1+ (T+(µk)) = T k−1+ (2µk) = T k−1+ (µk−1) = · · · = T+(µ1) = 1 − �, implying that µk ∈ S.

(iii) By (15), we have, for 0 ≤ j ≤ k − 1,

µk−j + 2j+1� − 2j + 1 = 1

2k−j
+

(
2j+1 − 1

2k−j

)
� − 2j + 1

≥ 1

2k−j
+

(
2j+1 − 1

2k−j

)
2k−1 − 1

2k − 1
− 2j + 1

= 1 − 2j−1

2k − 1
> 1 − �. (16)

(Note that, by (15), if k > 2, � ≥ (2k−1 − 1)/(2k − 1) > 2j−1/(2k − 1) for j ≤ k − 1 and,
if k = 2, � > 1

3 ≥ 2j−1/(22 − 1) for j ≤ 1.) Also, by (i), 1 − 2� − (1 − �)/2k > 0, so, for
0 ≤ j ≤ k − 1,

µk−j + 2j+1� − 2j + 1 = 1 − 2j

(
1 − 2� − 1 − �

2k

)

≤ 1 −
(

1 − 2� − 1 − �

2k

)

< 1. (17)

By (7), (8), and (15)–(17), a simple induction argument yields

T
j
+(µk + 2�) = T

j
−(µk + 2�) = µk−j + 2j+1� − 2j + 1, j = 0, 1, . . . , k. (18)

So,

T k+(µk + 2�) = T k−(µk + 2�) = µ0 + 2k+1� − 2k + 1 = (2k+1 − 1)� − (2k − 2) ∈ A.

But (2k+1 − 1)� − (2k − 2) �= 1 − �, since � �= (2k − 1)/2k+1, by assumption. It follows that
(2k+1 − 1)� − (2k − 2) �∈ {1 − �} = {1 − j� : j = 1, . . . , q − 1} = A ∩ S (by Lemma 2), so
(2k+1 − 1)� − (2k − 2) �∈ S. By (16)–(18), the Markov chain {Xi} defined in (4) satisfies

P(Xi > 1−�, i = 1, 2, . . . , k−1, and Xk = 1 or (2k+1−1)�−(2k −2) | X0 = µk +2�) = 1.

Since (2k+1 − 1)� − (2k − 2) �∈ S, it follows, by the definition of S, (5), that µk + 2� �∈ S.
The proof is complete.
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Lemma 5. Assume that � = (2k − 1)/2k+1 for some k ≥ 2 (i.e. n = 2k − 1, q = 2, and t = 1
in (6)). Let ν = (1 − �)/2k−1 − �/22k−2. Then

(i) 0 < ν < 1 − 2�;

(ii) ν ∈ S;

(iii) ν + 2� �∈ S.

Consequently, we have ν + � ∈ (�, 1 − �), (ν + �) − � ∈ S, and (ν + �) + � �∈ S.

Proof. (i) Since � = (2k − 1)/2k+1 for k ≥ 2, we have

0 < ν = 1 − �

2k−1 − �

22k−2 = 1

2k
−

(
1

22k
− 1

23k−1

)
<

1

2k
= 1 − 2�.

(ii) For 0 ≤ j ≤ k − 2, we have 0 < 2j ν < (1 − �)/2k−j−1 ≤ (1 − �)/2 < �, and

� = 2k − 1

2k+1 <
22k−1 − 2k−1 + 1

22k
= 2k−1ν = 1 − � − �

2k−1 < 1 − �.

By (7),
T 2k−1+ (ν) = T k+(T k−1+ (ν))

= T k+(2k−1ν)

= T k+
(

1 − � − �

2k−1

)

= T k−1+
(

1 − �

2k−1

)

= T k−2+
(

1 − �

2k−2

)

= · · ·
= 1 − �,

implying that ν ∈ S.

(iii) Note that ν + 2� = 1 − (2−2k − 2−3k+1). Since we have, for 0 ≤ j ≤ 2k − 2,

1 > 1 −
(

1

22k−j
− 1

23k−j−1

)

= 1 − 2j

(
1

22k
− 1

23k−1

)

≥ 1 − 22k−2
(

1

22k
− 1

23k−1

)

= 1 − 1

4
+ 1

2k+1

> 1 − �,

it follows, by induction and (7)–(8), that, for 0 ≤ j ≤ 2k − 2,

T
j
+(ν + 2�) = T

j
−(ν + 2�) = 1 −

(
1

22k−j
− 1

23k−j−1

)
> 1 − �. (19)
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In particular,

T 2k−2+ (ν + 2�) = T 2k−2− (ν + 2�) = 3

4
+ 1

2k+1 ∈ A =
{

j

2k+1 : j = 1, . . . , 2k+1 − 1

}
.

Since 1−� < 3
4 +1/2k+1 < 1, we have 3

4 +1/2k+1 �∈ {1−�} = {1−j� : j = 1, . . . , q −1} =
A ∩ S (by Lemma 2), implying that 3

4 + 1/2k+1 �∈ S. By (19), the Markov chain {Xi} defined
in (4) satisfies

P

(
Xi > 1 − �, i = 1, 2, . . . , 2k − 2, and X2k−2 = 1 or

3

4
+ 1

2k+1

∣∣∣∣ X0 = ν + 2�

)
= 1.

Since 3
4 + 1/2k+1 �∈ S, it follows, by the definition of S, (5), that ν + 2� �∈ S, completing the

proof.

4. The case in which � = n/(2n + 1) under condition (3)

In this section we assume that � is of the form n/(2n + 1), n ≥ 2. Define a function
T : [0, 1] → [0, 1] by T (f ) = 2f − �2f � for 0 ≤ f < 1 and T (1) = 1, where �x�
denotes the largest integer less than or equal to x. Note that T (f ) = T+,�(f ) = T−,�(f ) for
f ∈ [0, �] ∪ [1 − �, 1]. It follows by induction that

T i(f ) = 2if − �2if �, 0 ≤ f < 1, i = 1, 2, . . . . (20)

Letting (cf. (10))

A = A� =
{

j

2n + 1
: j = 1, 2, . . . , 2n

}
,

we have the following simple but useful results on the Markov chain {Xi} defined in (4):

P(Xi+1 = T (Xi) | Xi = x) > 0, P(Xi+1 = T (Xi) or 0 or 1 | Xi = x) = 1, (21)

for all x ∈ A and i ≥ 0. Since f ∈ A implies that T (f ) ∈ A, it follows from (21) that

P(Xi = T i(X0) | X0 = x) > 0, P(Xi = T i(X0) or 0 or 1 | X0 = x) = 1, (22)

for all x ∈ A and i ≥ 1. Letting α be the smallest positive integer satisfying 2α ≡ 1
(mod 2n + 1), we have, by (20), for m = 1, . . . , 2n,

T α

(
m

2n + 1

)
= 2αm

2n + 1
−

⌊
2αm

2n + 1

⌋
= m

2n + 1
−

⌊
m

2n + 1

⌋
= m

2n + 1
. (23)

Lemma 6. For � = n/(2n + 1), n ≥ 2, we have

A ∩ S =
{
T i

(
1

2n + 1

)
: i = 0, 1, . . . , α − 1

}
.

Proof. We first claim that

x = n + 1 is the only integer in {1, . . . , 2n} that satisfies T

(
x

2n + 1

)
= 1

2n + 1
. (24)
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To see this, note that if �2x/(2n + 1)� = 0 then

T

(
x

2n + 1

)
= 2x

2n + 1
−

⌊
2x

2n + 1

⌋
= 2x

2n + 1
�= 1

2n + 1
,

implying that x must satisfy �2x/(2n+1)� = 1 in order to solve T (x/(2n+1)) = 1/(2n+1).
The claim then follows readily. Since T α(1/(2n + 1)) = 1/(2n + 1) by (23) and since
T α−1(1/(2n+1)) ∈ A, it follows from (24) that T α−1(1/(2n+1)) = (n+1)/(2n+1) = 1−�.
So {T i(1/(2n + 1)) : i = 0, 1, . . . , α − 1} ⊂ A ∩ S by (22) and the definition of S, (5).

To show that A∩S ⊂ {T i(1/(2n+1)) : i = 0, 1, . . . , α−1}, suppose that m/(2n+1) ∈ A∩S

for some m ∈ {1, . . . , 2n}. By (5), (22), and (23), there exists an integer 0 ≤ j ≤ α − 1 such
that T j (m/(2n + 1)) = 1 − �. Then T j+1(m/(2n + 1)) = T (1 − �) = 1/(2n + 1). By (23),
we have

m

2n + 1
= T α

(
m

2n + 1

)

= T α−j−1
(

T j+1
(

m

2n + 1

))

= T α−j−1
(

1

2n + 1

)
∈

{
T i

(
1

2n + 1

)
: i = 0, 1, . . . , α − 1

}
.

The proof is complete.

Lemma 7. Assume that � = n/(2n + 1) satisfies (3), i.e. α < 2n. Then A \ S �= ∅ and

A \ S ⊂
{

m

2n + 1
∈ A : m �= 2j for any integer j ≥ 0

}
.

Proof. Denoting by |R| the cardinality of a set R, we have, by Lemma 6 and (3), |A ∩ S| =
α < 2n = |A|; so A \ S �= ∅. It remains to show that if m/(2n + 1) ∈ A \ S then m �= 2j

for any integer j ≥ 0. This follows from the fact that, for any integer j ≥ 0 with 2j ≤ 2n, we
have, by (20) and Lemma 6,

2j

2n + 1
= 2j

2n + 1
−

⌊
2j

2n + 1

⌋
= T j

(
1

2n + 1

)
∈ A ∩ S.

The proof is complete.

Lemma 8. For � = n/(2n + 1), n ≥ 2, assume that 1 − 1/(2n + 1) ∈ A ∩ S. Then, for
m ∈ {1, 2, . . . , 2n}, we have m/(2n + 1) ∈ A ∩ S if and only if 1 − m/(2n + 1) ∈ A ∩ S.

Proof. For integers j ≥ 0 and 1 ≤ m ≤ 2n, we have, by (20),

T j

(
1 − m

2n + 1

)
= 2j − 2jm

2n + 1
−

⌊
2j − 2jm

2n + 1

⌋

= −
(⌊

2jm

2n + 1

⌋
+

⌊
− 2jm

2n + 1

⌋)
−

(
2jm

2n + 1
−

⌊
2jm

2n + 1

⌋)

= 1 − T j

(
m

2n + 1

)
, (25)

since 2jm �≡ 0 (mod 2n + 1) and since �x� + �−x� = −1 for any positive noninteger x.
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It suffices to show that m/(2n + 1) ∈ A ∩ S implies that 1 − m/(2n + 1) ∈ A ∩ S. Suppose
that m/(2n + 1) ∈ A ∩ S. Then, by (5) and (22), there exists an integer j ≥ 0 such that
T j (m/(2n + 1)) = 1 − �. It follows from (25) that

T j+1
(

1 − m

2n + 1

)
= 1 − T j+1

(
m

2n + 1

)
= 1 − T (1 − �) = 1 − 1

2n + 1
.

Since 1 − 1/(2n + 1) ∈ A ∩ S by assumption, we have 1 − m/(2n + 1) ∈ A ∩ S. The proof is
complete.

We are now ready to state and prove the following main result of this section, which together
with Lemma 1 implies that (1) holds for � = n/(2n + 1) satisfying (3).

Theorem 2. Assume that � = n/(2n + 1) satisfies (3). Then there exists an f ∈ (�, 1 − �)

such that f − � ∈ S and f + � �∈ S.

Proof. If 1 − 1/(2n + 1) �∈ A ∩ S, we have, with f = 1
2 ∈ (�, 1 − �),

T (f − �) = 2f − 2� = 1

2n + 1
∈ A ∩ S (by Lemma 6) (26)

and

T (f + �) = 2(f + �) − 1 = 1 − 1

2n + 1
�∈ A ∩ S. (27)

Since 0 < f − � < � and 1 − � < f + � < 1, the Markov chain {Xi} defined in (4) satisfies

P(X1 = T (f − �) or 0 | X0 = f − �) = 1, P(X1 = T (f + �) or 1 | X0 = f + �) = 1.

(28)
It follows from (26)–(28) that f − � ∈ S and f + � �∈ S.

We now assume that 1 − 1/(2n + 1) ∈ A ∩ S. By Lemma 7, let a/(2n + 1) be the smallest
element of A \ S �= ∅, so that

a

2n + 1
∈ A \ S and 2k−1 < a < 2k for some integer k ≥ 2. (29)

By Lemma 8, a/(2n + 1) �∈ A ∩ S implies that

1 − a

2n + 1
�∈ A ∩ S. (30)

Since a/(2n+ 1) is the smallest element of A \S, it follows that a/(2n+ 1) ≤ 1 − a/(2n+ 1);
so a ≤ n. But a = n would lead to 1 − a/(2n + 1) = 1 − � ∈ A ∩ S, contradicting (30). Thus,
a < n.

Letting b = 2k − a, we have, by (29),

1 ≤ b < 2k − 2k−1 = 2k−1 < a < n. (31)

Since a/(2n + 1) is the smallest element of A \ S, 1 ≤ b < a implies that

b

2n + 1
∈ A ∩ S. (32)
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Let f = 1 − � − a/(2k(2n + 1)). By (29), it is easily checked that � < f < 1 − �. Also,
by (20) and (31), for i = 1, . . . , k,

T i(f − �) = T i

(
b

2k(2n + 1)

)

= b

2k−i (2n + 1)
−

⌊
b

2k−i (2n + 1)

⌋

= b

2k−i (2n + 1)

<
�

2k−i

≤ �,

T i(f + �) = T i

(
1 − a

2k(2n + 1)

)

= 2i − a

2k−i (2n + 1)
−

⌊
2i − a

2k−i (2n + 1)

⌋

= 1 − a

2k−i (2n + 1)

> 1 − n

2k−i (2n + 1)

= 1 − �

2k−i

≥ 1 − �.

It follows that

T i(f − �) < � and T i(f + �) > 1 − � for i = 1, . . . , k (33)

and, by (30) and (32), that

T k(f − �) = b

2n + 1
∈ A ∩ S and T k(f + �) = 1 − a

2n + 1
�∈ A ∩ S. (34)

Recalling that T = T+ = T− on [0, �] ∪ [1 − �, 1], for the Markov chain {Xi} defined in (4),
we have, by (33), for i = 1, . . . , k,

P(Xi = T i(f − �) or 0 | X0 = f − �) = 1, P(Xi = T i(f + �) or 1 | X0 = f + �) = 1,

which together with (34) and the definition of S, (5), implies that f − � ∈ S and f + � �∈ S.
The proof is complete.

5. Further remarks on the case in which � = n/(2n + 1)

Theorem 2 in Section 4 requires that α < 2n, where α is the smallest positive integer
satisfying 2α ≡ 1 (mod 2n + 1). As noted in Section 1, it follows from Euler’s theorem that
α ≤ 2n and that α < 2n if 2n + 1 is not a prime. In view of Theorem 2, the case in which
α = 2n (implying that 2n + 1 is a prime) remains open. The following result shows that this
case cannot be settled by Schweinsberg’s [5] method.
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Proposition 1. Let � = n/(2n+1) for some n ≥ 2. Assume that 2n+1 is a prime and α = 2n.
Then there exists no f ∈ (�, 1 − �) such that f − � ∈ S and f + � �∈ S.

Proof. It suffices to show that if f satisfies f ∈ (�, 1 − �) and f − � ∈ S, then f + � ∈ S.
Let {Xi} be the Markov chain defined in (4). By the definition of S, (5), f − � ∈ S implies that
there exist an integer I ≥ 1 and nonabsorbing states x1, . . . , xI ∈ (0, 1) such that xI = 1 − �

and P(Xi = xi, i = 1, . . . , I | X0 = f − �) > 0. With x0 := f − �, it is readily seen that if
xi ∈ (0, �]∪[1−�, 1) (0 ≤ i ≤ I −1) then xi+1 = 2xi −�2xi� (= T (xi) = T+(xi) = T−(xi));
and if xi ∈ (�, 1 − �) then xi+1 = xi + � (= T+(xi)) or xi − � (= T−(xi)).

Let V = {x ∈ (0, 1) : P(Xj = x | X0 = f + �) > 0 for some j ≥ 0} be the set of
nonabsorbing states that the Markov chain could visit starting from f + �. We claim that if
there exists a y ∈ V such that |y − xi | ∈ A0 := {m/(2n + 1) : m = 0, 1, . . . , 2n} then there
exists a y′ ∈ V such that |y′ − xi+1| ∈ A0. To see this, note that if |y − xi | = 0 then the claim
holds trivially by taking y′ = xi+1 (which is necessarily in V since xi = y ∈ V ). We now
assume that 0 < |y − xi | ∈ A0, in which case at most one of y and xi can be in (�, 1 − �), since
|y − xi | ≥ 1/(2n + 1) = (1 − �) − �. So it suffices to consider the following cases.

(i) y, xi ∈ (0, �] ∪ [1 − �, 1). Letting y′ = T (y) ∈ V (since y ∈ V ), we have |y′ − xi+1| =
|T (y) − T (xi)| ∈ A0 (since |y − xi | ∈ A0).

(ii) y ∈ (0, �] ∪ [1 − �, 1) and xi ∈ (�, 1 − �). Letting y′ = y ∈ V , we have |y′ − xi+1| =
|y − xi+1| = |y − xi − �| or |y − xi + �| (depending on whether xi+1 = xi + � or
xi+1 = xi − �), implying that |y′ − xi+1| ∈ A0.

(iii) y ∈ (�, 1 − �) and xi ∈ (0, �] ∪ [1 − �, 1). Letting y′ = T (y + �) ∈ V , we have
|y′−xi+1| = |T (y+�)−T (xi)| ∈ A0, since |y−xi | ∈ A0 implies that |y+�−xi | ∈ A0.

This proves the claim.
Since f + � ∈ V and |(f + �) − x0| = 2� ∈ A0, it follows from the claim that there exist

y1, . . . , yI ∈ V such that |yi − xi | ∈ A0, i = 1, . . . , I . In particular, we have yI ∈ V and
|yI − (1 − �)| = |yI − xI | ∈ A0, implying that yI ∈ A := {m/(2n + 1) : m = 1, . . . , 2n}. By
Lemma 6 and α = 2n, we have |A∩S| = α = 2n = |A|, i.e. A = A∩S ⊂ S. So yI ∈ A ⊂ S,
which together with yI ∈ V implies that f + � ∈ S. The proof is complete.

While Proposition 1 shows that Schweinsberg’s [5] method cannot apply to the case in which
� = n/(2n+1) with n ≥ 2 and α = 2n, we now argue that it is possible to establish the validity
of (1) for such � with the help of symbolic-computation software.

Fix an � = n/(2n + 1) with n ≥ 2 and α = 2n. Let

G0 = G0,� =
{

i

2n + 1
: i = 1, 2, . . . , 2n

}
,

Gj = Gj,� =
{

i

2j (2n + 1)
: i = 1, 3, 5, . . . , 2j (2n + 1) − 1

}
, j = 1, 2, . . . .

Clearly, G0, G1, G2, . . . are disjoint and

m⋃
j=0

Gj =
{

i

2m(2n + 1)
: i = 1, 2, . . . , 2m(2n + 1) − 1

}
, m = 0, 1, . . . .
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As a function of w, Q�,w(f ) can be found easily for f ∈ ⋃∞
j=0 Gj as follows. We first

determine Q�,w(f ), f ∈ G0, by solving the following set of 2n linear equations:

Q�,w

(
i

2n + 1

)
= wQ�,w

(
2i

2n + 1

)
, i = 1, . . . , n;

Q�,w

(
i

2n + 1

)
= w + w̄Q�,w

(
2i − 2n − 1

2n + 1

)
, i = n + 1, . . . , 2n,

where w̄ = 1 − w, or, equivalently,

Q�,w

(
T i

(
1

2n + 1

))

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

wQ�,w

(
T i+1

(
1

2n + 1

))
if T i

(
1

2n + 1

)
≤ n

2n + 1
= �,

w + w̄Q�,w

(
T i+1

(
1

2n + 1

))
if T i

(
1

2n + 1

)
≥ n + 1

2n + 1
= 1 − �,

since {T i(1/(2n + 1)) : i = 1, . . . , 2n} = {i/(2n + 1) : i = 1, . . . , 2n} (by α = 2n). Letting
x = Q�,w(1/(2n+1)), we have Q�,w(T (1/(2n+1))) = x/w, Q�,w(T 2(1/(2n+1))) = x/w2

(since T (1/(2n + 1)) ≤ n/(2n + 1)), and Q�,w(T 3(1/(2n + 1))) = x/w3 or x/(w2w̄) − w/w̄

according to whether T 2(1/(2n + 1)) ≤ n/(2n + 1) or T 2(1/(2n + 1)) ≥ (n + 1)/(2n + 1).
More generally, let 1 < I (1) < I (2) < · · · < I (n − 1) < I (n) = 2n − 1 be such that
T I (k)(1/(2n + 1)) ≥ (n + 1)/(2n + 1), k = 1, . . . , n, and T i(1/(2n + 1)) ≤ n/(2n + 1) for
i ∈ {1, 2, . . . , 2n} \ {I (1), . . . , I (n)}. (Note that T 2n−1(1/(2n+ 1)) = (n+ 1)/(2n+ 1) since
T ((n + 1)/(2n + 1)) = 1/(2n + 1).) Letting I (0) := 0 and I (n + 1) := 2n, we have, for
I (k) < i ≤ I (k + 1), k = 0, 1, . . . , n,

Q�,w

(
T i

(
1

2n + 1

))
= x

wi−kw̄k
−

k∑
j=1

w

wi−I (j)−k+j−1w̄k−j+1
.

In particular,

x = Q�,w

(
T 2n

(
1

2n + 1

))
= x

wnw̄n
−

n∑
j=1

w

wn−I (j)+j−1w̄n−j+1
,

from which x = Q�,w(1/(2n + 1)) and Q�,w(i/(2n + 1)), i = 2, . . . , 2n, are obtained.
Now suppose that Q�,w(f ), f ∈ Gj , have been obtained. To find Q�,w(f ), f ∈ Gj+1, we

first compute Q�,w(f ) for f ∈ Gj+1 ∩ {(0, �] ∪ [1 − �, 1)} by

Q�,w

(
i

2j+1(2n + 1)

)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

wQ�,w

(
i

2j (2n + 1)

)
if i = 1, 3, 5, . . . , 2j+1n − 1,

w + w̄Q�,w

(
i − 2j (2n + 1)

2j (2n + 1)

)
if i = 2j+1(n + 1) + 1, . . . , 2j+1(2n + 1) − 1.
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Table 1.

� f s Q�,w(f ) − (wQ�,w(f + s) + w̄Q�,w(f − s))

2
5

303
640

2
5 − 1

640 −w5w̄7(1 − 2w)

1 − w2w̄2

5
11

22 431
45 056

5
11 − 1

45 056 −w6w̄9(1 − 2w)[w6(5 + 3w̄ + w̄2) + (1 − 2w)(1 + ww̄ + 3w3 + 3w4)]
1 − w5w̄5

6
13

26 295
53 248

6
13 − 1

53 248 −w9w̄6(1 − 2w)P1(w)

1 − w6w̄6

9
19

19 503
38 912

9
19 − 1

38 912 −w6w̄7(1 − 2w)P2(w)

1 − w9w̄9

14
29

29 105
59 392

14
29 − 1

59 392 −w9w̄10(1 − 2w)(1 + ww̄2)(1 + w2w̄)2(1 − w2w̄ + w5w̄2)

1 − w14w̄14

We then compute Q�,w(f ) for f ∈ Gj+1 ∩ (�, 1 − �) by

Q�,w

(
i

2j+1(2n + 1)

)
= wQ

(
i + 2j+1n

2j+1(2n + 1)

)
+ w̄Q

(
i − 2j+1n

2j+1(2n + 1)

)
,

i = 2j+1n+ 1, . . . , 2j+1(n+ 1)− 1. (Since � > 1
3 , � < f < 1 − � implies that f + � > 1 − �

and f − � < �.)
While the above algorithm shows that Q�,w(f ), f ∈ ⋃∞

j=0 Gj , can be found in a simple
recursive fashion, we have used MAPLE©R to carry out extensive symbolic computations for
� = 2

5 , 5
11 , 6

13 , 9
19 , and 14

29 , the first five values of � = n/(2n + 1) with n ≥ 2 and α = 2n. By
an extensive search, we found a pair of (f, s) with s < � < f < 1 − � for each of these five
values of � such that

��,w(f, s) := Q�,w(f ) − (wQ�,w(f + s) + w̄Q�,w(f − s)) < 0 for all 0 < w < 1
2 .

Note that U�,w(f ) ≥ wQ�,w(f + s) + w̄Q�,w(f − s) = Q�,w(f ) − ��,w(f, s). Table 1
presents f , s, and ��,w(f, s) for � = 2

5 , 5
11 , 6

13 , 9
19 , and 14

29 , in which the polynomials P1(w)

and P2(w) are given as follows, expressed in such a way that they can be readily seen to be
strictly positive for 0 < w < 1

2 :

P1(w)=w8w̄ + (1 − 2w)[ww̄ + 9w3w̄ + (1 − 4w2) + w5(5 − w2)],
P2(w)=w4w̄2[(1 − 2w3) + w4(3 − 5w) + w6(19 − 33w) + w8(13 + 17w̄) + w10(5 + w̄)]

+ (1 − 2w)[1 + w2w̄2(1 + w) + w6w̄2(2 + w̄)].
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