
Abstract. Many things in the natural world consist of an ever-larger number
of ever-smaller pieces. This is called a fractal, which implies both the power
law and rank size rule. Various models have been applied to explain the
power law or Zipf’s law in the distribution of city size. Gibrat’s law proposes
general and neat interpretations for this regularity in a city distribution, but
the homogeneity assumption in Gibrat’s law shows a disregard of the
agglomeration effect that is essential in economic interpretation. The purpose
of this paper is to examine the relation between the feature of increasing
returns in the dynamic growth process and the property of power law in the
static limiting distribution. We apply the path-dependent processes in Authur
(2000) called nonlinear Polya processes to analyze the relation between the
feature of agglomeration in the path-dependent processes and rank-size
relations in the limiting distributions. The simulation result shows that the
growth process with a diminishing returns’ agglomeration economy or a
bounded increasing returns’ agglomeration economy converges to a stable
limiting distribution with a constant expected proportion. On the contrary,
the growth process with an unbounded increasing returns’ agglomeration
economy could generate a fractal kind of limiting distribution with a time
variant expected value. The unbounded increasing returns’ agglomeration
economy is the necessary condition to generate the rank size rule in the
limiting distribution. Given the assumption of agglomeration economies and
robust evidence of Zipf’s in city distribution, our result suggests that
agglomeration benefits increase without a ceiling as residents are added to the
city. The increase of the diseconomies of agglomeration (congestion, pollu-
tion, crime, etc.) is not too severe to confine the limiting level of the net
agglomeration effect.
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1. Introduction

It is widely recognized that the size distribution of cities is surprisingly well
described by Zipf’s law across countries with various economic structures and
histories. Zipf’s law, which is a special case of the power law, essentially
characterizes the size distribution of cities. The general power law not only
appears in cities distribution, but also in other subjects. Shiode and Batty
(2000) show that the most mature domains with the most pages follow the
power law; moreover, Adamic (2001) shows that the distribution of the
number of AOL users’ visits to various sites in 1997 fits the power law.
Distribution, which follows the power law, is a part of the family of fractal.

Different models have been applied to explain the power law or the special
case of Zipf’s law (see e.g., Losch 1954; Hoover 1954; Beckman 1958; Simon
1955; Simon and Bonini 1958; Fujita et al. 1999; Gabaix 1999; Solomon et al.
2000, 1998, 1996; Ferdinando Semboloni 2001). Simon (1955) proposes a
stochastic model of the growth process to explain the Pareto kind distribution
of firms’ size. The stochastic model is formalized into Gibrat’s law of
proportionate effect. Gabaix (1999) proposes Gibrat’s law as an explanation
of Zipf’s law based on a probabilistic process. He finds that homogeneous
growth processes in cities could lead the distribution to converge into the Zipf
pattern. Solomon et al. (2000, 1998, 1996) study the dynamical systems whose
sizes evolve according to multiplicative stochastic rules. They show that the
dynamics and the way in which the minimal size is enforced are crucial for
obtaining power laws and the particular values of their exponents. Ferdi-
nando Semboloni (2001) proposes a model based on agents with dycotomic
goals to show how a rank-size distribution can be generated. Their works
propose general and neat interpretations for this regularity in a city
distribution; however, the homogeneity assumption of growth processes in
Gibrat’s law and the random number assumption of the multiplicative sto-
chastic rules in Solomon’s work show a disregard of the agglomeration effect
that is essential in economic interpretation.

The distribution of cities and the distribution of website users are different
subjects; however, the dynamic generating processes in both cases may
contain certain features that could result in a similar limiting distribution.
The effect of agglomeration economies is indispensable in the formation and
growth of a city; nevertheless, it is nearly absent in studies about the Zipf
pattern or power law of the limiting distribution. The underlying mechanism
of the agglomeration economies in urban economics is analogous to the
feature of positive feedback in the increasing returns. The purpose of this
paper is to investigate the possible underlying relation between agglomeration
economies and the rank size relation in the limiting distribution of city size. In
general, this study will examine the relation between the feature of increasing
returns in the dynamic growth process and the property of power law in the
static limiting distribution. We analyze and simulate Authur’s (2000) model
based on the general Polya processes with a path-dependent property to
examine the rank-size relations in the limiting distributions and to examine
the features that could generate the power law. In Sect. 2, we introduce the
fractal distribution and increasing returns. The proposed path dependent
stochastic model from Authur (2000) is described and discussed in Sect. 3. In
Sect. 4, simulation results are presented and concluding remarks are formu-
lated in Sect. 5.
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2. Fractal distribution and increasing returns

2.1. Fractal distribution and the power law

The assumption of normality implies that data can be meaningfully charac-
terized by a constant mean and variance. However, much of nature does not
contain a unique mean and variance and is not ‘‘normal’’. Many distributions
in the natural world consist of an ever-larger number of ever-smaller pieces.
This is called a fractal, which can be an object in space or a process in time.
This fractal system has been observed in various fields, such as in the physical,
biomedical, and social sciences (Bunde and Havlin 1994; Liebovitch 1998;
Bassingthwaighte et al. 1994; Lannaccone and Khokha 1995; Dewey 1997;
Batty and Longley 1994; Peters 1994). For example, fractal systems have
shown up in the timing of heart attacks, blood vessels of the circulatory
system, the surfaces of proteins, durations of consecutive breaths, the dis-
tribution of cities, and the number of users visiting various websites.

A general distribution function of the fractal system has the power
function form:

y ¼ f ðxÞ ¼ Ax�a; ð1Þ
where f ðxÞ is the probability density function (PDF) of x; this can be
transformed to

logðyÞ ¼ logðAÞ � a logðxÞ: ð2Þ
This Eq. (2) explains the essential feature of the fractal distribution that it is a
straight line with a negative slope on a plot of the log [PDF(x)] versus log(x),
which is called the power law. A fractal from a process in time could be
characterized by a parameter, a, which measures the relative number of
smaller values compared to the large values. An example of fractal distri-
bution is shown in Fig. 1.

In a fractal distribution, the population mean is not defined since the
sample mean does not converge to a constant. Both the mean and variance of
a fractal distribution depend on the amount of data analyzed, and conse-
quently, the average number and variance can no longer characterize data in
fractal systems. Different from the normal distribution, fractal distribution is
defined by the linearity of the power law form of the PDF, and the corre-
sponding slope characterizes the fractal distribution. A constant slope a
implies a constant size elasticity of PDF, efx.

a ¼ efx ¼ lim
Dx!0

Df ðxÞ=f ðxÞ
Dx=x

: ð3Þ

In a fractal distribution, the percentage change in the size’s PDF due to a
percentage change in its size does not vary by size.

The Pareto distribution shows the probability that a value is greater than
or equal to a certain value, which is given in terms of the cumulative distri-
bution function (CDF). A power law distribution has the following Pareto
distribution:

P ½X > x� ¼ A
a� 1

� �
x�ða�1Þ ¼ A

a� 1

� �
x�b; ð4Þ
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where b ¼ a� 1. The cumulative distribution function could be interpreted as
the rank of size x; thus, the Pareto distribution in (4) implies that the rank of
the largest occurrence for size x is inversely proportional to size x with a
constant exponent. This is called the rank size rule:

Rank ¼ B � Size�b ð5Þ

logðRankÞ ¼ logðBÞ � b logðSizeÞ: ð6Þ
The rank size rule becomes Zipf’s law when the exponent b ¼ 1.

Data overall from a fractal system is defined by the form called the power
law and is characterized by its slope. In addition, the data also fulfills the
Pareto law and the rank size rule. If the exponent in the rank size rule (5)
equals one, then the data also fits Zipf’s law. In short, fractal distribution
implies both the power law and rank size rule.

2.2. Increasing returns and agglomeration economies

Both the equilibrium and optimal solution in conventional economic theory
are derived from the assumption of diminishing returns. Diminishing returns
imply stabilization and a single equilibrium point for an economy. In many
parts of an economy, unstabilized forces do appear. Arthur (1984) conducts
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work on the problem of increasing returns in an economy and mentions that
western economies have undergone a transformation from the processing of
resources to the processing of information. He states that the resource-based
part of an economy for the most part appears to have diminishing returns,
while the knowledge-based economy is largely subject to increasing returns.
This is similar to the attribute of positive feedback in the information economy.
The high fixed costs and low marginal costs of production information lead to
supply-side economies of scale; in addition, the network externalities and po-
sitive feedback of information products lead to demand-side economies of
scale (see Shapiro and Varian 1999). Positive feedback makes large networks
become bigger; this is the feature of increasing returns in the demand side.

The underlying mechanisms of economic behavior have shifted from
diminishing returns to increasing returns, and increasing returns, driven by
self-reinforcement and positive feedback, generate not only an equilibrium,
but also instability. The evolution process of increasing returns is non-pre-
dictable, locked-in, and historically dependent. It is modeled as dynamic and
non-linear rather than static and deterministic. The growth of cities is
essentially characterized by the effect of agglomeration economies. The
agglomerative economies, which emerge both among firms and residents,
include positive and negative externalities caused by firms (residents) locating
close to one another. Firms cluster to decrease their production costs
(agglomeration economies in production), or increase their production rev-
enue (agglomeration economies in marketing). Similar to the urbanization
economies in production, the gathering of residents allows the realization of
scale economies in the provision of business service and public services.

Higher accessibilities to the work opportunities in the large cities also
favor residents’ interest. Residents cluster to increase their utility of living in
the site. The mechanism of agglomeration economies is analogous to the
positive feedback and the network externalities in the demand side of infor-
mation economy. Similar to the network externalities in the demand side of
an information economy, agglomeration externalities make large cities
become even bigger. The feature of increasing returns of the formation of a
city shows in the demand side. A growth process with an increasing returns
feature is proposed to explain the distribution of city size in the following
section.

3. The nonlinear path-dependent Polya processes

The model applied in this paper is developed and introduced in Arthur
(1984, 2000); it is based on a class of path-dependent stochastic processes
called nonlinear Polya processes. This path-dependent process is adequate
in interpreting the features of positive feedback and agglomeration exter-
nalities. The long-run limiting behavior of this nonlinear Polya-type,
path-dependent process is examined to investigate the possible relation
between the dynamic increasing returns process and the static fractal
distribution.

Assume residents decide on locating in one of N possible cities in the
region. Let si

tði ¼ 1; . . . ;NÞ describe the city size for each city at time t; and
xi

tði ¼ 1; . . . ;NÞ describes the proportion of population of city i in the region
at time t. Assume the benefits, ri

jði ¼ 1; . . . ;NÞ, of resident j for locating in city
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i, consist of two components: geographical benefit and the agglomeration
benefit.

ri
j ¼ qi

j þ gðxiÞ; ð7Þ

where qi
j is the geographical benefit to resident j for locating in site i; and gðxiÞ

represents the agglomeration benefit of resident in site i. The location
attractiveness due to geographical considerations is independent of the cur-
rent location’s shares.

The economies of agglomeration in the location choice showed by the
positive agglomeration benefit of the resident (g0ðxiÞ > 0) occurs if the utility
of a resident increases as the location’s shares (relative size), xi

t, increases. The
agglomeration benefit gðxiÞ is the external benefit resulting from the scale of
the entire urban economy: the gathering of residents allows the realization of
scale economies in the provision of business services and public services; also,
higher accessibilities to the work opportunities in the large cities favor
residents’ interest. On the other hand, the diseconomies of agglomeration in
the location choice (such as congestion, air pollution, and crime) are shown
by the negative agglomeration benefit of residents (g0ðxiÞ < 0).

Assume that the geographical benefit is not resident specific (the homo-
geneity in tastes of the geographical benefit). The probability that the next
resident prefers site i over all other sites is:

pi ¼ Pr obf½qi þ gðxiÞ� > ½qj þ gðxjÞ� all j 6¼ ig: ð8Þ
Consequently, given the time invariant geographical benefit, qi, the proba-
bilities of the locational choice for city i at time t, pi

tðxi
tÞ, depends on the

current location’s shares, xi
t. The change of size at city i follows the dynamic

process:

si
tþ1 ¼ si

t þ zi
tðxi

tÞ; i ¼ 1; . . . ;N ; ð9Þ

where

zi
t ¼

1 with probability pi
tðxi

tÞ
0 with probability 1� pi

tðxi
tÞ
;

�

E½zi
t� ¼ pi

tðxi
tÞ Var½zi

t� ¼ E½ðzi
tÞ
2� ¼ pi

tðxi
tÞ:

Consequently,

si
t ¼ si

0 þ zi
1 þ zi

2 þ � � � þ zi
t�1: ð10Þ

Each random variable, zi
t, has an expected value, pi

tðxi
tÞ, which is a function of

the current proportion rather than a time invariant constant.

E½si
t� ¼ si

0 þ pi
1ðxi

1Þ þ pi
2ðxi

2Þ þ � � � þ pi
t�1ðxi

t�1Þ: ð11Þ

Var½si
t� ¼

Xt�1
k¼ 1

pi
kðxi

kÞ þ 2
Xt�1
k 6¼l

Covðzi
k; z

i
lÞ: ð12Þ

Both the strong law of large numbers and the central limit theorem cannot be
applied in this general Polya process, as the limiting size proportion does not
exist. Both the mean and variance of city size actually varies by time, and the
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expected value of city size is not defined. In addition, according to Eq. (9), the
evolution of the relative city size at city i is:

xi
tþ1 ¼ xi

t þ
1

ðwþ tÞ ½z
i
tðxi

tÞ � xi
t�

¼ xi
t þ

1

ðwþ tÞ ½p
i
tðxi

tÞ � xi
t� þ

1

ðwþ tÞ u
i
tðxi

tÞ; i ¼ 1; :::;N ; ð13Þ

where w ¼
P

i si
1, which is the total population initially; and the disturbance

term ui
tðxi

tÞ ¼ zi
tðxi

tÞ � pi
tðxi

tÞ is with zero conditional expectation. This path-
dependent process consists of a determinate part, xi

t þ 1
ðwþtÞ ½pi

tðxi
tÞ � xi

t�; and a
perturbation part, 1

ðwþtÞ u
i
tðxi

tÞ. The determinate part includes the preceding

proportion and the difference between the probability and the preceding
proportion. In addition, the expected motion of the locational share depends
on the determinate part, which contains the choice probability function.

E½xi
tþ1 xi

t�
�� ¼ xi

t þ
1

ðwþ tÞ ½p
i
tðxi

tÞ � xi
t�: ð14Þ

The feature of the location choice probability function, pi
tðxi

tÞ, essentially
characterizes the limiting proportion. In addition, the expected motion tends
to be directed by the term ½pi

tðxi
tÞ � xi

t� in the determinate part. A positive term
would drive the expected motion to grow.

Case 1. If there are no economies or diseconomies of agglomeration in the
location choice (gðxiÞ � 0 in (7)), which means that the location benefit is
independent of the location’s share, then the location choice probability
function depends only on the predetermined geographical attributes, pi

tðqiÞ.
The vector of the limiting proportion of N cities in the region is just the vector
of the fixed location specific probability, pi

tðqiÞði ¼ 1; . . . ;NÞ, determined by
the given geographical attributes. The location share hence tends to converge
to a single equilibrium point

Case 2. There are economies of agglomeration in the location choice
(gðxiÞ 6¼ 0 in (7)), and the choice probability equals the current proportion
(pi

tðxi
tÞ ¼ xi

t). This is called the standard Polya process. The determinate part
in (13) disappears, and the perturbation part dominates the motion. It is
therefore proved that the vector of limiting expected proportions tends to be a
fixed vector with a probability of one. (Polya 1931)

Case 3. There are economies and diseconomies of agglomeration in the
location choice. The probability function, pi

tðxi
tÞ, is assumed to be non-linear.

The stochastic process (13) with a non-linear probability function is called a
non-linear Polya process (Arthur 2000). In the case of the non-linear Polya
process, a negative first derivative of the probability function characterizes a
diminishing returns process (such as Fig. 2(e)), pi

tðxi
tÞ < 0; the limiting

expected proportion converges to a single equilibrium point, xi. Thus, the
limiting corresponding probability is time invariant, piðxiÞ. As a result, the
limiting proportion of city i is piðxiÞ, according to the strong law of large
numbers. Assuming the probability function is not city specific, the limiting
proportion is a constant, p1ðx1Þ ¼ ::: ¼ pN ðxN Þ ¼ pðxÞ. The mean of the size
proportion is defined.
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A positive first derivative of the probability function refers to an
increasing returns process, pi

tðxi
tÞ > 0; the tendency of the city size proportion

is to be attracted toward one or several fixed points depending on the func-
tional form of the probability function.

The feature of positive feedback in the increasing returns process
consists of two major categories: bounded agglomeration economies and
unbounded agglomeration economies. Agglomeration economies are
unbounded if the agglomeration benefits increase without ceiling as resi-
dents are added to a city (that is, if the function gðxiÞ is monotonically
increasing without upper bound). This situation prevails when the prob-
lems of congestion, pollution, and crime compared to the advantages of
agglomeration are not too severe to limit the net effect of agglomeration
economies.

Increasing returns with bounded agglomeration economies (Fig. 2b), the
net effect of economies and diseconomies of agglomeration with a ceiling, can
be presented by a diminishing increasing returns of the probability function
(pi

t
0 ðxi

tÞ > 0, and pi
t
00ðxi

tÞ < 0). This situation prevails when the problem of
congestion, pollution, and crime is becoming much more severe than the
advantages of agglomeration as the size of a city increases; it results in a
diminishing increase of the net effect of agglomeration economies with an
upper limit. The limiting expected proportion converges to a single equilib-
rium point. Consequently, similar to the case of the diminishing returns
process discussed above, the limiting proportion is a constant both in time
and site under the condition of the homogeneous probability function, and
hence the mean of size proportion is defined.

Increasing returns with unbounded agglomeration economies (Fig. 2a, c,
d) are presented by increasing returns of the probability function without a
ceiling (pi

t
0 ðxi

tÞ > 0). The relative forces and interaction between economies
and diseconomies of agglomeration characterize the shape of the net
agglomeration economies as bounded or unbounded. Under this situation,
the limiting expected proportion may not converge to a single equilibrium
point, and a fixed expected proportion may not exist. It depends on the
feature of agglomeration economies.

The question that we are interested in this paper is to ask whether these
various possible equilibrium states, according to the different features of the
path-dependent process, could characterize their limiting distribution?
Moreover, is the limiting fractal distribution associated with certain features
of the dynamic stochastic process?

4. Simulation

We simulate the proposed nonlinear path-dependent Polya process in Sect. 4
in order to analyze the asymptotic distribution properties of particular classes
of stochastic equations, especially increasing returns. In this model one resi-
dent is added into the region at each time; the probabilities of an addition to a
city depend on their current proportions. The functional form of the
probability function is essential in characterizing both the growth process and
its limiting distribution. Both cases of increasing returns and decreasing
returns are simulated in this section.
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4.1. Increasing returns with unbounded agglomeration economies: Function (a)

A Polya process given the probability function (a) in Fig. 2 characterizes
increasing returns with unbounded agglomeration economies. The larger the
size proportion in the region is, the higher the probability will be that the city
will grow. Furthermore, as the city size proportion passes one half of the
region, the probability that this city will grow is greater than 0.5 at a
diminishing rate, showing a tendency toward 0 or 1. The effect of a change in
relative size is highest when the choice probabilities indicate a high degree of
uncertainty regarding the choice; as the choice becomes more certain, the
effect of a given change in an observed variable lessens.

Assume a region of 50 cities starts with a uniformly-distributed city size;
the simulating dynamic processes for all cities after 3000 iterations are shown
in Fig. 3. The relative size distributions at different numbers of iterations (t)
are shown in Fig. 4. This states that as the time increases, the location shares
distribute closer to the fractal distribution. This distribution tendency can be

Fig. 3.1. The dynamic process
of function (a): 50 cities after
3000 iterations starting from
uniform distribution

Fig. 3.2. The dynamic process
of function (a): 50 cities after
1500 iterations starting from
uniform distribution
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Fig. 4. a–c. The frequency
distribution of proportion.
a t = 1; b t = 1500; c t = 3000
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observed in Fig. 5. The plot of log(Rank) versus log(Proportion) tends to be
linear, which is the rank size rule.

Table 1 lists the estimated slopes and R-square of the plots in Fig. 5.2. As
the number of iterations increases, the R-square value goes up, while the
absolute value of the estimated slope decreases. A smaller absolute value of
the estimated slope represents a more diversely-distributed city size in the
region. The diminishing tendency of the absolute value of the slope and the
increasing linearity of the log(Rank) versus log(Proportion) plot is consistent
with the experimental city distribution.

4.2. Increasing returns with bounded agglomeration economies: Function (b)

The probability function shown in Fig. 2b characterizes increasing returns for
a diminishing increasing rate. It reveals a tendency toward a fixed point x. The
simulating dynamic process of the region with 15 cities after 3000 iterations is
produced in Fig. 6.1. The expected size proportion of all cities in the region

Fig. 5.1. The plot of proportion
and rank of function (a)

Fig. 5.2. The plot of log(Pro-
portion) and log(Rank) of
function (a)
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Table 1. The regression result of the plot of the log(Rank) versus the log(Proportion) of function
(a)

Iterations Estimated slope R-square

200 )0.5358 0.5072
400 )0.5129 0.5625
600 )0.4950 0.6098
800 )0.4805 0.6508
1000 )0.4683 0.6870
1200 )0.4579 0.7190
1400 )0.4488 0.7474
1600 )0.4408 0.7727
1800 )0.4336 0.7950
2000 )0.4271 0.8145
2200 )0.4211 0.8314
2400 )0.4157 0.8460
2600 )0.4108 0.8584
2800 )0.4063 0.8688
3000 )0.4023 0.8774

Fig. 6.1. The dynamic processes of
probability function (b): 15 cities
after 3000 iterations starting from
uniform distribution

Fig. 6.2. The dynamic processes of
probability function (c): 15 cities
after 3000 iterations starting from
uniform distribution
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tends to converge to a stable ratio. Moreover, the expected value of the lim-
iting location does exist, which is very different from the fractal distribution.

4.3. Increasing returns with unbounded agglomeration economies: Function (c)

The probability function shown in Fig. 2c characterizes diminishing increasing
returns, and it shows a tendency toward 1. The simulating dynamic process of
the region with 15 cities after 3000 iterations is displayed in Fig. 6.2. The
expected size proportion converges to a stable point. Similar to the case of
function (b), the expected value of the limiting location shares does exist.

4.4. Increasing returns with unbounded agglomeration economies: Function (d)

The probability function shown in Fig. 2d characterizes rising increasing
returns, and shows a tendency toward 0. The simulating dynamic process of
the region with 50 cities after 3000 iterations is shown in Fig. 6.3. It is similar
to the dynamic process of function (a), which offers a tendency toward a
fractal distribution.

Fig. 6.3. The dynamic processes of
probability function (d): 50 cities
after 3000 iterations starting from
uniform distribution

Fig. 6.4. The dynamic processes of
probability function (e): 15 cities
after 10 iterations starting from
uniform distribution
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4.5. Diminishing returns: Function (e)

The probability function shown in Fig. 2e characterizes diminishing returns.
It appears to have a tendency toward a fixed point x. The simulating dynamic
process of the region with 15 cities after 10 iterations is displayed in Fig. 6.4.
The expected size proportion converges much faster than the process of
function (b) to a stable point. Consequently, the expected value of the limiting
location shares does exist, and the limiting location shares do not distribute as
a fractal.

The simulation results show that the dynamic process of diminishing
returns and increasing returns with bounded agglomeration economies tend to
converge to a stable point; there also exists a fixed expected locational pattern
of proportions. By contrast, in most cases of increasing returns with
unbounded agglomeration economies, a constant expected proportion does
not exist, and the limiting distribution of the location shares tends to be fractal
and displays the power law. It implies that the unbounded agglomeration

Fig. 7.1. The plot of proportion
and rank of function (d)

Fig. 7.2. The plot of log(Propor-
tion) and log(Rank) of function (d)
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economy may generate limiting fractal distribution; this is the necessary con-
dition to generate the rank size rule (power law) in the limiting distribution.

5. Concluding remarks

The character and the simulation results of the proposed path-dependent
processes are concluded as follows. If the benefits from agglomeration
economies in a residents’ location benefit are absent, then the size distribution
depends only on the geographical benefit that does not contain positive
feedback and path-dependent properties. Given the geographical endowment
in the region and the assumption of homogeneous residents’ location pref-
erences, residents cluster according to the given geographical benefits. On the
other hand, if residents’ location tastes are heterogeneous, then the distri-
bution of the city size is more dispersed than in the homogeneous case. Both
the size evolution and limiting distribution tend to be stable and predictable.
In the general case where agglomeration economies are present, the proba-
bility of attracting new residents depends upon any past addition, so that the
standard strong law is not usable and the size evolution is historically
dependent and non-predictable. The limiting distribution is closely related to
the feature of the dynamic evolution process, especially the mechanism of the
agglomeration economies.

The simulation results from the general Polya processes in Authur (2000)
show that if the addition of residents confers a net benefit on a location,
then under upper limit-bounded agglomeration economies, the dynamic
process for each city’s share tends to converge to a stable point and there
exists a fixed expected value in the limiting distribution. On the other hand,
if the addition of residents confers a net benefit on a location, then under no
upper limit-unbounded agglomeration economies, the dynamic process of
each city’s share may tend to diverge to a fractal distribution that follows
the power law. The expected location share is time variant and undefined.
The unbounded agglomeration economy therein may result in a fractal
limiting distribution; it is the necessary condition to generate the rank size
rule in the limiting distribution. Given the assumption of agglomeration
economies and robust evidence of Zipf’s in city distribution, our result
suggests the presence of the unbounded agglomeration economies for the
benefit of residents’ location. That is, agglomeration benefits increase
without a ceiling as residents are added to the city; the increase of the
diseconomies of agglomeration (congestion, pollution, crime, etc.) along
with the growth of city size is not too severe to confine the limiting level of
the net agglomeration effect.
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