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Abstract

Our goal is to study which conditions of the output process of a queue preserve the Increasing Failure Rate (IFR) property in the
interdeparture time. We found that the interdeparture time does not always preserve the IFR property, even if the interarrival time
and service time are both Erlang distributions with IFR. We give a theoretical analysis and present numerical results of Em/Ek/1
queues. We show, by numerical examples, that the interdeparture time of Em/Ek/1 retains the IFR property if m ≥ k.
c© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The queueing model studied in this paper can be viewed as a communication channel where information is encoded
into the times of arrivals of packets with noise which sometimes amounts to a virus, and needs to be decoded from
the departure times. A decryption process consists of several stages to determine the virus. The departure time may
be considered as the time instant that information is delivered to the user. Such channels are of interest in computer
and communication security. Thus, users of this system may be concerned in estimating explicitly the mean system
down time or mean time of malfunction during a specified time interval, i.e., the probability that the system is down
more than x minutes at an instant. This was the question raised in [7] concerning the Increasing Failure Rate (IFR)
or decreasing failure rate (DFR) properties, which are to be defined in Definition 2.6. The purpose of this paper is to
show that an effective approximation method can be given to evaluate the reliability function of the system and that
this approximation can be applied to various Markovian queueing systems with phase-type structure.

From past studies, we know that a G I/G/1 queue has output instants that form a renewal process if and only
if the arrival process is Poisson and the services times are exponential. When the output process is not renewal,
researchers studied the correlation structure of the output process. This is because departure processes of non-M/G/1
queues are difficult to characterize. In this paper, our goal is to investigate which properties will be preserved
for the departure process if the queue is no longer an M/M/1 queue. We will consider a PH/G/1 queue and
construct the Laplace–Stieltjes transform (LST) of the interdeparture time distribution, where PH denotes a phase-
type distribution. The phase-type distribution can be a good approximation for general distributions. We analyze the
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stochastic properties, such as IFR for the interdeparture time. Because of the computational complexity of PH/G/1
and the stationary probability density of the number of customers in the system, we restrict our numerical examples to
Em/Ek/1 queues, where both the interarrival time and service time are Erlang distributions. We consider that, under
certain conditions, the interdeparture time is IFR in the Em/Ek/1 queue and illustrate it with numerical results.

Since 1950, many researchers have studied the output process of queueing models. They focused on the distribution
of the interdeparture time and the correlation structure of the output process. Daley [2] showed that, among G I/M/1
systems, the only one that has a renewal output process is again the M/M/1 system, and they studied the correlation
structure for G I/G/1 queues. Laslett [6] has shown that no G I/M/1/C system with finite positive C has a renewal
output.

The phase-type distribution and phase-type renewal processes were introduced by Neuts [9], who formed the
substrata for the definition of the N -process and the Markov-modulated Poisson process (MMPP); see Fischer and
Meier-Hellstern [3]. Saito [10] investigated the departure process of an N/G/1 queue, where the arrival process is an
N -process. Saito focused on the interdeparture times of an N/D/1 queue and showed that correlation of interarrival
times is likely to be preserved in interdeparture times of an N/G/1 queue. Luh [8] provided a recursive procedure to
calculate the Laplace transform for the joint distribution for n consecutive interdeparture times. Yeh and Chang [12]
characterized the departure process of a single server queue from the embedded Markov renewal process at departures.
Results obtained include the LST of the stationary distribution function of interdeparture times and a recursive formula
for the covariance of interdeparture times.

In this paper, we use an alternative approach to analyze the performance of the output process. We consider the
stochastic order relations of the interdeparture time, such as IFR. This is important for the comparison of “new” and
“residual” life times. The stochastic order relations of the output processes from one server may be important indices
for the input processes of another server in the network. In this study, we investigate conditions under which the
interdeparture time will preserve the IFR property. We illustrate this by numerical experiments to verify the main
result.

The remaining parts of the paper are organized as follows. In Section 2, we introduce the model of the PH/G/1
queue and derive the LST of the interdeparture time. We define some performance indices of the departure process.
In Section 3, we consider the Em/Ek/1 queue and discuss the performance of the departure process. In Section 4, we
present some numerical results by using Matlab and studying the IFR property of the interdeparture time for Em/Ek/1
queues. In Section 5, we draw conclusions and studies for further investigation.

2. The model

2.1. Description and notation

Consider a first-in first-out (FIFO) single server queue of PH/G/1 type. The service times of all customers are
independent and identically distributed, with a distribution function H(·) of finite mean h. The Laplace–Stieltjes
transform of H(·) is denoted by H̃(·). The arrival process is a phase-type renewal process, and its interarrival time
distribution F(·) has the irreducible representation (α, T) with m phases and mean rate λ. α is a probability row vector
and the m × m matrix T is nonsingular, with negative diagonal elements and nonnegative off-diagonal elements. The
vector T0 is nonnegative and satisfies Te + T0

= 0, where e = (1, . . . , 1)t is a column m-vector of ones. The
interarrival time distribution can be written as F(x) = 1 − α exp(Tx)e, for x ≥ 0. The Laplace–Stieltjes transform
F̃(s) of F(·) is given by

F̃(s) =

∫
∞

0
exp(−sx)dF(x)

= α(sI − T)−1T0, for Re(s) ≥ 0.

Let {τn : n ≥ 0} denote the successive departure epochs with τ0 = 0, and define Xn and Jn to be the number
of customers in the system and the state of the arrival phase just after τn , respectively. Set Dn := τn+1 − τn . Then,
the sequence {(Xn, Jn, Dn) : n ≥ 0} forms a semi-Markov sequence on the state space {0, 1, . . .} × {1, . . . , m}. The
semi-Markov process is positive recurrent when the traffic intensity ρ = hλ < 1. The transition probability matrix
Q(·) is given by
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Q(x) =



B0(x) B1(x) B2(x) B3(x) · · ·

A0(x) A1(x) A2(x) A3(x) · · ·

A0(x) A1(x) A2(x) · · ·

A0(x) A1(x) · · ·

A0(x) · · ·

. . .

 , x ≥ 0,

where, for k ≥ 0, Ak(x) and Bk(x) are the m × m matrices of mass functions defined by

[Ak(x)]i j = Pr{Xn+1 − Xn = k − 1, Jn+1 = j, Dn ≤ x | Xn ≥ 1, Jn = i}, (2.1)

[Bk(x)]i j = Pr{Xn+1 − Xn = k, Jn+1 = j, Dn ≤ x | Xn = 0, Jn = i}, (2.2)

Bk(x) =

∫ x

0
exp{T(x − t)}T0αAk(t)dt. (2.3)

Furthermore, we define the following transform matrices

A(x) =

∞∑
k=0

Ak(x), B(x) =

∞∑
k=0

Bk(x),

Ã(s) =

∫
∞

0
exp(−sx)dA(x), B̃(s) =

∫
∞

0
exp(−sx)dB(x).

From Eq. (2.3), it can be shown by a little algebra that

B̃(s) = (sI − T)−1T0αÃ(s).

Now we consider the stationary probability density of the number of customers in the system just after a departure.
Write it as π = (π0, π1, . . .), where π i = (πi1, πi2, . . . , πim), i ≥ 0, with

πi j = Pr{a departure leaves i customers in the system behind where the arrival process is in phase j}.

The stationary transition probability matrix Q(∞) and π satisfy

πQ(∞) = π , πe = 1.

The vector π0 can be obtained by the method called “matrix-geometric” solutions at departure points. The embedded
Markov renewal process, obtained by considering the queue length and the state of the arrival phase, has a transition
probability matrix of M/G/1 type. General procedures for solving the probability distributions of queues of this type
have been developed by Neuts [9].

With the stationary probability at the departure points, we are able to give the distribution of interdeparture time
and investigate its dependence structure.

2.2. Departure processes

Next, we will look into the departure process of the PH/G/1 queue, and describe the departure process in terms
of the interdeparture intervals. Recall the successive departure time denoted by {τn : n ≥ 0} with τ0 = 0. Consider
the stationary sequence of positive random variables {Dn} with finite mean E[Dn]; the corresponding distribution
function is given by D(x) = Pr{Dn ≤ x}, which, in view of stationarity, is the same as that of Dn (all n). Define its
Laplace–Stieltjes transforms by D̃(s).

Theorem 2.1. For the PH/G/1 queue, the LST of the interdeparture time is given by{
π0(sI − T)−1T0 H̃(s) + (1 − π0e)H̃(s) if ρ < 1
H̃(s) if ρ ≥ 1.
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Proof. If ρ ≥ 1, it is straightforward that D̃(s) = H̃(s) due to no idle period almost surely. On the other hand,
suppose that ρ < 1. According to (2.1) and (2.2), we write

D(x) = Pr{Dn ≤ x}

=

∞∑
i=0

m∑
j=1

Pr{Dn ≤ x | (Xn, Jn) = (i, j)}Pr{(Xn, Jn) = (i, j)}

=

m∑
j=1

(
∞∑

k=0

m∑
l=1

Pr{Xn+1 − Xn = k, Jn+1 = l, Dn ≤ x | (Xn, Jn) = (0, j)}

)
Pr{(Xn, Jn) = (0, j)}

+

∞∑
i=1

m∑
j=1

(
∞∑

k=0

m∑
l=1

Pr{Xn+1 − Xn = k − 1, Jn+1 = l, Dn ≤ x | (Xn, Jn) = (i, j)}

)
× Pr{(Xn, Jn) = (i, j)}

=

m∑
j=1

π0 j

(
∞∑

k=0

m∑
l=1

[Bk(x)] jl

)
+

∞∑
i=1

m∑
j=1

πi j

(
∞∑

k=0

m∑
l=1

[Ak(x)] jl

)

=

m∑
j=1

π0 j

(
m∑

l=1

[B(x)] jl

)
+

∞∑
i=1

m∑
j=1

πi j

(
m∑

l=1

[A(x)] jl

)

= π0{B(x)e} +

∞∑
i=1

π i {A(x)e}

= π0{B(x)e} +

{
∞∑

i=1

π i

}
A(x)e.

In terms of LST, we rewrite it and give

D̃(s) = π0{B̃(s)e} +

{
∞∑

i=1

π i

}
{Ã(s)e}

= π0{(sI − T)−1T0αÃ(s)e} +

{
∞∑

i=1

π i

}
{H̃(s)e}

= π0{(sI − T)−1T0α H̃(s)e} + (1 − π0e)H̃(s)

= π0(sI − T)−1T0 H̃(s) + (1 − π0e)H̃(s).

This completes the proof. �

Remarks: Denote by In the idle time between serving the (n − 1)th and nth customers. When the server is busy,
we have In = 0. Depending on a service condition, the interdeparture time Dn of customer n can be written as

Dn = In + Sn, (2.4)

where Sn is the service time of the nth customer. Thus, D(·) can be written as the convolution of I (·) and H(·).
Apparently, I (·) is the idle time distribution at the departure epochs. I (·) can be considered similarly to F(·), with a
stationary probability π0 instead of α, i.e., I (·) is the PH-distribution with representation (π0, T). Its LST is denoted
by Ĩ (s). Therefore, (2.4) implies

D̃(s) = Ĩ (s)H̃(s).

Hence, it explicitly yields

Ĩ (s) = π0(sI − T)−1T0
+ (1 − π0e).
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2.3. Performance analysis of the departure processes

In order to characterize the departure process, we present the Laplace–Stieltjes transform of a corresponding
interdeparture time distribution. We obtain other interesting performance measures from its Laplace–Stieltjes
transform D̃(s). First, the moments of the interdeparture distribution are important descriptors of the output process.
We recall a general result given in the following lemma.

Lemma 2.2. Let D denote the interdeparture time. Then, we have

E[Dn
] = (−1)n dn D̃(s)

dsn

∣∣∣∣∣
s=0

.

Thus, we can derive the mean interdeparture time and its variance from its Laplace–Stieltjes transform in Lemma 2.2.
The mean interdeparture time determines the throughput of the system. The variance provides a measure of the
variability of the output process.

Let I denote the idle time, i.e., the limit of In as n → ∞. In (2.4), because In and Sn are independent, we have
E[D] = E[I ] + E[S] and Var[D] = Var[I ] + Var[S] by taking the limit as n → ∞. Consequently, we have the
following theorem.

Theorem 2.3. For the stationary PH/G/1 queue, the mean idle time is

E[I ] = π0(−T)−1e,

and the mean interdeparture time is

E[D] = π0(−T)−1e + h.

Proof. By differentiating D̃(s) with respect to s, we have

D̃′(s) = π0{−(sI − T)−2T0 H̃(s) + (sI − T)−1T0 H̃ ′(s)} + (1 − π0e)H̃ ′(s). (2.5)

Hence, we have E[D] = −D̃′(0) = π0(−T)−1e + h and E[I ] = π0(−T)−1e. �

Theorem 2.4. For a stationary PH/G/1 queue, the variance of an idle time is

Var[I ] = 2π0(−T)−2e − [π0(−T)−1e]2,

and the variance of the interdeparture time is

Var[D] = 2π0(−T)−2e − [π0(−T)−1e]2
+ Var[S].

Proof. By Eq. (2.5), we obtain

D̃′′(s) = π0{2(sI − T)−3T0 H̃(s) − 2(sI − T)−2T0 H̃ ′(s) +(sI − T)−1T0 H̃ ′′(s)} + (1 − π0e)H̃ ′′(s).

Hence, we have the variance of the interdeparture time given by

Var[D] = E[D2
] − E2

[D] = D̃′′(0) − [−D̃′(0)]2

= 2π0(−T )−2e − [π0(−T )−1e]2
+ Var[S], (2.6)

where Var[S] = H̃ ′′(0) − h2 is the variance of the service time. Then, Var[I ] = 2π0(−T)−2e − [π0(−T)−1e]2. �

With the independence of I and S, it shows that, for a G I/G/1 system, we have Var[D] ≥ Var[S], which
reconfirms the results attained by Daley [2] that the equality holds if and only if the system is D/D/1 without an
idle time.

Now, we consider the squared coefficient of variation of the interdeparture time c2
D , which is defined by

c2
D =

Var[D]

E2[D]
.
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The squared coefficient of variation is a measure of the variability of the random variable D. For example, the
deterministic distribution has c2

D = 0, the exponential distribution has c2
D = 1, and the Erlang-k distribution has

the intermediate value c2
D = 1/k.

For a stationary queue, the departure rate will be the same as the arrival rate. That is, equivalently, E[D] =
1
λ

.
From Theorem 2.4, we have the squared coefficient of variation of the interdeparture time as follows.

Corollary 2.5. For the stationary PH/G/1 queue, we have the squared coefficient of variation of the interdeparture
time

c2
D = λ2

{2π0(−T )−2e − [π0(−T )−1e]2
+ Var(S)}.

Proof. Under the stability assumption, the mean departure rate is λ and, by (2.6), we have the result. �

In previous studies, many researchers have analyzed the correlation of departure processes in various models such
as M/M/1, M/Ek/1, and M/G/1 in Jenkins [4], King [5], and Takagi and Nishi [11], respectively. Nevertheless, we
intend to investigate which properties will be preserved for the departure process if the queue is no longer an M/M/1
queue. In particular, we will pay attention to the property of IFR. Both important characteristics will be discussed
after introducing the stochastic order relations.

We briefly review a few notions of the stochastic order relations. First of all, we recall the concept of failure rates
for the lifetime distribution of an item. Consider the stationary interdeparture time, a nonnegative random D, as the
lifetime of an item.

Let X be a nonnegative random variable with distribution FX (·) and density fX (·) when it exists. The survival
probability of X is given by

F̄X (x) = 1 − FX (x) = P{X > x}, x ≥ 0.

The failure rate or hazard rate is defined by

r(x) =
fX (x)

F̄X (x)
, x ≥ 0. (2.7)

Referring to Buzacott and Shanthikumar [1], we give the following definitions.

Definition 2.6. A non-negative random variable X is said to have an increasing failure rate (IFR) if the failure rate
r(x) is non-decreasing in x , and it is said to have a decreasing failure rate (DFR) if r(x) is non-increasing in x .

Theorem 2.7. For an Erlang-k distribution with mean 1
µ

, the failure rate is increasing from zero to kµ, which the
means that the Erlang-k distribution is IFR.

Proof. Consider a gamma density function g(t) which is given by

g(t) =
θβ tβ−1

Γ (β)
e−θ t , t ≥ 0,

where the shape parameter β and the scale parameter θ are both positive. Γ (β) is the complete gamma function
defined by Γ (β) =

∫
∞

0 e−t tβ−1dt, β > 0. Characterizing the failure rate of the gamma density, we observe that the
failure rate function is increasing from zero to θ for β > 1 and is decreasing from infinity to θ for β < 1. The gamma
distribution with β = 1 (i.e., the exponential distribution) has a constant failure rate θ . Since an Erlang-k distribution
is a special case of the gamma density function with β = k > 1, we have proved the theorem. �

Note that the failure rate of the exponential distribution r(x) = f (x)/F̄(x) = µ exp(−µx)/ exp(−µx) = µ is a
constant. However, we are interested in the interdeparture time, whether or not it preserves the IFR property. We obtain
the distribution D(x) from its LST D̃(s) by taking its inversion of LST and calculating r(x) of the interdeparture time
distribution. Because of the complexity of the PH/G/1 queue, we restrict our study to the Em/Ek/1 queue, which
is described in the next section. We examine conditions under which the interdeparture time is IFR for the Em/Ek/1
queue, where the service time and interarrival time are both Erlang distributions with increasing failure rates.
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2.4. Departure processes of a PH/D/1 queue

This subsection focuses on a deterministic service time. In this case, we have the distribution function of the service
time

H(x) =

{
1 if x ≥ h
0 if x < h

which has Laplace–Stieltjes transform H̃(s) = exp(−sh). Then, by Theorem 2.1, we have that the LST of the
interdeparture time is given by

D̃(s) = [π0(sI − T)−1T0
+ (1 − π0e)] exp(−sh). (2.8)

Therefore, we have the variance and the squared coefficient of variance of the interdeparture time, which are

Var[D] = 2π0(−T)−2e − [π0(−T)−1e]2

and

c2
D = λ2

{2π0(−T )−2e − [π0(−T )−1e]2
}.

Now, we consider the failure rate r(x) of the interdeparture time. It is written in the following theorem.

Theorem 2.8. For the stationary PH/D/1 queue, the failure rate r(x) is given by

r(x) =


rI (x − h) if x > h
1 − π0e

π0e
if x = h

0 if x < h,

(2.9)

where rI (·) is the failure rate of the idle time distribution.

Proof. Suppose that x > h. From (2.7) and by setting D = I + h, where h is a constant, we have

r(x) =

d
dx Pr{D ≤ x}

Pr{D > x}

=

d
dx Pr{I ≤ x − h}

Pr{I > x − h}

= rI (x − h).

Since the service time is a constant h, the probability of x < h is zero. If x = h, then

r(h) = rI (0) =
1 − π0e

π0e
.

Hence, we have completed the proof. �

We have given the failure rate r(x) of PH/D/1. In general, we know that, if the limx→h+ r(x) = limx→0+ rI (x) <
1−π0e
π0e , the interdeparture time is not IFR. In this regard, the interdeparture time of the M/D/1 queue is not IFR. We

will discuss this in the next section.

3. Performance analysis of departure processes of the Em/Ek/1 queue

3.1. Laplace–Stieltjes transform

In this section, we deal with the output process of the Em/Ek/1 queue with arrival rate λ and mean service
time 1/µ. The Erlang-k distribution with mean 1

λ
is a special case of PH-distributions. It may be presented by
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α = (1, 0, . . . , 0), and the k × k matrix T is given by

T =


−kλ kλ

−kλ kλ

· · · · · ·

−kλ

 .

The probability density function can be written as

f (x) =
(kλ)k

(k − 1)!
xk−1 exp(−kλx), for x ≥ 0,

and the Laplace–Stieltjes transform F̃(s) is given by

F̃(s) =

(
kλ

s + kλ

)k

. (3.1)

By Theorem 2.1, we may obtain the LST of the interdeparture time.

Lemma 3.1. Let D̃(s) be the LST of the stationary interdeparture time distribution for the Em/Ek/1 queue. This
produces

D̃(s) =

m∑
j=1

π0( j)

(
mλ

s + mλ

)m+1− j ( kµ

s + kµ

)k

+ (1 − π0e)
(

kµ

s + kµ

)k

. (3.2)

Proof. By Theorem 2.1 and (3.1), it is easy to attain the result. �

3.2. Performance analysis

Now, we consider some important performance measures of the interdeparture time for the Em/Ek/1 queue.
Applying formulas for the moments given by LST in Lemma 2.2, we obtain the mean of the interdeparture time
distribution and have the following results.

Lemma 3.2. For the stationary Em/Ek/1 queue, we have

E[D] =

m∑
j=1

π0( j)(m + 1 − j)

mλ
+

1
µ

.

Proof. Given a distribution function of Em and

−T−1
=



1
mλ

1
mλ

1
mλ

· · ·
1

mλ
1

mλ

1
mλ

· · ·
1

mλ
· · · · · ·

1
mλ

 ,

we have

−T−1e =

(
m

mλ
,

m − 1
mλ

, . . . ,
1

mλ

)t

.

By Theorem 2.3 and h = 1/µ, we have proved the result. �
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Lemma 3.3. For a stationary Em/Ek/1 queue, we have the variance of the interdeparture time Var[D] which is

m∑
j=1

π0( j)(m + 1 − j)2

(mλ)2 +

m∑
j=1

π0( j)(m + 1 − j)

(mλ)2 −

(
m∑

j=1

π0( j)(m + 1 − j)

mλ

)2

+
1

kµ2 .

Proof. Given T of Em , we have

(−T)−2
=

1

(mλ)2


1 2 3 · · · m

1 2 · · · m − 1
· · · · · ·

1

 .

Hence, we have

(−T)−2e =
1

2(mλ)2 (m2
+ m, (m − 1)2

+ (m − 1), . . . , 1 + 1)t .

By Theorem 2.4, the result is derived immediately. �

Lemma 3.4. For the stationary Em/Ek/1 queue, we have E[D] =
1
λ

, which implies

m∑
j=1

π0( j)(m + 1 − j) = m

(
1 −

λ

µ

)
.

Proof. This is trivial because, under the stability condition λ
µ

< 1, the departure rate will be the same as the arrival
rate. From Lemma 3.2, we have

E[D] =

m∑
j=1

π0( j)(m + 1 − j)

mλ
+

1
µ

=
1
λ

implying

m∑
j=1

π0( j)(m + 1 − j) = m

(
1 −

λ

µ

)
. �

Lemma 3.4 gives an average of the remaining phases of arrival to enter the system. It also provides a simple
calculation for obtaining c2

D .

Theorem 3.5. For a stationary Em/Ek/1 model, we have the squared coefficient of variation of the interdeparture
time c2

D =
Var[D]

E2[D]
≤ 1.

Proof. Let ρ =
λ
µ

. By Lemmas 3.3 and 3.4, we have

c2
D =

1

m2

m∑
j=1

π0( j)(m + 1 − j)2
+

1
m

(1 − ρ) − (1 − ρ)2
+

1
k
ρ2

≤ (1 − ρ) +
1
m

(1 − ρ) − (1 − ρ)2
+

1
k
ρ2

= ρ(1 − ρ) +
1
m

(1 − ρ) +
1
k
ρ2

≤ 1. �

By a different approach, Buzacott and Shanthikumar [1] showed that, for any G I/G/1 queue with DMRL
(decreasing mean residual life) interarrival time, the upper bound of c2

D is c2
A(1 − ρ) + ρ2c2

S + ρ(1 − ρ), and
when the interarrival time has the property IMRL (increasing mean residual life), the lower bound of c2

D is
c2

A(1 − ρ) + ρ2c2
S + ρ(1 − ρ), where c2

A and c2
S are the squared coefficient of variation of the interarrival time
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and service time, respectively. Since Erlang distributions are DMRL and hyper-exponential distributions are IMRL,
it is easy to check with the upper bound condition of the Em/Ek/1 queue that has c2

D ≤ 1. With the lower bound
condition, it is easy to show that the Hm/Hk/1 queue has c2

D ≥ 1, in which the interarrival time and service time are
both hyper-exponential distributions with c2

A and c2
S being greater than one.

3.3. Stochastic properties

In this subsection, we consider the failure rate for the stationary interdeparture time of Em/Ek/1 queues. We find
that the stationary interdeparture time does not preserve the property of IFR, even if the interarrival time and the
service time are both IFR. We will consider conditions under which the interdeparture time preserves the property of
IFR for the Em/Ek/1 queue.

From Eq. (3.2), we employ the method of partial fractions that separates it in terms of λ and µ, respectively. We
have

D̃(s) =

m∑
j=1

a j

(
mλ

s + mλ

) j

+

k∑
i=1

bi

(
kµ

s + kµ

)i

, (3.3)

where a j and bi are coefficients associated with each term of λ and µ. We will discuss the method of partial fractions
and how to obtain a j and bi in numerical examples.

Taking the inverse transform of Eq. (3.3), we have that the density function of the interdeparture time is in the form

d(x) =

m∑
j=1

a j
(mλ) j

( j − 1)!
x j−1 exp(−mλx) +

k∑
i=1

bi
(kµ)i

(i − 1)!
x i−1 exp(−kµx).

The coefficients a j and bi are attained in accordance with the method of partial fractions and the stationary probability
π0 that a departure leaves the system empty with respect to the arrival phases. Because there are no general properties
of a j and bi , we consider the initial value of the failure rate r(x) of the interdeparture time distribution, and we have
the following theorem.

Theorem 3.6. For a stationary Em/Ek/1 queue, the initial value of the failure rate r(x) of the interdeparture time
distribution is

lim
x→0+

r(x) =

{
(1 − π0e)µ if k = 1
0 if k ≥ 2.

Proof. With the phase parameter of service time distribution k ≥ 2, it is easy to verify that limx→0+ r(x) =

limx→0+ d(x) = 0. But, when the service time is an exponential distribution, limx→0+ d(x) is a constant, namely
(1 − π0e)µ, which is not equal to zero. �

Now we consider the final value of the failure rate r(x) of the interdeparture time distribution. Since the final value
of failure rates of an Erlang-k distribution converges to θ as x → ∞, where θ = kµ, does the failure rate of the
interdeparture time distribution r(x) converge as x → ∞, and what is the limit?

Theorem 3.7. For the stationary Em/Ek/1 queue, the final value of the failure rate r(x) of the interdeparture time
distribution is given by

lim
x→∞

r(x) =

{
mλ if mλ ≤ kµ, (k ≥ mρ)

kµ if mλ > kµ, (k < mρ).

Equivalently, it gives

lim
x→∞

r(x) = min{mλ, kµ}.
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Proof. Taking the limit of r(x), we have

lim
x→∞

r(x) = lim
x→∞

d(x)

D̄(x)
= lim

x→∞
−

d ′(x)

d(x)
,

where

d ′(x) =

m∑
j=2

a j
(mλ) j

( j − 2)!
x j−2 exp(−mλx) −

m∑
j=1

a j
(mλ) j+1

( j − 1)!
x j−1 exp(−mλx)

+

k∑
i=2

bi
(kµ)i

(i − 2)!
x i−2 exp(−kµx) −

k∑
i=1

bi
(kµ)i+1

(i − 1)!
x i−1 exp(−kµx).

To characterize the limit of the failure rate, we distinguish it between the cases mλ > kµ and mλ ≤ kµ, then we have

lim
x→∞

r(x) =

{
mλ if mλ ≤ kµ, (k ≥ mρ)

kµ if mλ > kµ, (k < mρ). �

Is the failure rate of the interdeparture time increasing in x? The answer is not easy to provide by analysis in
general, because of the complexity of the stationary density π0. Instead, we discuss the failure rate property in the
next section and examine it by numerical method using Matlab. We will display some numerical results in the next
section.

3.4. Failure rate analysis of Em/D/1 queues

In this subsection, we consider a deterministic service case, since F(·) converges to a constant as k → ∞.
According to Section 2, we can obtain several performance indices for the departure process. We examine whether or
not the interdeparture time of the Em/D/1 queue has a non-decreasing failure rate. By Theorem 2.8, the failure rate
r(x) of a stationary Em/D/1 queue is given by (2.9). The LST of I (·) is given by Ĩ (s) =

∑m
j=1 π0( j)( mλ

s+mλ
)m+1− j

+

(1 − π0e), which is derived from Theorem 2.1. Let i(x) be the probability density function of I (x). We have

lim
x→0+

I (x) = 1 − π0e

and

lim
x→0+

i(x) = π0(m)mλ.

Since rI (x) =
i(x)

1−I (x)
, we have

lim
x→0+

rI (x) =
π0(m)mλ

π0e
. (3.4)

For m = 1, namely the M/D/1 queue, we have I (x) = 1−(1−ρ) exp(−λx) for x > 0. Then, limx→0+ rI (x) = λ.
When we let λ = ρ with service rate µ = 1, we have limx→h+ r(x) = λ < ρ/(1 − ρ). This implies that the output
process for the M/D/1 queue does not have the IFR property.

If m ≥ 2, we have limx→h+ r(x) = limx→0+ rI (x) =
π0(m)mλ

π0e by Eq. (3.4). We will investigate whether or not
limx→h+ r(x) is larger than (1 − π0e)/π0e by numerical method in the next section.

4. Numerical examples and discussion

We know that the interdeparture time for the M/M/1 queue has an exponential distribution and it is IFR with a
constant failure rate. Is the failure rate of the interdeparture time for the Em/Ek/1 queue non-decreasing? When the
arrival process is not a Poisson process, the analysis of the output process becomes more complex. In this section,
we will give the results by displaying graphs of r(x) in Matlab and examining the failure rate of various Em/Ek/1
queues.
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We will show how we calculate the failure rate of the interdeparture time by numerical examples. We take advantage
of the computer to visualize the performance of the output process. Let the service time distribution be Erlang-k with
mean service rate 1.0 for k = 1, 2, 3, 5, 10, 20. The arrival process is Erlang-m with arrival rate 0.1, 0.5, and 0.9 for
light, median and heavy traffic. To characterize the property of the failure rate, we categorize the stationary Em/Ek/1
queues into the following cases.

4.1. M/Ek/1 queues

In this case, we set m = 1 and k = 2, 3, 5, 10, 20. Since k ≥ 2, we have that the initial value of r(x) is zero from
Theorem 3.6. From Theorem 3.7, we have that the failure rate r(x) converges to λ because k > 1 > ρ. We take the
M/E2/1 queue with ρ = 0.1 as an example, explained in the following.

Example 1. M/E2/1 queue with ρ = 0.1.

First, from Lemma 3.1, we have that the LST of the interdeparture time D̃(s) is given by

D̃(s) = (1 − ρ)
λ

s + λ

(
2µ

s + 2µ

)2

+ ρ

(
2µ

s + 2µ

)2

.

By (3.3), we use the method of partial fractions. Taking λ = 0.1 and µ = 1, we have

D̃(s) =
360
361

0.1
s + 0.1

−
18

361
2

s + 2
+

1
19

(
2

s + 2

)2

. (4.1)

By the inverse of the LST (4.1), we have

D(x) = 1 −

[
360
361

e−0.1x
+

1
361

e−2x
+

2
19

xe−2x
]

, x ≥ 0.

The expected value is E[D] = 10.0 and the variance is Var[D] = 99.5. Then the squared coefficient of variation is
c2

D = 0.995 < 1. Thus, we have the failure rate r(x) =
d(x)

1−D(x)
by definition. Taking the limit of r(x) as x → 0+ and

x → ∞, we have the initial value 0 and the final value 0.1 of r(x). We draw the graph of r(x) using Matlab and find
that r(x) is not non-decreasing in x . The graph is given in Fig. 1.

We plot r(x) for k = 2, 3, 5, 10, 20 for M/Ek/1 with traffic loads ρ = 0.5 and 0.9 in Figs. 2 and 3, respectively.
From Figs. 1–3, we found that, for every M/Ek/1 queue, there exists a value c such that the failure rate r(x) increases
from zero to c then decreases and converges to λ. From this, we know that the failure rate of interdeparture time for
M/Ek/1 queues is not IFR.

4.2. Em/M/1 queues

In this case, let k = 1 and m = 2, 3, 5, 10, 20. Since k = 1, we have that the initial value of r(x) is (1−π0e)µ from
Theorem 3.6. From Theorem 3.7, we have that the failure rate r(x) converges to min{mλ, µ}. We take the E2/M/1
queue with ρ = 0.5 as an example, explained in the following.

Example 2. E2/M/1 queue with ρ = 0.5.

From Lemma 3.1, we have that the LST of the interdeparture time D̃(s) is given by

D̃(s) = π0(1)

(
2λ

s + 2λ

)2
µ

s + µ
+ π0(2)

2λ

s + 2λ

µ

s + µ
+ (1 − π0e)

µ

s + µ
.

When λ = 0.5 and µ = 1, we have 2λ = µ. In this example, we do not need to use the method of partial fractions.
Taking λ = 0.5 and µ = 1, we have

D̃(s) = π0(1)

(
1

s + 1

)3

+ π0(2)

(
1

s + 1

)2

+ (1 − π0e)
1

s + 1
. (4.2)
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Fig. 1. r(x) of M/Ek/1 with ρ = 0.1.

Fig. 2. r(x) of M/Ek/1 with ρ = 0.5.

By using the “matrix-geometric” method to solve π0, we have π0 = (0.38196601125011, 0.23606797749979).
Taking the inverse of the LST (4.2), we have

D(x) = 1 − e−x
− 0.618034 · xe−x

− 0.190983 · x2e−x , x ≥ 0.

The expected value is E[D] = 2.0 and the variance is Var[D] = 2.76393. Then we have that the squared coefficient
of variation is c2

D = 0.69098 < 1. Furthermore, we have the failure rate

r(x) =
d(x)

1 − D(x)
=

0.381966 · e−x
+ 0.236068 · xe−x

+ 0.190983 · x2e−x

e−x + 0.618034 · xe−x + 0.190983 · x2e−x

=
0.381966 + 0.236068x + 0.190983x2

1 + 0.618034x + 0.190983x2 . (4.3)
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Fig. 3. r(x) of M/Ek/1 with ρ = 0.9.

Fig. 4. r(x) of Em/M/1 with ρ = 0.1.

Taking the limit of r(x) in (4.3) as x → 0+ and x → ∞, we have the initial value 0.381966 and the final value 1 of
r(x). By differentiating r(x) in (4.3), we have

r ′(x) =
0.072949012x2

+ 0.236067974x + 0.0000000252

(1 + 0.618034x + 0.190983x2)2 > 0, for x ≥ 0.

Hence, r(x) is increasing in x . That is, the interdeparture time of the E2/M/1 queue with ρ = 0.5 preserves the IFR
property. We draw the graph of r(x) using Matlab and find that r(x) is non-decreasing in x . The graph is given in
Fig. 5.

Meanwhile, we plot r(x) for m = 2, 3, 5, 10, 20 for Em/M/1 with traffic loads ρ = 0.1 and 0.9 given in Figs. 4
and 6, respectively.

We found that the initial value of r(x) is (1 − π0e)µ, not zero. From Figs. 4–6, we have that the failure rate r(x)

increases from (1 − π0e)µ and converges to min{mλ, 1}. In Fig. 6, the failure rate converges to 1. No matter whether
the traffic load is light, medium or heavy, we found that the interdeparture time of Em/M/1 queues preserves the IFR
property in our experiments.
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Fig. 5. r(x) of Em/M/1 with ρ = 0.5.

Fig. 6. r(x) of Em/M/1 with ρ = 0.9.

4.3. Em/Ek/1 queues

In this case, we consider the general cases of Erlang distributions. We investigate the failure rate function of the
Em/Ek/1 queues, where m and k are given by 2, 3, 5, 10, 20. Since service time is assumed to be an Erlang-k
distribution with k ≥ 2, we have that the initial value of r(x) is 0, from Theorem 3.6. From Theorem 3.7, we have that
the failure rate r(x) converges to min{mλ, kµ}. We take an E2/E2/1 queue with ρ = 0.9 as an example, explained in
the following.

Example 3. E2/E2/1 queue with ρ = 0.9.

By Eq. (3.3), we have

D̃(s) = π0(1)

(
2λ

s + 2λ

)2 ( 2µ

s + 2µ

)2

+ π0(2)
2λ

s + 2λ

(
2µ

s + 2µ

)2

+ (1 − π0e)
(

2µ

s + 2µ

)2

.
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Fig. 7. r(x) of E2/Ek/1 with ρ = 0.1.

Fig. 8. r(x) of E2/Ek/1 with ρ = 0.5.

Taking λ = 0.9, µ = 1 and π0 = (0.06074278417903, 0.07851443164195), we obtain the LST D̃(s). By the inverse
of the LST D̃(s), we have

D(x) = 1 − [10.9337xe−1.8x
− 95.4413e−1.8x

+ 96.4413e−2x
+ 10.1486xe−2x

], x ≥ 0.

The expected value is E[D] = 1.1111 and the variance is Var[D] = 0.6486. Then we have that the squared coefficient
of variation is c2

D = 0.52537 < 1. Taking the limit of r(x) as x → 0+ and x → ∞, we have the initial value 0 and
the final value 1.8 of r(x). We draw the graph of r(x) using Matlab and find that r(x) is increasing in x . The graph is
given in Fig. 9.

We plot r(x) for k = 2, 3, 5, 10, 20 for E2/Ek/1 with traffic loads ρ = 0.1, 0.5, and 0.9 in Figs. 7 and 8,
respectively.

We have examined the failure rates for m = 2, 3, 5 and k = 2, 3, 5, 10, 20. From Figs. 7–9, we found that the
failure rate r(x) of E2/Ek/1 is affected by k and ρ. In this example of m = 2, the interdeparture times of E2/M/1
and E2/E2/1 preserve the IFR property, no matter whether the traffic load is light, medium or heavy. For ρ = 0.9, the
interdeparture time of E2/E3/1 is not increasing in x . From the graphs of r(x) for the cases that are not IFR, we found
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Fig. 9. r(x) of E2/Ek/1 with ρ = 0.9.

that there exist two numbers a and b, where a < b such that r(x) is increasing in the interval [0, a] and decreasing in
[a, b]. Finally, the failure rate r(x) increases and converges to min{mλ, kµ}. Our conjecture is that if k ≤ m, then the
interdeparture time of Em/Ek/1 is IFR in our experiments.

4.4. Em/D/1 queues

In this case, we consider a deterministic service case where H̃(s) = exp(−sh) and h = 1/µ. In Section 3, we have
shown that the interdeparture time of the Em/D/1 queue does not preserve the IFR property and limx→0+ rI (x) = 0.
Furthermore, the failure rate r(x) will converge to mλ. Now, we take the E2/D/1 queue with ρ = 0.1 as an example,
explained in the following.

Example 4. E2/D/1 queue with ρ = 0.1.

From Eq. (2.8) and Lemma 3.1, we have that the LST of the interdeparture time D̃(s) of the E2/D/1 queue is
given by

D̃(s) =

(
π0(1)

(
2λ

s + 2λ

)2

+ π0(2)
2λ

s + 2λ
+ (1 − π0e)

)
exp(−sh). (4.4)

By the inverse of the LST (4.4), we have

D(x) =

1 − π0(1)(x − h)e−2λ(x−h)
− (π0e)e−2λ(x−h) if x > h

1 − π0e if x = h
0 if x < h.

(4.5)

Hence, we have that r(x) is the same as (2.9), where rI (x) is given by

rI (x) =
π0(1)xe−2λx

+ π0(2)e−2λx

π0(1)xe−2λx + (π0e)e−2λx
for x > 0. (4.6)

Furthermore, we differentiate rI (x), which results in r ′

I (x) > 0 for x > 0. Thus, notice that the failure rate of the
interdeparture time is increasing when x > h, regardless of λ and µ.

Now we consider the failure rate at x = h. Solving the vector π0, we have π0 = (0.8177650179, 0.1644699642)

when λ = 0.1 and µ = 1. Hence, we have π0(2)2λ = 0.032894 > 1 − π0e = 0.017765. That is, limx→h+ r(x) >

(1 − π0e)/π0e. Thus, we see that the failure rate of the interdeparture time is non-decreasing in x .
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Table 1
Comparing π0(m)mλ and 1 − π0e of Em/D/1 with λ = 0.1 and µ = 1

m 2 3 5 10 20

π0(m)mλ 0.032894 0.010019 0.000790 1.01 × 10−6 1.16 × 10−12

1 − π0e 0.017765 0.003613 0.000172 1.11 × 10−7 6.00 × 10−14

Diff. + + + + +

Table 2
Comparing π0(m)mλ and 1 − π0e of Em/D/1 with λ = 0.5 and µ = 1

m 2 3 5 10 20

π0(m)mλ 0.3534821 0.3794649 0.3444262 0.1851261 0.0374719
1 − π0e 0.3232589 0.2252732 0.1213415 0.033148 0.0034752
Diff. + + + + +

Table 3
Comparing π0(m)mλ and 1 − π0e of Em/D/1 with λ = 0.9 and µ = 1

m 2 3 5 10 20

π0(m)mλ 0.1904125 0.2857929 0.4611315 0.8283842 1.3628583
1 − π0e 0.8471076 0.8076807 0.7478285 0.6468613 0.5232651
Diff. − − − + +

We compare π0(m)mλ and (1 − π0e) for Em/D/1 with m = 2, 3, 5, 10, 20 and traffic loads ρ = 0.1, 0.5, and
0.9. If π0(m)mλ − (1 − π0e) ≥ 0 then limx→h+ r(x) > (1 − π0e)/π0e, which implies that the failure rate of the
interdeparture time is non-decreasing in x . The differences of π0(m)mλ and (1 − π0e), shown only by plus or minus
signs, are given in Tables 1–3, respectively, to visualize the behavior of r(x).

We have shown that the interdeparture time of the M/D/1 queue does not preserve the IFR property in Section 3.
In our experiments, we found that the failure rate of the interdeparture time is increasing when x > h. We also have
r(x) = 0 when x < h. From Tables 1–3, we found that limx→h+ r(x) = limx→0+ rI (x) <

1−π0e
π0e when m = 2, 3, 5

with ρ = 0.9. That is, they are not IFR. However, for m = 2, 3, 5, 10, 20 with ρ = 0.1, m = 2, 3, 5, 10, 20 with
ρ = 0.5 and m = 10, 20 with ρ = 0.9, we found that limx→h+ r(x) = limx→0+ rI (x) >

1−π0e
π0e . Hence, they are IFR.

From the curves of r(x) in the Figures, the failure rate increases (i.e., IFR) in the early stage. Afterwards, the failure
rate decreases (i.e., DFR) in the middle stage for the queues for which the interdeparture time is not IFR. However, the
failure rate decreases (i.e., DFR) in the final stage for M/Ek/1. Except the M/Ek/1 queues, the failure rate increases
(i.e., IFR) in the final stage for those queues with IFR departure processes.

5. Conclusions and future research

5.1. Conclusions

In this paper, we derived the Laplace–Stieltjes transform (LST) of the interdeparture time of the PH/G/1 queue
and gave some indices for the performance analysis of the departure process of the PH/G/1 queue, such as the
moments, the variance, and the squared coefficient of variation. We showed that the Em/Ek/1 queue has c2

D ≤ 1.
In particular, we analyzed the failure rate of the stationary interdeparture time. To the best of our knowledge, this

has not been studied before in this aspect. We focused on the IFR property of the interdeparture time of the Em/Ek/1
queue. Because of the complexity of the stationary probability density π0, we took advantage of the computer to
visualize the performance of the output process. We displayed some numerical results for the Em/Ek/1 queues. We
found that the interdeparture time does not always preserve the IFR property, even if the interarrival time and service
time are Erlang distributions with IFR. But if k ≤ m, the interdeparture time of Em/Ek/1 remains the IFR property in
our experiments. When the arrival process is not a Poisson process, the solution of the stationary density π0 becomes
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more complex. However, our conjecture is that the IFR propery of departure at Em/Ek/1 is independent of π0. This
only depends on the order of the number of phases in the arrival and service processes.

5.2. Future research

We have focused on the continuous time system with a PH-type arrival process in this paper. This can be extended
to discrete time analysis for the interdeparture time, that is, the interarrival time and service time are the discrete
distributions with the IFR property. For example, the uniform distribution, the geometric distribution and the negative
binomial distribution are IFR.

We propose some other studies for further investigation. First, it may be extended to more complicated arrival
and service distributions with the IFR property, such as Weibull distributions and normal distributions. Second, it is
interesting to check conditions under which the departure process preserves the DFR property. For example, does the
interdeparture time of the Hm/Hk/1 queue preserve the DFR property where the arrival and service processes have
hyper-exponential distributions?
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