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Abstract

An initial boundary value problem for systems of semilinear wave equations in a bounded
domain is considered. We prove the global existence, uniqueness and blow-up of solutions by
energy methods and give some estimates for the lifespan of solutions.
? 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Let � be a bounded domain in Rn; n¿ 1, with a boundary @� of class C2 and let
T ¿ 0. In this paper we shall consider the global existence and blow-up of solutions
of an initial boundary value problem for a system of nonlinear wave equations in a
bounded domain � × [0; T ), say

(ui)tt −6ui + m2
i ui + fi(u1; u2) = 0; i = 1; 2; (1.1)

u(x; 0) = �(x); ut(x; 0) =  (x); x∈�; (1.2)

u(x; t) = 0 on @� × (0; T ); (1.3)

here u= (u1; u2).
The existence and uniqueness of solutions of the Cauchy problem for a single wave

equation

utt −6u+ f(u) = 0 in R+ × Rn; n¿ 3;
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have been discussed by several authors during the past 30 years; see for example
[1,3,7,21,24,25] and the references therein. And some blow-up results can be found
in [4,6,9,14,23]. For an initial boundary value problem, some global existence and
blow-up results are given by [10–12]. Reed [20] proposed an interesting problem for
the following system of equations:

(u1)tt −6u1 + m2
1u1 =−4�(u1 + �u2)3 − 2�u1u22;

(u2)tt −6u2 + m2
2u2 =−4��(u1 + �u2)3 − 2�u21u2: (1.4)

As a model it describes the interaction of scalar Celds u1; u2 of masses m1; m2,
respectively. This system deCnes the motion of charged mesons in an electro-magnetic
Celd which was Crst introduced by Segal [22]. Later, JDorgens [8], Makhankov [16],
and Medeiros and Menzala [18] studied such systems to Cnd the existence of weak
solutions of the mixed problem in a bounded domain. Further generalizations are also
given in [17,19] by using Galerkin methods. Recently, the existence of global and
nonglobal solutions of a particular system was discussed in [13]. In [2], some results
concerning existence and nonexistence of global solutions of a Cauchy problem for
a hyperbolic system of Hamiltonian type in a unbounded domain is given by using
weighted Strichartz estimates.
In this paper, we shall discuss the existence, uniqueness and blow-up properties of

solutions in C2(0; T; L2(�)) ∩ C1(0; T; H 1
0 (�)) for a system (1.1)–(1.3) in a bounded

domain � in Rn. The paper is organized as follows. In Section 2, we derive
a priori estimates on solutions of the linear problem. Then we obtain the local
existence Theorem 2.4 by using successive approximation methods. In Section 3, we
shall prove the global existence result in Theorem 3.3. We also show the triviality of the
solution when the initial data are zero functions. In Section 4, we Crst deCne an energy
function E(t) by (3.1) and show that it is a constant function of t which will follow
immediately from some essential identities that will be used later for estimating the
lifespan T . Then we obtain Theorem 4.4, which shows blow-up of solutions under
some restrictions. Estimates for the blow-up time T are also given. In the last section,
we give a uniqueness result in Theorem 5.1 under further assumptions on f. In this
paper, we extend the result of Li [12] to the system of Hamiltonian type. In Examples
3.7 and 4.6, we also give a partial classiCcation of global existence and blow-up of
solutions in the problem (1.2)–(1.4) which is proposed in [20, p. 121].

2. Local existence results

In this section we shall discuss local existence of solutions for (1.1)–(1.3) by the
method of successive approximations. We Crst give some notations below. Let

H1 = C1(0; T; L2(�)) ∩ C0(0; T; H 1
0 (�));

H2 = C2(0; T; L2(�)) ∩ C1(0; T; H 1
0 (�));
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with the norms

‖u‖H1 = sup
06t6T

(‖ut‖2 + ‖∇u‖2)

and

‖u‖H2 = sup
06t6T

(‖utt‖2 + ‖∇ut‖2 + ‖∇u‖2):

We say h∈W 1;1(0; T; L2(�)), to mean that

h∈L1(0; T; L2(�)) and ht ∈L1(0; T; H 1
0 (�)):

De�nition. A function u = (u1; u2)∈H1 × H1 is called a weak solution of the initial
boundary value problem (1.1)–(1.3), if∫

�
[(ui)t(t)�i(t)− (ui)t(0)�i(0)] dx

=
∫ t

0

∫
�
[−∇ui · ∇�i + (ui)t(�i)t − m2

i ui�i + fi(u)�i] dx ds

holds for �= (�1; �2)∈H1× H1.

Assume that
(A1) fi :R2 → R is continuously diHerentiable such that for each u = (u1; u2)∈

H 1
0 (�)× H 1

0 (�), we have uifi(u)∈L1(�); i = 1; 2, and F(u)∈L1(�), where

F(u) =
∫ u1

0
f1(s; u2) ds+

∫ u2

0
f2(0; s) ds:

(A2) fi :H 1
0 (�)×H 1

0 (�) → L2(�); i=1; 2, satisCes a local Lipschitz condition, i.e.,
for any �¿ 0, there exists a positive constant C(�) such that

‖fi(u)− fi(v)‖L2 6C(�)‖u− v‖H 1
0×H 1

0
;

for u; v∈H 1
0 (�)× H 1

0 (�) with ‖u‖H 1
0×H 1

0
; ‖v‖H 1

0×H 1
0
6 �.

(A3)

@f1

@u2
=

@f2

@u1
:

Note that the functions of the form

f1(u1; u2) = us−1
1 us

2 + up
1 ; f2(u1; u2) = us

1u
s−1
2 + uq

2;

satisfy the assumptions (A1)–(A3) where 1¡s;p; q6 n=(n−2) for n¿ 3 or s; p; q¿ 1
for n=1; 2. The functions of mixed type in (1.4) also satisfy (A1)–(A3) when n=3.

Remark. For brevity, we only consider a system of two equations. In fact, a system
of k equations (k¿ 2) can be similarly investigated and here (A3) is replaced by
assuming that @fi=@uj = @fj=@ui for i 	= j; 16 i; j6 k.
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Before proving the existence theorem for nonlinear equations, we need the existence
result for linear wave equations which is given by Lions and Magenes [15, p. 95] and
Haraux [5, p. 31].

Lemma 2.1. Assume that f∈W 1;1(0; T; L2(�)) and that u1 ∈H 1
0 (�); u0 ∈H 1

0 (�) ∩
H 2(�). Then the linear problem for the scalar equation

utt −6u+ f(t; x) = 0;

u(x; 0) = u0(x); ut(x; 0) = u1(x); x∈�;

u(x; t) = 0 on @� × (0; T ); (2.1)

has a unique solution u∈H2.

Lemma 2.2 (A priori estimate). Let u be a solution of (2.1). Then we have the
inequality

‖Du‖2(t)6 ‖Du‖2(0) +
∫ t

0
‖f‖2(r) dr; (2.2)

where Du= (ut ;∇u) and ‖Du‖22(t) =
∫
�(u

2
t + |∇u|2) dx.

Proof. Multiplying by ut both sides of (2.1) and then integrating over �, we have∫
�
ut(utt −6u) dx =−

∫
�
utf dx: (2.3)

By the Divergence Theorem, we get∫
�
ut(utt −6u) dx =

1
2

d
dt

∫
�
(u2t + |∇u|2) dx: (2.4)

Combining (2.3) and (2.4), using HDolder’s inequality, we obtain

d
dt
‖Du‖2(t)6 ‖f‖2: (2.5)

Hence (2.2) follows at once by integrating (2.5) from 0 to t.

Remark. The continuous dependence of the solutions of (1.1)–(1.3) on the initial data
can be obtained by Lemma 2.2 and Gronwall’s inequality.

Theorem 2.3 (Local existence): Let �i ∈H 1
0 (�) and  i ∈L2(�) for i=1; 2, then there

exists a solution u of (1.1)–(1.3) in H1× H1.

Proof. Due to the fact that H 2(�)∩H 1
0 (�) is dense in H 1

0 (�) and H 1
0 (�) is dense in

L2(�), it suKces to consider this problem for �i ∈H 2(�)∩H 1
0 (�) and  i ∈H 1

0 (�) for
i=1; 2. Let {um}m¿1 be a sequence of solutions obtained by considering the following
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linear problems:

(um+1
i )tt −6um+1

i =−m2
i u

m
i − fi(um); i = 1; 2: (2.6)

um+1(x; 0) = �(x); um+1
t (x; 0) =  (x); x∈�;

um+1(x; t) = 0 on @� × (0; T ); (2.7)

with the initial function u1(x; t) ≡ �(x).
The existence and uniqueness of the solution um ∈H2 × H2 of (2.6), (2.7) is

guaranteed by Lemma 2.1 since the right-hand side of (2.6) is in W 1;1(0; T; L2(�))
due to (A1) and (A2).
By Lemma 2.2, we have

‖Dum+1
i ‖2(t)6 ‖Dum+1

i ‖2(0) +
∫ t

0
‖m2

i u
m
i + fi(um)‖2(r) dr: (2.8)

Denote by

�i = ‖Dum+1
i ‖2(0) = (‖ ‖22 + ‖∇�‖22)1=2; i = 1; 2: (2.9)

And let

� = �1 + �2: (2.10)

For m¿ 1 and i = 1; 2, deCne

Gm;i = m2
i ‖um

i ‖2 + ‖fi(um)‖2: (2.11)

Let

Hk(t) ≡ ‖Duk‖2(t) = ‖Duk
1‖2(t) + ‖Duk

2‖2(t); k¿ 1; (2.12)

where Duk = (Duk
1; Duk

2), for uk = (uk
1; u

k
2).

We see that

Gm;1 + Gm;26C‖Dum‖2(t): (2.13)

From (2.8), we have

‖Du2i ‖2(t)6 �i +
∫ t

0
(m2

i ‖�i‖+ ‖fi(�)‖2) dr

6 �i + G1; it: (2.14)

Note that by (2.13), we have

H 2(t)6 � + Ct‖Du1‖2(t): (2.15)

DeCne

‖u‖∞; ( = sup{‖Du‖2(t) | 06 t6 (}:
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Let M be a positive constant such that M ¿�. Then H 1(t)6M , for 06 t6 (, or
‖u1‖∞; (6M . Thus from (2.15), we have

H 2(t)6 � + CtM6M for 06 t6 (; (2.16)

provided that (= (M − �)=CM .
That is,

‖u2‖∞; (6M: (2.17)

Suppose that ‖um‖∞; (6M . By adding (2.8) and by using (2.13), we have

Hm+1(t)6 � + (Gm;1 + Gm;2)t

6 � + Ct‖Dum‖2(t)6M; 06 t6 (: (2.18)

Thus ‖um+1‖∞; (6M . Therefore, we have

‖um‖∞; (6M for all m¿ 1: (2.19)

Next we claim that {um}m¿1 is a Cauchy sequence in H1×H1. Let zm = um+1 − um.
From (2.6) and (2.7), we see that

(zmi )tt − +(zmi ) =−m2
i z

m−1
i − (fi(um)− fi(um−1)); (2.20)

zm(x; 0) = 0; zmt (x; 0) = 0; x∈�; zm(x; t) = 0 on @� × (0; T ): (2.21)

As in the previous argument, we see that

‖Dzm‖2(t)6 ‖Dzm‖2(0)

+
2∑

i=1

∫ t

0
{m2

i ‖zm−1
i ‖2 + ‖fi(um)− fi(um−1)‖2} dr: (2.22)

From (2.21), ‖Dzm‖2(0) = 0. By (2.19), (A2) and by Sobolev’s inequality, we obtain

‖D(zm)‖2(t)6K
∫ t

0
‖D(zm−1)‖2(r) dr; 06 t6 (; (2.23)

where K is a constant depending on m1; m2 and the Sobolev constant. Thus by induction
we have

‖zm‖∞; (6K(‖zm−1‖∞; (6 · · ·6 (K()m−1‖z1‖∞; (: (2.24)

Thus for any positive integer p and K(∈ (0; 1), we get

‖um+p − um‖∞; (6 [(K()m+p−2 + · · ·+ (K()m−1]‖u2 − u1‖∞; (

6
(K()m−1

1− K(
‖u2 − u1‖∞; ( → 0; as m → ∞:
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Thus the Cauchy sequence {um}m¿1 converges in H1 × H1 and the limit function
u= limm→∞ um in H1× H1 is a local solution of (1.1)–(1.3).

3. Global existence

In this section, we shall show the local uniqueness and the global existence of
solutions u for the problem (1.1)–(1.3). Before doing this, we shall prove that ‖Du‖2(t)
is uniformly bounded by a constant (independent of t) for all 06 t6T6∞.

We Crst deCne an energy function E(t) by

E(t) =
1
2

2∑
i=1

∫
�
(|∇ui|2 + (ui)2t + m2

i u
2
i ) dx +

∫
�
F(u) dx; (3.1)

where F is given in (A1).

Lemma 3.1. Let u be a solution of (1.1)–(1.3). Then

E(t) =
1
2

2∑
i=1

∫
�
(|∇�i|2 +  2

i + m2
i �

2
i ) dx +

∫
�
F(�) dx: (3.2)

Proof. We see that dE=dt = 0 by using the Divergence Theorem, (1.1)–(1.3). Thus
E(t) = E(0) for t ¿ 0, i.e., we have (3.2).

Lemma 3.2. Let u be a solution of (1.1)–(1.3). Assume that
(A4)

2F(-) +
2∑

i=1

m2
i -

2
i ¿ 0 for -= (-1; -2)∈R2:

Then we have

‖Du‖22(t)6E(0) for all t¿ 0: (3.3)

Proof. Eq. (3.3) follows at once from (3.2) and (A4).

Theorem 3.3 (Global existence). If (A1)–(A4) holds, then there exists a global
solution u of (1.1)–(1.3).

Proof. We Crst claim the local uniqueness of solutions of (1.1)–(1.3). Let u and u∗

be two solutions of (1.1)–(1.3) and let w = u− u∗, then we get, for i = 1; 2,

(wi)tt −6wi =−m2
i (ui − u∗i )− (fi(u)− fi(u∗)): (3.4)

Multiplying (3.4) by (wi)t and then integrating over �, we obtain

1
2

d
dt

‖Dwi‖226 ‖(wi)t‖2{‖m2
i (ui − u∗i )‖2 + ‖fi(u)− fi(u∗)‖2}; (3.5)
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for i = 1; 2, or

d
dt

‖Dwi‖26 ‖m2
i (ui − u∗i )‖2 + ‖fi(u)− fi(u∗)‖2: (3.6)

Hence we have

d
dt

‖Dw‖26
2∑

i=1

{m2
i ‖(ui − u∗i )‖2 + ‖fi(u)− fi(u∗)‖2}: (3.7)

Note that by Lemma 3.2 we have

‖Dw‖22(t)6E(0) for t¿ 0: (3.8)

By using the Lipschitz condition on f and Sobolev’s inequality, we obtain

d
dt

‖Dw‖2(t)6C‖Dw‖2(t); (3.9)

where C is some constant.
After integrating (3.9), we obtain

‖Dw‖2(t)6 eC(‖Dw‖2(0) for 06 t6 (: (3.10)

Hence ‖Dw‖2(t)=0 for 06 t6 (, and we have proved local uniqueness of the solution
of (1.1)–(1.3).
A global solution of (1.1)–(1.3) can be obtained in the usual manner because of

(3.3). Once we have a local solution u in [0; (), we then set

M�(·) = u
(
·; (
2

)
∈H 1

0 (�); M (·) = ut

(
·; (
2

)
∈L2(�);

then we have a local solution Mu of (1.1)–(1.3) on [(=2; 3(=2). By the local uniqueness
of solutions, we have u = Mu on [(=2; (). Now we have extended the solution u up to
[0; 3(=2). Continuing in this way, we then obtain a global solution of (1.1)–(1.3).
Let

A(t) =
∫
�
(u21(x; t) + u22(x; t)) dx: (3.11)

In the following, we shall prove the triviality of the solution provided that the initial
data are zero functions. We Crst derive an essential equality which will be used later.

Lemma 3.4. Let u be a solution of (1.1)–(1.3) with ui ∈C2(R+; H 1
0 (�)), for i=1; 2.

Then we have∫
�

2∑
i=1

|∇ui|2 dx= E(0)− A′′(t)
4

−
∫
�

(
F(u) +

2∑
i=1

(
m2

i u
2
i +

uifi(u)
2

))
dx; (3.12)
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or

2
∫
�

2∑
i=1

(ui)2t dx =
A′′(t)
2

+ 2E(0) +
∫
�

(
2∑

i=1

uifi(u)− 2F(u)

)
dx: (3.13)

Proof. By diHerentiating (3.13) once and twice, respectively, we obtain

A′(t) = 2
∫
�

2∑
i=1

ui(ui)t dx (3.14)

and

A′′(t) = 2
∫
�

2∑
i=1

(ui)2t dx − 2
∫
�

2∑
i=1

(|∇ui|2 + m2
i u

2
i + uifi(u)) dx: (3.15)

By (3.2), we then obtain (3.12). It follows at once that (3.13) holds by using (3.15)
in (3.12).

Theorem 3.5. Let u be a solution of (1.1)–(1.3) with ui ∈C2(R+; H 1
0 (�)), for i=1; 2.

Assume that

2F(-) +
2∑

i=1

(
2m2

i +
1
�1

)
-2i + -ifi(-)¿ 0 for all -∈R2; (3.16)

where

�1 = inf
{‖∇u‖2

‖u‖2

∣∣∣∣ u∈H 1
0 (�); u 	= 0

}
:

If �=  =0 in �, then the only global solution of (1.1)–(1.3) is the trivial solution.

Proof. From the assumptions (3.16) and (3.2), we have E(0) = 0. From (3.12), we
get

2
∫
�

2∑
i=1

|∇ui|2 dx =−A′′(t)
2

−
∫
�

(
2F(u) +

2∑
i=1

(2m2
i u

2
i + uifi(u))

)
dx: (3.17)

By using PoincarOe’s inequality in (3.17) and (3.16), we get A′′(t)6 0. That is A(t) is
concave down. Since A(0) = 0; A′(0) = 0, we then obtain A(t)6 0 for t¿ 0. Hence
A(t) ≡ 0 for t¿ 0.

Example 3.6. Consider a particular system (1.1)–(1.3) in R3 with

f1(u1; u2) = 01u1u22; f2(u1; u2) = 02u21u2; (3.18)

here 01; 02 ¿ 0.
Without loss of generality, we may assume that 01 = 02 = 1 by changing the scales.

Now F(u1; u2)= 1
2u

2
1u

2
2, and (A1)–(A4) are satisCed. By Theorem 3.3, there is a global

solution u of (1.1)–(1.3) where f is given by (3.18).
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Example 3.7. Consider the problem (1.2)–(1.4) in R3. Assume that �¿ 0; �¿ 0 and
� is any real number. Now F(u1; u2) = �(u1 + �u2)4 + �u21u

2
2, and conditions (A1)–

(A4) are satisCed. By Theorem 3.3, there is a global solution u of (1.2)–(1.4).

4. Blow-up of solutions

In this section, we shall discuss blow-up properties of solutions for a system
(1.1)–(1.3). Before doing this, let us give the following two lemmas, which will be
used later.

De�nition. A solution u= (u1; u2) of (1.1)–(1.3) is called a blow-up solution if there
exists a Cnite T ∗ such that

lim
t→T∗−

(∫
�
(u21 + u22) dx

)−1

= 0:

Lemma 4.1. Let b(t) :R+ → R+ be a C2-function satisfying

b′′(t)− 4(2+ 1)b′(t) + 4(2+ 1)b(t)¿ 0 for t¿ 0: (4.1)

If

b′(0)¿r2b(0); (4.2)

then b′(t)¿ 0 for t ¿ 0, where r2 =2(2+1)− 2
√

2(2+ 1) is the smallest root of the
equation r2 − 4(2+ 1)r + 4(2+ 1) = 0.

Proof. Let r1 be the largest root of r2 − 4(2 + 1)r + 4(2 + 1) = 0. Then (4.1) is
equivalent to(

d
dt

− r1

)(
d
dt

− r2

)
b(t)¿ 0: (4.3)

By integrating (4.3) from 0 to t, we get

b′(t)¿ r2b(t) + (b′(0)− r2b(0))er1t : (4.4)

By (4.2), we get b′(t)¿ 0 for t ¿ 0.

Lemma 4.2. If J (t) is a nonincreasing function on [t0;∞); t0¿ 0, and satis8es the
di9erential inequality

J ′(t)2¿ a+ bJ (t)2+1=2 for t¿ t0; (4.5)

where a¿ 0 and b∈R, then there exists a 8nite positive number T ∗ such that
limt→T∗− J (t) = 0 and an upper bound for T ∗ is estimated, respectively, in the fol-
lowing cases:
(i) when b¡ 0 and J (t0)¡min{1;√a= − b},

T ∗6 t0 +
1√−b

ln

√
a= − b√

a= − b− J (t0)
; (4.6)
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(ii) when b= 0,

T ∗6 t0 +
J (t0)√

a
; (4.7)

(iii) when b¿ 0,

T ∗6 t0 + 2(32+1)=22 2c√
a
{1− (1 + cJ (t0))−1=22}; (4.8)

where c = (a=b)2+1=2.

Proof. (i) Since
√
c2 − d2¿ c − d for c¿d¿ 0, we have from (4.5),

J ′(t)6−√
a+

√−b J (t) for t¿ t0: (4.9)

Thus we get

J (t)6
(
J (t0)−

√
−(a=b)

)
e(t−t0)

√−b +
√
−(a=b): (4.10)

Hence there exists a positive T ∗ ¡∞ such that limt→T∗− J (t)=0, and an upper bound
of T ∗ is given by (4.6).
(ii) When b= 0, from (4.5), we get

J (t)6 J (t0)−
√
a(t − t0) for t¿ t0:

Thus there exists T ∗ ¡∞ such that limt→T∗− J (t) = 0; and an upper bound of T ∗ is
given by (4.7).
(iii) When b¿ 0, we get from (4.5)

J ′(t)6−
√

a(1 + (cJ (t))2+1=2); (4.11)

where c = (a=b)2+1=2.
By using the inequality

mq + nq¿ 21−q(m+ n)q for m; n¿ 0 and q¿ 1; (4.12)

with q= 2 + 1=2, we obtain

J ′(t)6−√
a2(−2−1)=22(1 + cJ (t))1+1=2: (4.13)

By solving the diHerential inequality (4.13), we obtain

J (t)6
1
c

{
−1 +

[
(1 + cJ (t0))−1=22 +

√
a

2c
2−(32+1)=22(t − t0)

]−22
}

: (4.14)

Hence there exists T ∗ ¡∞ such that limt→T∗− J (t) = 0 and an upper bound of T ∗ is
given by (4.8).
Hereafter we shall consider the blow-up of the solution under the following assumption:
(A5) there exists a positive constant 2 such that

−
2∑

i=1

-ifi(-) + (42+ 2)F(-)¿ 0 for all -= (-1; -2)∈R2:

Let

J (t) = A(t)−2 for t ¿ 0: (4.15)
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By diHerentiating (4.15) once and twice, respectively, we obtain

J ′(t) =−2A(t)−2−1A′(t); (4.16)

and

J ′′(t) = 2A(t)−2−2{(2+ 1)(A′(t))2 − A(t)A′′(t)}: (4.17)

Note that by the Schwarz inequality and the triangle inequality, we obtain

(A′(t))26 4A(t)
∫
�
((u1)2t + (u2)2t ) dx: (4.18)

From (4.17) and (4.18), we get

J ′′(t)6− 2A(t)−2−1K(t) for t ¿ 0; (4.19)

where

K(t) = A′′(t)− 4(2+ 1)
∫
�
((u1)2t + (u2)2t ) dx: (4.20)

By (3.2) and (3.13), we have

K(t) =−4(1 + 22)E(0) +
∫
�
(82+ 4)F(u) dx

+
2∑

i=1

∫
�
(42|∇ui|2 + 42m2

i u
2
i − 2uifi(u)) dx: (4.21)

By Sobolev’s inequality, there is a constant �1 such that∫
�
|∇w|2 dx¿ 1

�1

∫
�
|w|2 dx for w∈H 1

0 (�): (4.22)

Combining (4.20), (4.21) and (4.22), we have

K(t)¿−4(1 + 22)E(0) +
∫
�
(82+ 4)F(u) dx

+
2∑

i=1

∫
�

(
42
(

1
�1

+ m2
)

u2i − 2uifi(u)
)
dx (4.23)

here m=min{m1; m2}.
By (A5), we have

A′′(t)− 4(2+ 1)
∫
�
((u1)2t + (u2)2t ) dx¿− 4(1 + 22)E(0): (4.24)

We consider three diHerent cases on the sign of the initial energy E(0).
(i) If E(0)¡ 0, then A′′(t)¿ − 4(1 + 22)E(0), for t¿ 0. By integration, we have

A′(t)¿A′(0)− 4(1 + 22)E(0)t, for t¿ 0. Thus we get A′(t)¿ 0, for t ¿ t∗, where

t∗ =max
{

A′(0)
4(1 + 22)E(0)

; 0
}

: (4.25)

(ii) If E(0) = 0, then A′′(t)¿ 0, for t¿ 0. If A′(0)¿ 0, then A′(t)¿ 0, for t ¿ 0.
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(iii) If E(0)¿ 0, by the triangle inequality, we have

A′(t)6A(t) +
∫
�
((u1)2t + (u2)2t ) dx: (4.26)

From (4.24) and (4.26), we have the diHerential inequality

A′′(t)− 4(2+ 1)A′(t) + 4(2+ 1)A(t) + 4(1 + 22)E(0)¿ 0: (4.27)

Let

b(t) = A(t) +
(1 + 22)E(0)

1 + 2
for t ¿ 0:

Then b(t) satisCes (4.1). By Lemma 4.1, we obtain A′(t)¿ 0 for t ¿ 0, provided that

A′(0)¿r2

(
A(0) +

(1 + 22)E(0)
1 + 2

)
: (4.28)

Consequently, we have

Lemma 4.3. Assume that (A5) holds and that either one of the following statements
is satis8ed:

(i) E(0)¡ 0,
(ii) E(0) = 0 and A′(0)¿ 0,
(iii) E(0)¿ 0 and (4.28) holds.

Then A′(t)¿ 0 for t ¿ t0, where t0 = t∗ is given by (4.25) in case (i) and t0 = 0 in
cases (ii) and (iii).

Hereafter, we shall Cnd the estimate for the lifespan of A(t). From (4.19) and (4.24),
we have

J ′′(t)6 42(1 + 22)E(0)A(t)−2−1 for t¿ t0: (4.29)

Note that J ′(t)¡ 0 for t ¿ t0 by Lemma 4.3. Hence multiplying (4.29) by J ′(t) and
then integrating from t0 to t, we get

J ′(t)2¿ a+ bJ (t)2+1=2 for t¿ t0; (4.30)

where

a= 22A(t0)−22−2{A′(t0)2 − 8E(0)A(t0)}; (4.31)

and

b= 822E(0): (4.32)

Note that a¿ 0 if and only if E(0)¡A′(t0)2=8A(t0).
In the case that E(0)¡ 0, we obtain the rough estimate of the upper bound for

blow-up time T ∗ with T ∗6 t0 − J (t0)=J ′(t0). For the remaining cases, by Lemma 4.2,
we obtain the following main result.
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Theorem 4.4. Assume that (A1)–(A3) and (A5) hold and that either one of the
following statements is satis8ed:

(i) E(0)¡ 0,
(ii) E(0) = 0 and A′(0)¿ 0,
(iii) A′(0)2=8A(0)¿E(0)¿ 0 and (4.28) holds.

Then the solution u blows up at time T ∗ in the sense that limt→T∗− A(t) =∞.

In case (i),

T ∗6 t0 − J (t0)
J ′(t0)

:

Furthermore, if J (t0)¡min{1;√a= − b}, we have

T ∗6 t0 +
1√−b

ln

√
a= − b√

a= − b− J (t0)
:

In case (ii),

T ∗6 t0 +
J (t0)√

a
:

In case (iii),

T ∗6 t0 + 2(32+1)=22 2c√
a
{1− (1 + cJ (t0))−1=22};

where c = (a=b)2+1=2 with a = 22A(t0)−22−2{A′(t0)2 − 8E(0)A(t0)} and b = 822E(0).
Note that in case (i), t0 = t∗ is given in (4.25) and t0 = 0 in cases (ii) and (iii).

Example 4.5. Consider the system (1.1)–(1.3) in R3, with mi=0; i=1; 2; f1(u1; u2)=
−u1u22 and f2(u1; u2)=−u21u2. Now we have F(u1; u2)=− 1

2 u21u
2
2. The assumption (A5)

is satisCed if 0¡26 1
2 . Hence Theorem 4.4 is applicable.

Example 4.6. Consider the problem (1.2)–(1.4) in R3. Assume that �¡ 0; �¡ 0 and
� is any real number. Now we have

F(u1; u2) = �(u1 + �u2)4 + �u21u
2
2:

We see that (A5) is satisCed if 0¡26 1
2 . Thus Theorem 4.4 is applicable.

5. Uniqueness of solutions

In this section, we shall discuss the uniqueness of the solutions of the system
(1.1)–(1.3) under the following assumption:
(A6) Assume that there exists p¿ 1 such that∣∣∣∣ @fi

@uj
(u1; u2)

∣∣∣∣6 k(1 + |u1|p−1 + |u2|p−1); i; j = 1; 2;

holds for all u1; u2 ∈R.
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We are going to prove the following uniqueness result.

Theorem 5.1. Assume that (A6) holds, then the uniqueness of the solutions of
(1.1)–(1.3) holds either in C([0; T ]; L∞(�)) for p¿ 1, or in C(0; T; H 1

0 (�)) ∩
C1(0; T; L2(�)) for 1¡p6 n=(n− 2); n¿ 3, and for 1¡p¡∞; n= 1; 2.

Proof. Let u and u∗ be two solutions of (1.1)–(1.3). Put w = u− u∗ and let

H (t) = ‖Dw1‖22(t) + ‖Dw2‖22(t):
From (1.1)–(1.3) we get

(wi)tt −6wi =−m2
i wi − (fi(u)− fi(u∗)) for i = 1; 2: (5.1)

Multiplying (5.1) by (wi)t and then integrating over �, we obtain
d
dt

‖Dwi‖22 =−2
∫
�
{m2

i wi(wi)t + (wi)t(fi(u)− fi(u∗)} dx: (5.2)

Hence we have
d
dt
‖Dwi‖26 ‖m2

i wi‖2 + ‖fi(u)− fi(u∗)‖2: (5.3)

By integrating (5.3) from 0 to t, we have

‖Dwi‖2(t)6
∫ t

0
{‖m2

i wi‖2(s) + ‖fi(u)− fi(u∗)‖2(s)} ds; (5.4)

or

‖Dwi‖22(t)6 2
∫ t

0
{m4

i ‖wi‖22(s) + ‖fi(u)− fi(u∗)‖22} ds: (5.5)

Then we have

H (t)6 2
∫ t

0

2∑
i=1

{m4
i ‖wi‖22(s) + ‖fi(u)− fi(u∗)‖22} ds: (5.6)

By (A6) we have

|fi(u)− fi(u∗)|

=

∣∣∣∣∣
∫ 1

0
∇fi(su+ (1− s)u∗) · (u− u∗) ds

∣∣∣∣∣
6 |u− u∗|

∫ 1

0
k(1 + |su1 + (1− s)u∗1 |p−1 + |su2 + (1− s)u∗2 |p−1) ds

6 k|u− u∗|{1 + 2p−2(|u1|p−1 + |u∗1 |p−1 + |u2|p−1 + |u∗2 |p−1)}: (5.7)

Thus we have

|fi(u)− fi(u∗)|26 2k2G(x; t)|u− u∗|2; (5.8)
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where

G(x; t) = 1 + 22(p−1)(|u1|2p−2 + |u∗1 |2p−2 + |u2|2p−2 + |u∗2 |2p−2): (5.9)

Hence

‖fi(u)− fi(u∗)‖226 2k2
∫
�
G(x; t)|u− u∗|2 dx: (5.10)

Thus from (5.6) we have

H (t)6 2
∫ t

0

(
M‖u− u∗‖22(s) + 2k2

∫
�
G(x; t)|u− u∗|2 dx

)
ds; (5.11)

where M =max{m4
1; m

4
2}.

(I) If ui; u∗i ∈C([0; T ]; L∞(�)), let

K(T ) = sup
06t6T

{
1 + 22p−2 (‖u1‖2p−2 + ‖u∗1‖2p−2 + ‖u2‖2p−2 + ‖u∗2‖2p−2)} :

Then we have

H (t)6 2
∫ t

0
(M + 2k2K(T ))‖u− u∗‖22(s) ds: (5.12)

Note that ‖u− u∗‖22(t)6 �H (t) for some �¿ 0. Then we obtain

H (t)6 2�(M + 2k2K(T ))
∫ t

0
H (s) ds; (5.13)

for all t ∈ [0; T ]. By Gronwall’s inequality, we have H (t) = 0 for all t ∈ [0; T ]. Hence
the uniqueness result holds.
(II) If ui; u∗i ∈C(0; T; H 1

0 (�)) ∩ C1(0; T; L2(�)), we shall discuss the uniqueness of
solutions of (1.1)–(1.3) for 1¡p6 n=(n− 2).
(i) When 1 + 1=n¡p6 n=(n− 2), note that by HDolder’s inequality, we have∫

�
G(x; t)|u− u∗|2 dx6

(∫
�
G(x; s)q dx

)1=q(∫
�
|u− u∗|2r dx

)1=r
dx; (5.14)

here q= r=(r − 1); r ¿ 1.
Now from (5.9), by (4.12), we have

G(x; t)q6 2q−1(1 + 22(pq−1)g(x; t));

where

g(x; t) = |u1|(2p−2)q + |u∗1 |(2p−2)q + |u2|(2p−2)q + |u∗2 |(2p−2)q:

Thus ∫
�
G(x; t)q dx6 2q−1

{
|�|+ 22(pq−1)

∫
�
g(x; t)

}
dx: (5.15)

Since 1 + 1=n¡p6 n=(n − 2), by choosing r = n=(n − 2) or q = n=2 in (5.15), we
have 1¡ (2p− 2)q6 2n=(n− 2). By Sobolev’s inequality, we have∫

�
G(x; t)q dx6 2q−1(|�|+ C1) ≡ C∗; (5.16)
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where

C1 = sup
06t6T

22(pq−1)(‖u1‖2(p−1)q
1;2 + ‖u∗1‖2(p−1)q

1;2 + ‖u2‖2(p−1)q
1;2 ‖u∗2‖2(p−1)q

1;2 ):

Thus by using HDolder’s inequality in (5.11) and (5.16), we obtain

H (t)6 2
∫ t

0
(m‖u− u∗‖22(s) + 2k2(C∗)1=q‖u− u∗‖22r(s)) ds: (5.17)

By Sobolev’s inequality again, we obtain

H (t)6 C̃
∫ t

0
H (s) ds for 06 t6T; (5.18)

where C̃ = 2�(M + 2k2(C∗)1=q) and � is Sobolev constant. Therefore, H (t) ≡ 0 for
06 t6T .

(ii) When 1¡p6 1 + 1=n, from (5.2), we have

d
dt
‖Dwi‖226 2

∫
�
{m2

i |wi| |(wi)t |+ |(wi)t | |(fi(u)− fi(u∗)|} dx: (5.19)

By (5.7), we then have

d
dt

‖Dwi‖226 2
∫
�
{m2

i |wi| |(wi)t |+ G̃(x; t)|w| |(wi)t |} dx; (5.20)

where

G̃(x; t) = k{1 + 2p−2(|u1|p−1 + |u∗1 |p−1 + |u2|p−1 + |u∗2 |p−1)}: (5.21)

By HDolder’s inequality, we have∫
�
G̃(x; t)|w| |(wi)t | dx6 ‖G̃‖�‖w‖�‖(wi)t‖2; (5.22)

with 1=�+ 1=� = 1=2; �; �¿ 2.
Note that by the inequality (4.12), we have

G̃(x; t)�6 k�2�−1{1 + 2p�−2(|u1|(p−1)� + |u∗1 |(p−1)� + |u2|(p−1)� + |u∗2 |(p−1)�)}:
Since 1¡p6 1+ 1=n, after suitably choosing � with 2¡�6 2n=(n− 2), we can get
1¡ (p−1)�6 2n=(n−2). Therefore Sobolev’s inequality is applicable. Thus we have(∫

�
G̃(x; t)� dx

)1=�
6 [k�2�−1(|�|+ C2)]1=� ≡ C̃; (5.23)

where

C2 = sup
06t6T

2p�−2�(‖u1‖(p−1)q
1;2 + ‖u∗1‖(p−1)q

1;2 + ‖u2‖(p−1)q
1;2 ‖u∗2‖(p−1)q

1;2 ):

Again by Sobolev’s inequality, we have

‖w‖�6 �‖w‖1;2 for 1¡�6
2n

n− 2
: (5.24)
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Thus from (5.22)–(5.24) we get∫
�
G̃(x; t)|w| |(wi)t | dx6 C̃�‖w‖1;2‖(wi)t‖2; i = 1; 2: (5.25)

Hence from (5.20) we obtain
d
dt

‖Dwi‖226 2(m2
i + C̃�)‖w‖1;2‖(wi)t‖2

6 (m2
i + C̃�)(‖w‖21;2 + ‖(wi)t‖22); (5.26)

for i = 1; 2.
Therefore, we get

dH (t)
dt

6 (m2
1 + m2

2 + C̃�)H (t) for 06 t6T: (5.27)

By solving (5.27) with H (0) = 0, we obtain H (t) ≡ 0 for 06 t6T . Hence we
completed the proof.
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