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Abstract. In economics, the n-person oligopoly game and the n-person IPD game are
often considered close in spirit. Our analytical framework shows that this is not the case
owing to the path dependence of the pay-off matrix of the oligopoly game. By simulating
the evolution of a three-person oligopoly game with genetic algorithms, we explore the
significance of the path dependence property to the rich ecology of oligopoly. The emergent
behavior of oligopolists in the simulations indicates how the path dependence nature may
shed light on the phenotypes and genotypes coming into existence. The features shown in
this research can be further exploited in more practical contexts so that nontrivial policy
issues in industrial economics can be seriously tackled.
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1. Motivation and Introduction

In industrial economics, modeling a market consisting of only a few firms, i.e.,
oligopolistic industry, is a tricky task. In this area, economists are at variance
with each other even on the most basic issue, i.e., how price is determined.1 Since
the indeterminacy of this subject may arise from the perplexing interdependent
relations and interactions among firms, the relevance of game theory to oligopoly
theory seems to be quite obvious (Fudenberg and Tirole, 1989). In fact, a game
known as the iterated prisoner’s dilemma (IPD) game is frequently cited in text-
books as an effective abstraction of the oligopoly pricing problem. Rephrasing
the oligopoly pricing problem in the game context, many economists consider the
oligopoly game and the IPD game close in spirit. Implicitly, it is assumed that
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1 For a survey of the oligopoly literature, see Shapiro (1989).
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players in the n-person oligopoly game are facing a pretty similar situation to
those in the n-person IPD game.

Recently, the n-person IPD game was studied in Yao and Darwen (1994).
Using genetic algorithms (GAs), they showed that cooperation can still be evolved
in a large group, but that it is more difficult to evolve cooperation as the group
size increases. Considering this result as a guideline for the oligopoly pricing
problem, then what the n-person IPD game tells us is that when the number of
oligopolists is small, say three, it is very likely to see the emergence of collusive
pricing (cooperation). Real data, however, shows that even in a three-oligopolist
industry the observed pricing pattern is not that simple (Midgley et al, 1997):2

• First, while collusive pricing is frequently observed, it is continually interrupted
by the occurrence of predatory pricing (price wars).

• Second, it is not always true that oligopolists are collectively charging high
prices (collusive pricing) or low prices (price wars). In fact, a dispersion of
prices can persistently exist; i.e., some firms are charging high prices, while
others are charging low prices.

• Third, the firms who charge low prices may switch to high prices in a later
stage, and vice versa.

These features may be best summarized by a quotation from Scherer and Ross
(1990), a leading textbook in industrial economics.

Casual observation suggests that in oligopoly virtually anything can happen.
Some industries – cigarettes and breakfast cereals come readily to mind –
succeed in maintaining prices well above production costs for years. Others,
despite conditions that would appear at first glance to encourage cooperative
behavior, gravitate toward price warfare. (Scherer and Ross, 1990, p. 199; italics
added)

Nonetheless, ‘virtually anything can happen’ is not the property which one may
experience from a three-person IPD game (see Yao and Darwen, 1994, Fig. 5),
and this raises two questions:

• Is the n-person oligopoly game close in spirit to the n-person IPD game?

• If not, can we replicate the rich ecology of the n-person oligopoly game by just
simulating the evolution of the oligopoly game?

The contribution of this paper is twofold. First, contrary to some people’s pre-
sumption, we show that in general the n-person oligopoly game is not close in
spirit to the n-person IPD game. This may not be a revelation. However, what
was not seen in the past is a rigorous analysis of the argument, and this paper
filled the gap. In Section 2, we propose a very simple oligopoly game with three
oligopolists. In this game, the pay-off matrix is determined by the market share
dynamics, which is characterized by a time-variant state-dependent Markov tran-
sition matrix. This framework enables us to see an important property of the
game, i.e., the path dependence of the game. Through this property, we can see
that although in general these two games are not close in spirit, there does exist
a trivial path on which the two games are effectively the same. Therefore, we

2 The overall patterns of prices and sales for the three major brands of coffee, Maxwell House
Regular, Folgers, and Chock Full O’Nuts, can be found in Midgley et al (1997).



Simulating the Ecology of Oligopolistic Competition 287

believe that our analysis provides a general picture of the relation between the
two games.

Given the path dependence property of the oligopoly game, we further ex-
plore its significance to the ecology of the oligopoly game from an evolutionary
perspective. By that we mean to account for the rich ecology of oligopoly solely
from an evolutionary standpoint. We do not attempt to build up an explanation
by introducing outside factors, such as economic fluctuations, structural changes,
and institutional arrangements (Green and Porter, 1984; Abreu et al, 1986), as
many conventional studies did. Instead, we are asking: other things being equal,
can we still have a rich ecology of oligopoly? We consider such an effort a search
for a more fundamental cause, and this constitutes the second contribution of the
paper.

In Section 3, we illustrate the use of genetic algorithms (GAs) to model
the adaptive behavior of oligopolists. The application of GAs to the oligopoly
game is nothing new.3 Midgley et al (1997) pioneered this line of research.
While we follow the ideas employed in their paper in many aspects, there is
an important distinction between the two studies. What Midgely et al did was
to use historical market data to breed GA-based oligopolists for the purpose of
developing competitive marketing strategies. Our paper has a different focus. We
are not studying how GA-based oligopolists can compete with real managers,
which is more like an application in the machine-learning style and Midgely et
al have already done an excellent job. What concerns us instead is to use GAs
to allow the oligopoly game to write history on its own and to see how rich the
ecology can be. Therefore, it is sufficient to just let our GA-based oligopolists
learn from their own experience and acquire expertise without being exposed to
real data.

As we will see in Section 4, what was derived from our simulations is a
very rich ecology of oligopoly. Our analysis of the simulation results shows
how this rich ecology can be related to the path-dependent property of the
oligopoly game. Some interesting patterns such as the market-share first strategy,
nonaggression agreement, unbalanced market power, and death of firms are also
discussed. Concluding remarks are given in Section 5.

2. The Analytical Model

For simplicity, an oligopoly industry is assumed to consist of three firms, say
i = 1, 2, 3. At each period, a firm can either charge a high price Ph or a low
price Pl . Let ati be the action taken by firm i at time t; ati = 1 if firm i charges
Ph, and ati = 0 if it charges Pl . To simplify notations, let St denote the row
vector (at1, a

t
2, a

t
3). To characterize the price competition among firms, the market

share dynamics of these three firms are summarized by the following time-variant
state-dependent Markov transition matrix :

Mt =


 mt11 mt12 mt13

mt21 mt22 mt23

mt31 mt32 mt33


 (1)

3 For an extensive survey on the application of GAs to game theory, the interested reader is referred
to Marks (2000).
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where mtij , the transition probability from state i to state j, denotes the proportion

of the customers of firm i switching to firm j at time period t. Let nti (i = 1, 2, 3)
be the number of customers of firm i at time period t, and Nt the row vector
[nt1, n

t
2, n

t
3]. Without loss of generality, we assume that each consumer will purchase

only one unit of the commodity. In this case, Nt is also the vector of quantities
consumed. With Nt and Mt, the customers of each firm at period t + 1 can be
updated by the following equation:

Nt+1 = NtMt (2)

To see the effect of price competition on the market share dynamics, the transition
probability mtij is assumed to be dependent on the pricing strategy vector St. If
the three firms charge the same price, then Mt is an identity matrix. Furthermore,
if firm i charges Ph, then it will lose 1

2
α × 100% of its consumers to each of the

two firms j and k, who charge Pl . Furthermore, if firms i and j charge Ph, then
each of them will lose α × 100% of their consumers to firm k, who charges Pl .
These assumptions can be summarized by the following transition matrices:

Mt(1, 1, 1) = Mt(0, 0, 0) =

[
1 0 0
0 1 0
0 0 1

]

Mt(1, 0, 0) =


 1− α 1

2
α 1

2
α

0 1 0
0 0 1


 , Mt(0, 1, 0) =


 1 0 0

1
2
α 1− α 1

2
α

0 0 1


 ,

Mt(0, 0, 1) =


 1 0 0

0 1 0
1
2
α 1

2
α 1− α


 , Mt(1, 1, 0) =

[
1− α 0 α

0 1− α α
0 0 1

]
,

Mt(1, 0, 1) =

[
1− α α 0

0 1 0
0 α 1− α

]
, Mt(0, 1, 1) =

[
1 0 0
α 1− α 0
α 0 1− α

]

Given these state-dependent transition matrices, equation (2) can be rewritten as:

Nt+1 = NtMt(St) (3)

where St = (at1, a
t
2, a

t
3) and ati ∈ {0, 1}. Equation (3) summarizes the intra-industry

competition, given the number of customers nt =
∑3

i=1 n
t
i .

Given equation (3), the objective of oligopolists is to maximize their profits
or the present value of the firm, and the profits for a single period is given by
equation (4):

πsi = (P s
i − C)nsi (4)

where P s
i is the price charged by firm i at period s, nsi the number of customers,

and C the fixed unit cost. nsi can be obtained from equation (3).
Given this simple framework of the oligopoly game, we would like to know

to what extent this simple oligopoly game can be related to the n-person IPD
game. More precisely, is the oligopoly game defined above necessarily an n-person
IPD game? To answer this question, we have to work out the pay-off matrix used
to define an n-person IPD game (Yao and Darwen, 1994). However, due to the
market share dynamics, the pay-off matrix is in general not static. We therefore
start our analysis from the first round of the oligopoly game. Suppose that each
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round of the oligopoly game consists of r iterations of the game, and that to
‘cooperate’ (C) means to ‘charge the high price for all r periods’ and to ‘defect’
(D) means to ‘charge the low price for all r periods’.

We can now work out the first-round pay-off matrix employed by Yao and
Darwen (1994). In our case (three oligopolists), there are six elements in the
pay-off matrix, namely Ci and Di (i = 0, 1, 2). Here, Ci (Di) denotes the pay-off for
a specific player who plays C (D) when there are i players acting cooperatively.
Without losing generality, let us assume that n1

1 = n1
2 = n1

3 = 1; then Ci and Di
can be computed from the following four equations:

[
D2 C1 C1

]
=

r∑
t=1

[
1 1 1

]
[M(0, 1, 1)]t ·

[
PL − C 0 0

0 PH − C 0
0 0 PH − C

]
(5)

[
C2 C2 C2

]
=

r∑
t=1

[
1 1 1

]
[M(1, 1, 1)]t ·

[
PH − C 0 0

0 PH − C 0
0 0 PH − C

]
(6)

[
D1 D1 C0

]
=

r∑
t=1

[
1 1 1

]
[M(0, 0, 1)]t ·

[
PL − C 0 0

0 PL − C 0
0 0 PH − C

]
(7)

and [
D0 D0 D0

]
=

r∑
t=1

[
1 1 1

]
[M(0, 0, 0)]t ·

[
PL − C 0 0

0 PL − C 0
0 0 PL − C

]
(8)

where

[M(0, 1, 1)]r =

[
1 0 0
α 1− α 0
α 0 1− α

][
1 0 0
α 1− α 0
α 0 1− α

]r−1

=


 1 0 0
α+ α(1− α) (1− α)2 0
α+ α(1− α) 0 (1− α)2


 ·

[
1 0 0
α 1− α 0
α 0 1− α

]r−2
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=


 1 0 0∑r−1

j=0 α(1− α)j (1− α)r 0∑r−1
j=0 α(1− α)j 0 (1− α)r


 ,

[M(0, 0, 1)]r =


 1 0 0

0 1 0
1
2
α 1

2
α 1− α




 1 0 0

0 1 0
1
2
α 1

2
α 1− α


r−1

=


 1 0 0

0 1 0
1
2
(α+ α(1− α)) 1

2
(α+ α(1− α)) (1− α)2


 .

×

 1 0 0

0 1 0
1
2
α 1

2
α 1− α


r−2

=


 1 0 0

0 1 0
1
2
(
∑r−1

j=0 α(1− α)j) 1
2
(
∑r−1

j=0 α(1− α)j) (1− α)r




and

[M(1, 1, 1)]r = [M(0, 0, 0)]r =

[
1 0 0
0 1 0
0 0 1

]r

A few steps of computation will show:

[
D2 C1 C1

]′
=




(PL − C)(r + 2
∑r

t=1

∑t−1
s=0 α(1− α)s)

(PH − C)(
∑r

t=1(1− α)t)
(PH − C)(

∑r
t=1(1− α)t)




=




(PL − C)

[
3r − 2

(1− α)− (1− α)r+1

α

]

(PH − C)

[
(1− α)− (1− α)r+1

α

]

(PH − C)

[
(1− α)− (1− α)r+1

α

]



, (9)

[
D1 D1 C0

]′
=




(PL − C)[r + 1
2

∑r
t=1

∑t−1
s=0 α(1− α)s]

(PL − C)[r + 1
2

∑r
t=1

∑t−1
s=0 α(1− α)s]

(PH − C)(
∑r

t=1(1− α)t)




=




(PL − C)[r + 1
2
r − 1

2

∑r
j=1(1− α)j]

(PL − C)[r + 1
2
r − 1

2

∑r
j=1(1− α)j]

(PH − C)(
∑r

t=1(1− α)t)


 , (10)
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Table 1. Parameters and pay-offs: the first round of the game

Set PH PL C α r D2 D1

1 1.4 1.2 1 0.2 8 3.47 2.07
2 1.4 1.2 1 0.2 25 13.40 7.10

Set D0 C2 C1 C0
1
2 (D2 + C1)

1
2 (D1 + C0)

1 1.6 3.2 1.33 1.33 2.4 1.70
2 5 10 1.60 1.60 7.50 4.35

[
C2 C2 C2

]′
=


 (PH − C)r

(PH − C)r

(PH − C)r


 ,

[
D0 D0 D0

]′
=


 (PL − C)r

(PL − C)r

(PL − C)r


 (11)

Based on the derived pay-off vector (D2, D1, D0, C2, C1, C0), we can decide
whether the oligopoly game is an n-person IPD game by checking the following
criteria (Yao and Darwen, 1994, Fig. 2):

• (1) D2 > C2, (2) D1 > C1, and (3) D0 > C0.

• (4) D2 > D1 > D0, and (5) C2 > C1 > C0.

• (6) C2 >
1
2
(D2 + C1), and (7) C1 >

1
2
(D1 + C0).

The first five conditions feature the conflict between two forces, namely, the temp-
tation to defect and the fear of retaliation. The last two conditions are somewhat
tricky. They exclude the possibility of the other type of cooperation, i.e., false
defection. In the prisoner’s dilemma game, one prisoner can be willingly betrayed,
allowing the others to reap the reward. He will then have a share of the reward
as a compensation for his sacrifice. Like cooperation, false defection requires a
delicate design and is intelligent behavior. It is interesting to note that in reality
oiligopolists cut their prices in turn. Superficially, these actions can be interpreted
as a result of competition, but, in effect, they are another type of collusive pricing
when the game is not bounded by the last two conditions. Since the failure to
meet the last two conditions implies another type of intelligent behavior, it is
useful to take notice of this emergent intelligence in our simulations which will
be discussed later.

By equations (9)–(11), the pay-off vector is a function of PH , PL, C , r and α. It
is not difficult to see that, in general, not all of these conditions can be satisfied.
For example, in Table 1, two sets of parameters and their associated pay-offs
are given. The conditions which can be satisfied by these two sets of parameters
are summarized in Table 2. Among them, Condition 7 is strictly violated in both
cases. Nevertheless, since the first five conditions are satisfied, the oligopoly game
shares the essential ingredients of the n-person IPD game, namely, the temptation
to defect and the fear of retaliation.
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Table 2. Parameter sets and testing results

Inequality Set 1 Set 2

1. D2 > C2 > >
2. D1 > C1 > >
3. D0 > C0 > >
4. D2 > D1 > D0 >,> >,>
5. C2 > C1 > C0 >,= >,=
6. C2 > 0.5(D2 + C1) > >
7. C1 > 0.5(D1 + C0) < <

The sign > in columns 2 and 3 means the condition is
satisfied. The other signs mean the condition is weakly
violated (=) or strongly violated (<).

Table 3. Parameters and pay-offs: the second round of the game

Round 1/2 D2 D1 D0 C2 C1 C0
1
2 (D2 + C1)

1
2 (D1 + C0)

Parameter set 1

D2 4.58 4.34 4.26 8.53 3.55 3.55 4.06 3.94
D1 3.75 2.34 2.27 4.53 1.89 1.89 2.82 2.11

2.93 2.41
D0 3.47 2.07 1.60 3.20 1.33 1.33 2.40 1.70
C2 3.47 2.07 1.60 3.20 1.33 1.33 2.40 1.70
C1 2.91 0.35 0.27 0.54 0.22 0.22 1.57 0.29

1.51 0.87
C0 2.91 0.93 0.27 0.54 0.22 0.22 1.57 0.58

Parameter set 2

D2 14.99 14.97 14.96 29.92 4.77 4.77 9.88 9.87
D1 13.80 7.50 7.49 14.98 2.39 2.39 8.10 6.51

10.64 4.94
D0 13.41 7.10 5.00 10.00 1.59 1.59 7.50 4.35
C2 13.41 7.10 5.00 10.00 1.59 1.59 7.50 4.34
C1 12.61 0.03 0.02 0.04 0.01 0.01 6.31 0.02

6.31 3.16
C0 12.61 3.17 0.02 0.04 0.01 0.01 6.31 1.59

So far, we have only worked out the pay-off vector of the first round of
the game. The pay-off vector of the second round, and the rounds after, is a
little intriguing. Due to the dynamics of market shares, the pay-off vector is not
independent of what happened in the first round. In other words, the pay-off
vector, like the market-share dynamics, is also time-variant and path-dependent. To
see this, it is helpful to work out the second-round pay-off vector too. Since there
are six nonredundant histories (paths) in the first round, each with a follow-up
pay-off vector, the second-round pay-offs of the game can be represented by a
6× 6 pay-off table as shown in Table 3.

Table 3 exhibits the pay-off matrix of parameter sets 1 and 2. Clearly, this
matrix is much more complicated than the one in the first round of the game. It
differs from the first-round pay-off matrix in three ways. First of all, in the first
round of the game the pay-off is symmetric, while in the second it depends. For
example, if in the first round the three firms all charge the high price, or the low
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Table 4. Parameter sets and testing results

Inequality/initial condition D2 D1 D0 C2 C1 C0

1. D2 > C2 [<] [<] > > > >
2. D1 > C1 > > > > > >
3. D0 > C0 > > > > > >
4. D2 > D1 > D0 >,> >,> >,> >,> >,> >,>
5. C2 > C1 > C0 >,= >,= >,= >,= >,= >,=
6. C2 > 0.5(D2 + C1) > > > > [<] <
7. C1 > 0.5(D1 + C0) < < < < < <

The sign > in columns 2–7 means the condition is satisfied. The other signs mean the condition is
weakly violated (=) or strongly violated (<). Signs in brackets refer to the reversals of the pay-off
inequality in the second round of the game.

price for that matter, then in the second round the initial condition for them is
the same, and hence their pay-off vectors refer to the same row led by C2 or D0

in Table 3. In this case, the symmetry of pay-offs remains unchanged. However,
if in the first round two firms charge the high price, and one firm charges the low
price, then in the second round the pay-off vector to the firms who charged the
high price is the one led by C1, while the pay-off vector to the firm who charged
the low price is the one led by D2. According to Table 3, these two rows are not
identical; consequently, the symmetric property does not hold. Therefore, in the
oligopoly game, whether the symmetry property will hold depends on the path of the
market dynamics.

Second, in addition to asymmetry of the pay-off vectors, it is interesting to
note that in some cases the pay-off is not unique. For example, in Table 3, if
the initial state for the player is D1, and the current state is also D1, then the
pay-off can be either 2.34 or 2.93. These non-unique outcomes result from the
fact that after the first round of the game each player may have different market
shares. Therefore, it is not just the number of cooperators (among the remaining
n− 1 players) that matters but, most of all, who cooperates. If a firm with a large
market share cooperates, then ‘defection’ can be more profitable because of the
proportion of the market one could seize.

Last, the reversal of the pay-off inequality. Based on Table 3, we checked the
pay-off inequality under each initial condition, and the results are summarized in
Table 4. From Table 4, we find that, depending on the initial conditions, the first
and the sixth inequality can be reversed (see the sign in brackets). More precisely,
when the initial condition is D2 or D1, instead of ‘D2 > C2’, we have ‘D2 < C2’,
and when the initial condition is C1, ‘C2 >

1
2
(D2 + C1)’. The reversal of the first

condition is critical, because if two players choose C , then the dominant option
is also C rather than D. If this can happen, then the oligopoly game is essentially
not an IPD game. The reversal of the sixth condition coupled with the original
violation of the seventh condition is far from minor because it defines another
highly intelligent cooperative behavior, i.e., ‘false defection’ as discussed above.

In sum, the oligopoly game is not an n-person IPD game. It is nonetheless
related to the n-person IPD game in a subtle way. In particular, among the
innumerable paths of the oligopoly game, there are many which are effectively
equivalent to an n-person IPD game. In other words, the equivalence of the
oligopoly game and the n-person IPD game is path dependent. However, con-
sidering learning a stochastic selection process, we cannot restrict our players’
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evolution only to those specific paths. Hence, the simulation results obtained
from the n-person IPD game may not be applicable to the oligopoly game. For
example, the probability of the emergence of collusive pricing of the three-person
oligopoly game may be quite different from that of a three-person IPD game.
It is therefore interesting to know whether the path dependence property of the
oligopoly game can generate more complex patterns of emergent behavior than
the n-person IPD game, and if so, what are they and what do they mean?

3. Modeling the Adaptive Behavior of Oligopolists with GAs

In this study, we simulated the oligopoly game by using genetic algorithms. The
basic idea is to simulate the dynamics of the oligopoly game as a result of a
sequence of interactions among the local shops owned by different oligopolists
(chain stores). Based on their pricing strategies, each shop interacted locally
with other shops’ pricing. The pricing strategy of each shop was represented by
a binary string, and thus the pricing strategies of all the shops owned by the
same oligopolist were a population of binary strings. The GA was then applied
to mimicking the evolution of a collection of pricing strategies by evolving the
population of binary strings.

Formally, the pricing strategy φ is a mapping:

φ : Ω −→ {0, 1} (12)

where Ω is the collection of all histories of {Sj}t−1
j=1. However, this general version is

difficult to be coded by GAs since the memory size required is infinite. Following
Midgley et al (1997), we consider a special class of pricing strategy ψ:

ψ : Ωk −→ {0, 1} (13)

where Ωk is the collection of all {St−j}kj=1. By this simplification, the oligopolist’s
memory is assumed to be finite.

Since each firm can only take two kinds of action and there are three firms,
we have 23 possible states in each period and 23k possible states in Ωk . Therefore,
to encode a pricing strategy ψ in Ωk , we need a binary string with length 23k .
Clearly, the length of the string increases exponentially with k. While, potentially,
different choices of k may lead to quite different sets of strategies (Beaufils et al,
1998), the issue that concerns us is the smallest value of k which can reasonably
replicate the price dynamics of the oligopoly industry and, as we shall see later,
setting k to equal 1 is good enough to achieve this goal.4 In Ω1, ψ can be coded
with an 8-bit string. For example, an 8-bit string b1b2 . . . b8 means that if state
j(j = 1, 2, . . . , 8) occurs, the oligopolist will take action bj(bj = 0, 1).5 The eight
states are ordered as in the following sequence:

000︸︷︷︸
1

001︸︷︷︸
2

010︸︷︷︸
3

011︸︷︷︸
4

100︸︷︷︸
5

101︸︷︷︸
6

110︸︷︷︸
7

111︸︷︷︸
8

4 It remains to be seen whether a high value of k can significantly change the result. If this is the case,
then we should seriously consider an economic interpretation of the parameter k. We are currently
conducting this line of research.
5 As Yao and Darwen (1994) correctly pointed out, the Axelrod-style representation scheme is not
the most efficient scheme. The reason why we do not use the Yao–Darwen representation scheme
here is that we are restricting our attention to the case of only three players (oligopolists).



Simulating the Ecology of Oligopolistic Competition 295

Table 5. The parameters of the GA-based oligopoly game

Memory size (k) 1
Number of oligopolists (chain stores) 3
Population size (l) (# of shops in each chain) 30
Number of periods in a single play (r) 8 (25)
Selection scheme Roulette-wheel selection
Fitness function Profits (π)
Number of generations evolved (Gen) 250 (80)
Number of periods (T ) 2000
Crossover style One-point crossover
Crossover rate 0.8
Mutation rate 0.001
Immigration rate 0.001

Each state is represented by a 3-bit string. From left to right, the first bit refers
to the action taken by firm 1 in the previous period, the second bit refers to the
action taken by firm 2, and so on. For instance, state ‘5’ encoded as ‘100’ means
that firm 1 charged the high price (cooperated), but firms 2 and 3 charged the low
price (defected) in the last period. If b5 = 0 for firm 1, then firm 1 will take revenge
by charging the low price at this period. Given the encoding scheme described
above, oligopolists’ adaptive behavior is implemented by genetic algorithms as
follows.

• Step 1:
In the initial generation, a population of ψ is randomly generated for three
oligopolists. Call it Gen1

i (i = 1, 2, 3):

Gen1
i = {ψ1

i , . . . , ψ
q
i , . . . , ψ

l
i} (14)

where l is the size of population (the number of chromosomes).

• Step 2:
Match these three populations of ψ into l pairs of players: {Ξq}lq=1, where

Ξq = {ψq1 , ψq2 , ψq3} (15)

• Step 3:
Let Ξq be applied for r periods, and calculate the profits earned by each
component of Ξq based on equation (4).

• Step 4:
At the end of a single play (r periods), the new generation Gen2

i (i = 1, 2, 3)
of the population of ψ is generated by the canonical genetic algorithms briefly
denoted by

Gent+1
i = fi ◦ fm ◦ fc ◦ fr(Genti), i = 1, 2, 3 (16)

where fm, fc and fr denote the genetic operators mutation, crossover, and
reproduction, and fi is the immigration operator.6 The selection scheme employed
is roulette-wheel selection and the fitness function is the profit function (11).
The relevant control parameters are given in Table 5.

6 The immigration operator replaces an existing chromosome with one which is totally randomly
generated. The idea of employing this operator is to enable one to observe the evolutionary stability
of a particular equilibrium achieved.
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• Step 5:
Repeat steps 2–4 until the termination criterion is satisfied. In this paper, a pre-
determined number of generations evolved (T ) is chosen to be the termination
criterion.

We have a few remarks on steps 3 and 4. First, we were not simultaneously
evolving the population while deriving the market dynamics. Hence, the time scale
of the simulation (T ) is not the number of generations (Gen). For case A with the
8-period evolution cycle (r = 8), we actually evolved 250 generations, while for
case B with the 25-period evolution cycle we only evolved 80 generations. This
naturally leads to a question: Are these numbers of generations (periods) enough?
Due to the ‘hanging valley’ well noticed by Ken Binmore, we can never be sure
about this.7

Second, based on equation (16), GAs were employed to evolve each population
separately; i.e., each population is evaluated by how well it performs against itself
rather than against other populations. By doing this, we assume that shops
can extract experience only from those owned by the same oligopolist. Since in
practice pricing strategies are business secrets, they are not observable and hence
impossible to imitate. Therefore, excluding the possibility of learning from other
oligopolists’ strategies seems to be a fair approximation of the real situation.

Third, given the complexity of the oligopoly game as described in Section 2,
it is not entirely clear whether other shops’ experiences are relevant. In particular,
the complex dynamics of the game makes each shop’s own experience unique.
Given their different market shares, pay-off vectors, and local competitors, one
cannot but question whether different shops can be compared on a fair ground.
Nevertheless, we see no effective way to take care of all these path-dependent
attributes. In fact, even in real life, people frequently simplify a complex decision
process. A manager may get sacked not because of her incompetence but simply
because of bad luck.

Another related and more generic issue is: are the survivors the fittest? As with
all path-dependent dynamic systems, this is a very complicated issue. Economic
statistics usually show that income or wealth dynamics are path dependent, and
sometimes ‘social justice’ is required as an external force to slow down the self-
reinforcing mechanism of the gap between poor and rich. In our application of
GAs, we had a similar problem. Even though all the shops started with the same
market share, the initialization process may quickly drive them apart. Since the
fitness, profits, is calculated based on the market share (equation 4), the large
shops are loud in everything, which makes small shops’ voices difficult to hear.
So, when a small shop wins a battle against her local competitors, it will probably
go unnoticed because such a victory is ‘puny’.

4. Experimental Designs and Results

For all the experiments conducted in this study, Ph was set at ‘1.4’, Pl ‘1.2’, and C
‘1’. Other control parameters of GAs were set according to Tables 5 and 6. For

7 The term ‘hanging valley’ is given by Key Binmore in the keynote speech at the 1997 International
Conference on Computer Simulation and Social Sciences held in Italy. His speech is collected in Conte
et al (1997). Binmore used the term to assert that it may take a very, very long time before the state
collapses or transits to other states.
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Table 6. Experimental designs

Experiment r # of runs α

A 8 10 0.2
B 25 10 0.2

each set of parameters, we conducted 10 independent runs, with 2000 periods for
each.

4.1. Phenotypes

In the following, we shall present our simulation results in terms of the phenotype
and the genotype. Before discussing the results of phenotypes, we need to clarify
a few more notations. Let ‘W’ refer to the state ‘price war’ (0, 0, 0), ‘C’ the
state ‘collusive pricing’ (1, 1, 1), ‘w’ the states which are closer to ‘W’ and ‘c’ the
states closer to ‘C’, where ‘closer’ is defined in terms of Hamming distance. Thus,
‘w’ includes states (0, 0, 1), (0, 1, 0), and (1, 0, 0), and ‘c’ includes (1, 1, 0), (1, 0, 1),
(0, 1, 1). Since there are 30 pairs of oligopolists in each market day, a histogram
may make the presentation easier. To do so, let ptW , ptw , ptc, and ptC denote the
percentage of the pairs who in period t are in the states labeled with ‘W’, ‘w’, ‘c’,
and ‘C’ respectively. Figures 1(a–j) and 2(a–j) display the time series plot of the
histogram of St. To see what these results suggest, a series of issues are proposed
as follows:

• Are the market dynamics likely to converge?

• Are the market dynamics likely to converge to the state of collusive pricing,
i.e., the state S = (1, 1, 1)?

• Are the market dynamics likely to converge to the state of a price war, i.e., the
state S = (0, 0, 0)?

• Are the market dynamics likely to converge to any other states?

• Will all three firms survive to the end?

Are the market dynamics likely to converge to the state of collusive pricing? By
Yao and Darwen (1994), ‘to cooperate’ rather than ‘to defect’ seems to be the
most likely result in a three-person IPD game. Yet, none of our 20 runs shows
a convergence to the state of collusive pricing. This result is somewhat striking.
It immediately drives us to the following related issue: Are the market dynamics
likely to converge to the state of a price war? The answer seems to be yes. Out
of the 20 runs we conducted, there are six cases in which the market dynamics
converge to the state of a price war (cases A1, B2, B6, B7, B8, and B9). Moreover,
price wars seem to be more likely to occur in cases with a longer evolution cycle
(case B, r = 25).

While the two questions raised above are fundamental, the market dynamics
can be much richer than that. First, the market dynamics may not converge at
all. Second, there is no guarantee that all three oligopolists can survive to the
end. Let us start from the second point. One of the interesting features which
distinguish the oligopoly game from the IPD game is that players in the oligopoly
game may go extinct. Since in the oligopoly game the existence of a player (a
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Fig. 1. For caption see facing page.

firm) is directly represented by her market share, if her market share comes down
to zero or becomes infinitesimal, then the firm is effectively dead. So, would all
firms survive to the end in our simulations? The answer is no. Out of the 20 cases,
there are six (cases A2, A8, A9, A10, B3, and B5) where only one firm (one
oligopolist) survived to the end. In four cases (A6, B1, B4, and B10) one firm was
out of the game. These 10 cases shared a common pattern, i.e., the surviving firms
all charged the low price, a phenomenon typically known as predatory pricing in
industrial economics.
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Fig. 1. The distribution of states: (a) seed = 78273.38; (b) seed = 79297.74; (c) seed = 79638.12; (d)
seed = 80151.78; (e) seed = 80466.94; (f) seed = 57702.8; (g) seed = 57869.27; (h) seed = 58241.01;
(i) seed = 58507.18; (j) seed = 58746.71.

What has been simulated here is a transition from an oligopoly industry to a
monopoly or duopoly industry. The transition process may be described as follows.
Some firms initiated predatory pricing at the early stage of the game and drove
their competitors out of the game. They continuously kept the price low to
prevent the defeated from coming back. This is what we call the ‘market share
first’ strategy. GAs might help defeated firms to react to this strategy, but unlike
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the IPD games the path dependence of the oligopoly game may not give players
a second chance to regain their lost market.

Now, back to the convergence issue. Are the market dynamics likely to con-
verge? To answer this question, the number of generations needs to be appropri-
ately set. If a case has a potential to converge, but we do not give it enough time
to run, then the analysis based on a transient state may be misleading. By taking
a quick look at the figures of the time series plots (1(a–j), 2(a–j)), one may find
that fluctuation appears in many plots (A2, A6, A7, A10, and B5). But, a careful
examination reveals that many of these cases ended up with either a monopolist
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or duopolists. In this case, the action taken by the extinct firms is no longer
effective. So, if we exclude the action of the nonactive firm(s) and reduce the
dimension of the state to one or two, then we shall see that the market dynamics
of cases A2, A10, and B5, in effect, converge to a state of the low price.

Cases A6 and A7 also converged, though instead of a fix point they converged
to a periodic cycle. Case A6 provides us with another interesting observation. One
firm went extinct in this simulation, and the other two surviving firms synchronized
their pricing; i.e., they simultaneously charged the high price followed by the low
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Table 7. Simulation results: phenotypes

Case Converge? State Case Converge? State

A1 Yes price wars B1 Yes Duopolist (low price)
A2 Yes monopolist (low price) B2 Yes Price wars
A3 Yes weak price wars B3 Yes Monopolist (low price)
A4 Yes weak collusion B4 Yes Duopolist (low price)
A5 Yes weak collusion B5 Yes Monopolist (low price)
A6 Yes duopolist (periodic cycle) B6 Yes Price wars
A7 Yes periodic cycle B7 Yes Price wars
A8 Yes monopolist (low price) B8 Yes Price wars
A9 Yes monopolist (low price) B9 Yes Price wars
A10 Yes monopolist (low price) B10 Yes Duopolist (low price)

price. By doing this, firms will not invade each other’s market, which is tantamount
to a tacit nonaggression agreement frequently observed in the real world. Case
A7 is probably the most complicated steady state to which the market dynamics
converged. It converged to a periodic cycle with five periods. This case, along
with three other convergent cases, cases A3, A4 and A5, will be discussed in
detail in the next subsection. At this moment, it is enough to point out that case
A3 converged to the state ‘weak price wars’, and cases A4 and A5 converged to
the state ‘weak collusion’.

Table 7 summarizes what we found from these 20 simulations. None of
them fail to converge, but the results are quite diverse. From fixed points to
periodic cycles, there are totally seven different kinds of steady state. No state of
collusive pricing comes up as the final outcome, however. Instead of cooperative
behavior, the results are overwhelmingly biased toward predatory behavior. This is
particularly true of case B, where r was set at 25. The emergence and prevalence
of predatory behavior may have been caused by the path dependence of the
game. The fact that markets once lost may never be regained allows firms little
time to realize the value of cooperation before they take their last breath.8

4.2. Genotypes

The purpose of this section is to see what kinds of pricing strategies (genotypes)
the firms acquired led to the prevalence of predatory behavior (phenotypes), and
to see how these strategies can be compared with those stereotypes of the IPD
game. While dealing with the dynamics of the population of chromosomes can
be a very demanding job, the entire population fortunately converged in all our

8 Here, we see the interesting feature that distinguishes the oligopoly game from the n-person
IPD game. In the n-person IPD game, if players fail to appreciate the value of cooperation and
underestimate the consequence of defection, there will always be enough time for them to learn
because the pay-off matrix is time invariant. In the oligopoly game, however, market shares and
pay-offs are time variant, and if players do not do it right in their first try things can be quite difficult
for them. We shall see more on this in the next subsection.
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Table 8. Simulation results of genotypes: case A

Case ψ1 ψ2 ψ3

A1 01101000 (0.33) 01110100 (0.24) 00000100 (0.43)
A2 01000001 (0) 00100001 (1.00) 10000011 (0)
A3 01000000 (0.36) 10011000 (0.31) 00100000 (0.33)
A4 00011000 (0.39) 11001000 (0.22) 01100011 (0.39)
A5 10000010 (0.59) 00100100 (0.32) 10100010 (0.09)
A6 00100100 (0.78) 10101000 (0) 00101000 (0.22)
A7 01001010 (0.20) 00000100 (0.59) 10011011 (0.21)
A8 00000001 (1.00) 01001001 (0) 10110110 (0)
A9 00100000 (0) 10011100 (0) 00000010 (1.00)
A10 10011000 (0) 11001010 (0) 00010000 (1.00)

Inside the parentheses is the average market share of the 30 shops owned by each oligopolist. If the
game converged to a fixed point in action space, the average was taken by using the market share
data from the last period. If the game converged to a periodic cycle, then the average was taken by
using the data from periods of the last cycle. Notice that our computer printouts of these numbers
are accurate up to the ninth decimal. Here, however, we only keep the first two decimal. Therefore,
we use ‘0.00’ when the number is larger than 0.000000000, and ‘0’ when it is smaller.

simulations; i.e., string bias of the population was very close to 100%.9 Or, roughly
speaking,10

lim
t→∞ψ

1,t
i = . . . lim

t→∞ψ
30,t
i = ψi, i = 1, 2, 3 (17)

Therefore, we can simply focus on the population of the last generations, {ψ1, ψ2,
ψ3}. Tables 8 and 9 exhibit the string to which the population converged. Based
on these two tables, we shall address the following two questions:

• What do these ψs say?

• How do these sets (ψ1, ψ2, ψ3) behave?

The first question is to understand the contents of ψ from an individual viewpoint.
In the context of the game, however, strategies cannot be well understood without
interaction being taken into account. Therefore, the second question is posed from
a social viewpoint.

4.2.1. Analysis from an Individual Viewpoint

What do these ψs say? At first glance, it seems difficult to discern any pattern
from these two tables. The genotypes to which the three populations converge are
different from one run to another. In fact, sorting through the strings shows that
there are totally 25 different strategies in Table 8 and 26 in Table 9. Five strategies
were used twice in case A and two strategies were adopted three times in case B.
From such a low frequency of recurrence, one may expect more new strategies to
come up in a few more runs of simulation. Since there are too many strategies

9 String bias is a measure of agreement among the population. To calculate string bias, we first check
the spilt between ‘0’ and ‘1’ at each bit position, called bit bias. If the split is p%-(1 − p)%, then bit
bias is either p% or (1 − p)%, depending on which one is larger. Bit bias assumes a value between
50% and 100%. String bias is the average of all bit bias values. In our case, string bias is the average
of the 8-bit bias values.
10 Given the effect of mutation disturbance, it is difficult for the population to converge completely.
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Table 9. Simulation results of genotypes: case B

Case ψ1 ψ2 ψ3

B1 00001010 (0.05) 00110001 (0.95) 00000001 (0)
B2 01000001 (0.45) 00001011 (0.00) 00000001 (0.55)
B3 01100000 (0) 11011000 (0) 00000010 (1.00)
B4 10000001 (0) 00010010 (0.05) 00010000 (0.95)
B5 10010010 (0) 00000010 (1.00) 00101100 (0)
B6 00010001 (0.42) 00000110 (0.10) 00010100 (0.48)
B7 00001000 (0.55) 00000100 (0.18) 00100011 (0.27)
B8 00101001 (0.11) 00000010 (0.70) 00000001 (0.19)
B9 00000111 (0.19) 01011000 (0.00) 00000101 (0.81)
B10 11001000 (0) 01000110 (0.01) 00000000 (0.99)

Instructions for reading this table are the same as for Table 8.

shown in these two tables, it seems advisable to give a general description of these
strategies instead of going into the detail of each of them.

To do so, we pose a series of questions for each oligopolist. The oligopolist in
question is called the host firm. For the sake of brevity, we use ‘nice’ in place of
‘to charge the high price’ (cooperate), and ‘mean’ in place of ‘to charge the low
price’ (defect).

1. If the host firm is nice to the other firms, but the other firms are mean to the
host, will the host firm take revenge in the next period? That is, to check:

Firm1︷ ︸︸ ︷
000︸︷︷︸ 001︸︷︷︸ 010︸︷︷︸ 011︸︷︷︸ 100︸︷︷︸

0?

101︸︷︷︸ 110︸︷︷︸ 111︸︷︷︸
Firm2︷ ︸︸ ︷

000︸︷︷︸ 001︸︷︷︸ 010︸︷︷︸
0?

011︸︷︷︸ 100︸︷︷︸ 101︸︷︷︸ 110︸︷︷︸ 111︸︷︷︸
Firm3︷ ︸︸ ︷

000︸︷︷︸ 001︸︷︷︸
0?

010︸︷︷︸ 011︸︷︷︸ 100︸︷︷︸ 101︸︷︷︸ 110︸︷︷︸ 111︸︷︷︸ .
2. If all three firms are mean to each other, will any one keep it the same way in

the next period? That is, to check:

Firm1,2,3︷ ︸︸ ︷
000︸︷︷︸
0?

001︸︷︷︸ 010︸︷︷︸ 011︸︷︷︸ 100︸︷︷︸ 101︸︷︷︸ 110︸︷︷︸ 111︸︷︷︸ .
3. If all the firms are nice to each other in this period, will any one turn mean to

the others in the next period? That is, to check:

Firm1,2,3︷ ︸︸ ︷
000︸︷︷︸ 001︸︷︷︸ 010︸︷︷︸ 011︸︷︷︸ 100︸︷︷︸ 101︸︷︷︸ 110︸︷︷︸ 111︸︷︷︸

0?

.

4. If the other firms are nice to the host firm, who is mean to them, will the host
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firm continuously take advantage of the others in the next period? That is, to
check:

Firm1︷ ︸︸ ︷
000︸︷︷︸ 001︸︷︷︸ 010︸︷︷︸ 011︸︷︷︸

0?

100︸︷︷︸ 101︸︷︷︸ 110︸︷︷︸ 111︸︷︷︸
Firm2︷ ︸︸ ︷

000︸︷︷︸ 001︸︷︷︸ 010︸︷︷︸ 011︸︷︷︸ 100︸︷︷︸ 101︸︷︷︸
0?

110︸︷︷︸ 111︸︷︷︸
Firm3︷ ︸︸ ︷

000︸︷︷︸ 001︸︷︷︸ 010︸︷︷︸ 011︸︷︷︸ 100︸︷︷︸ 101︸︷︷︸ 110︸︷︷︸
0?

111︸︷︷︸ .
For all these questions ‘0’ means a positive answer. The well-known tit-for-tat
strategy has a sequence of answers 0-0-1-1. Using tit-for-tat as a benchmark, a
strategy with any ‘1’ appearing in the first two positions can be considered merciful
or gentle; a ‘0’ appearing in the last two positions can be considered aggressive.
Since each strategy may have different answers, for each question we simply
calculated the proportion of the firms who have a positive answer. It was found
that the statistics for case A are 0.73, 0.63, 0.77, 0.60, and for case B are 0.83, 0.87,
0.60, 0.76. While some of these statistics are not statistically significantly different
from 0.5 at the 0.05 significance level, all of them are greater than 0.5. Therefore,
loosely speaking, strategies evolved from our two sets of oligopoly games are not
gentle, but a little aggressive. This result is not surprising and is consistent with
the prevalence of predatory behavior observed.

Of course, not all strategies can help firms to survive well. To have a vivid
picture of this, we took an average of the market shares of 30 shops owned by
each oligopolist. If the game converged to a fixed point in action space, this
average was taken by using the market share data from the last period. If the
game converged to a periodic cycle, then the average was taken by using the data
from periods of the last cycle. These average market shares are reported along
with strategies in Tables 8 and 9. From 0 to 1, these two tables show a great
dispersion of market shares among different runs. Notice that the initial market
share for each firm is one third, but only a few runs, e.g., case A3, ended up with
firms with equal market shares. Instead, the normal ecology seems to be the one
with unbalanced market power.

At this point, one may be tempted to ask: What is the most competitive
strategy? In a coevolutionary context, however, this question is not really well
defined, since everything depends on everything else. As a result, even though the
strategy is exactly the same, depending on the strategies it competes against, the
associated pay-off can be quite different. For example, both the third oligopolist
in cases B1 and B8 used the strategy ‘00000001’. Nevertheless, the former went
extinct, while the latter had a 20% market share.

Although the best strategy may be ill defined, there is a noticeable difference
in the characteristics of the two extremes of strategies, i.e., the ones leading to
great success (a 100% market share), and the ones leading to great failure (a
0% market share). The difference lies in the frequency of the bit ‘1’ appearing
in the strategy. The average number of ‘1’ appearing in the former cases is 1.16,
while it is 2.88 for the latter. To generalize, we ran a regression of the average



306 S.-H. Chen and C.-C. Ni

Table 10. Simulation results: attractors, case A

Case # Attractors

A1 2 000, 100
A2 3 (000 → 001 → 100 ←↩), 010, 111
A3 1 (100 → 010 → 001 ←↩)
A4 1 (001 → 011 → 100 → 110 ←↩)
A5 1 (000 → 101 → 010 → 011 ←↩)
A6 1 (000 → 010 → 111 ←↩)
A7 1 (000 → 001 → 100 → 101 → 010 ←↩)
A8 1 (010 → 001 ←↩)
A9 1 (010 → 100 ←↩)
A10 1 (000 → 110 → 010 ←↩)

The sign ‘←↩’ refers to the start of another cycle.

market share on the frequency of ‘1’ appearing in each cases, and the results are
as follows:

Market− Share =

{
0.72− 0.15(# of 1), for case A,
0.78− 0.22(# of 1), for case B

(18)

In both cases, the regression coefficient is negative. Therefore, the regression
results do suggest that cooperation is a risky play.

4.2.2. Analysis from a Social Viewpoint

How do the sets (ψ1, ψ2, ψ3) behave? When three strategies are grouped together,
given an initial condition, they will generate a sequence of actions St(= (at1, a

t
2, a

t
3)),

and at ∈ {0, 1}. Since all cases converged, we shall only focus on the asymptotic
behavior of St given a specific set (ψ1, ψ2, ψ3), i.e., the attractors of St. Tables 10
and 11 display these attractors. For cases that do not have a unique attractor, we
list all of them, with the one which was actually visited put in the first place. For
example, case A1 has two attractors ‘000’ and ‘100’, but only ‘000’ was realized
as the final state of the game.

Two kinds of attractors appeared in the simulations. The first kind is fixed
points. Interestingly, the only fixed point that was realized as the final state of the
outcome is ‘000’, i.e., price wars (cases A1, B1, B2, B6, B7, B8, and B9), which is
quite understandable. If one firm decides to charge the low price from now on,
then the only way for the other firms to survive is simply to join in. Consequently,
if ‘111’ does not appear, ‘000’ can be the only fixed point. However, there is one
exception, i.e., case B10, whose final state is ‘100’. But, as one would expect, the
first firm did not survive to the end, and hence the first bit of this state is clearly
superfluous.

While the results suggest that it was unlikely for all the firms to charge the
high price all the time (‘111’), it does not necessarily mean that they would always
charge the low price (‘000’). The second kind of attractors, i.e., periodic cycles
with different periods, indicates something in between. In these attractors, firms
could charge the high price at the same time, or at different times. Whichever the
case, no firm would charge the low price at all times.

Let us consider the first kind of possibility, i.e., that firms would charge the
high price at the same time. Case A6 is the only example. In this case, the cycle
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Table 11. Simulation results: attractors, case B

Case # Attractors

B1 3 000, 010, 100
B2 2 000, 111
B3 2 (010 → 100 ←↩ ), (001 → 110 ←↩)
B4 2 (000 → 100 ←↩), 011
B5 2 (000 → 100 → 001 ←↩), 011
B6 2 000, (011 → 101 ←↩ ), 011
B7 2 000, 100
B8 2 000, 100
B9 2 000, 101
B10 1 100

The sign ‘←↩’ refers to the start of another cycle.

goes through the following three states: ‘000’, ‘010’, and ‘111’. Nevertheless, since
the second firm did not survive to the end, the cycle can be reduced to one in
two-dimensional state space: ‘00’, ‘00’, and ‘11’. In such a cycle, the two surviving
firms would concurrently charge the low price for two periods, switch to the high
price in the following period, and then switch back to the low price again. This
behavior can be identified as the nonaggression agreement as discussed in Section
2. In case 6, this nonaggression agreement was a kind of emergent behavior; i.e.,
the agreement was not made at the beginning of the game. It was achieved in the
complex path-dependent dynamics at the time when the first firm was already a
big firm (with a 78% market share), and the third firm a medium-size one (with
a 22% market share).

For the second kind of possibility, consider case A4. The attractor of case A4
has a periodic cycle with four periods. This cycle goes through the following four
states: ‘001’, ‘011’, ‘100’, and ‘110’. In such a cycle, the sequences of actions taken
by the three firms are ‘0-0-1-1’, ‘0-1-0-1’, and ‘1-1-0-0’ respectively. In other words,
in a four-period cycle, all the firms charge both the high price and the low price
twice, while at different times.

As we briefly mentioned above, ‘charging high prices in turn’ can be considered
a collectively intelligent behavior in practice, because it is a smart way to avoid the
violation of the anti-trust law. In this coordination, firms fake competition, while
under the table they reach a tacit agreement to charge high prices half the time.
By the tacit agreement, they are guaranteed not to lose market to each other.11

Hence, this kind of behavior can also be classified as a type of nonaggression
agreement. Moreover, since they are charging high prices at different times, it is
very difficult to verify their anti-competition behavior. Therefore, ‘charging high
prices in turn’ is an even more sophisticated design of cooperation. In addition to
case A4, this type of emergent behavior is also observed in cases A3, A5, and A7.
Therefore, cooperative behavior does emerge in our simulations, but is manifested
in a much more subtle way than in the IPD game.12

11 As indicated earlier, this ‘tacit agreement’ does not mean that agreement was made between firms,
but that an apparent agreement evolved out of market interactions.
12 Apart from not violating the anti-trust law, firms can benefit from this tacit agreement
if both the sixth and the seventh conditions of the IPD game are violated, as discussed in Sec-
tion 3.
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The emergence of periodic cycles can also help to account for the three stylized
phenomena of the oligopolistic industry, as we summarized in the first section.
The periodic cycle of case A6,

000︸︷︷︸
Price war

→ 010→ 111︸︷︷︸
Collusive pricing

←↩ (19)

is somewhat close to the first stylized fact, i.e., that collusive pricing is frequently
interrupted by the occurrence of predatory pricing. The periodic cycle of case A4,

001→ 011→ 100→ 110←↩ (20)

is pretty much about the second stylized fact, i.e., that a dispersion of prices can
persistently exist. As to the third stylized fact, i.e., that firms continuously switch
between the high price and the low price, it is a common property of the second
kind of attractors. Of course, the real pricing patterns of oligopoly is far more
complex than what we have shown here. For example, in the real world, pricing
series may not have any regular cycle at all. However, given the simplicity of our
model, our results are encouraging enough to suggest that this is a good starting
point to advance the study of oligopolists’ behavior.

5. Concluding Remarks

In this study, GAs were applied to an oligopoly game. While firms (players)
encounter a similar subtle decision on whether they should defect or cooperate,
the Markov process characterization of firms’ market shares makes the oligopoly
game a nontrivial generalization of the IPD game. First, depending on the initial
market shares and transition rules, the pay-off matrix is time-variant and state-
dependent. Second, the inequalities which define the IPD game may be violated
as time goes on, which means that even though an oligopoly game can satisfy
the conditions of the IPD game in the beginning, the learning process randomly
initiated may fail it in a later stage. Due to these extensions, one may conjecture
that results of oligopoly games can be too rich to be predicted by a single factor,
such as the number of players, and this conjecture is confirmed by this paper.

In our simulations, we show that, even in the three-player case, collusive
pricing (cooperative behavior) is not the dominant result as one may expect from
the standard three-person IPD game. The results of our 20 simulations are quite
divergent, but together they give quite a vivid replication of what one may observe
from a real oligopoly industry. The three characteristics of oligopolists’ pricing
behavior are captured by many of our simulations (cases A3, A4, A5, and A7).
Furthermore, many of our simulations experienced a transition from an oligopoly
industry to a monopoly (A2, A8, A9, A10, B3, B5) or duopoly industry (A6, B1,
B4, B10). One thing that failed to be generated in our simulations is persistent
collusive pricing. Persistent pricing wars instead seem to be the predominant
outcomes. While a more advanced model could be attempted with GAs, we very
much doubt if the rich nature of the oligopoly industry would change because of
such sophistication.
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