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Recently, genetic programming has been proposed to model agents’ adaptive behavior
in a complex transition process where uncertainty cannot be formalized within the usual
probabilistic framework. However, this approach has not been widely accepted by econo-
mists. One of the main reasons is the lack of the theoretical foundation of using genetic
programming to model transition dynamics. Therefore, the purpose of this paper is two-fold.
First, motivated by the recent applications of algorithmic information theory in economics,
we would like to show the relevance of genetic programming to transition dynamics given
this background. Second, we would like to supply two concrete applications to transition
dynamics. The first application, which is designed for the pedagogic purpose, shows that
genetic programming can simulate the non-smooth transition, which is difficult to be cap-
tured by conventional toolkits, such as differential equations and difference equations. In
the second application, genetic programming is applied to simulate the adaptive behavior
of speculators. This simulation shows that genetic programming can generate artificial time
series with the statistical properties frequently observed in real financial time series.
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1. Introduction and motivation

In Eastern Europe the transition is not like that: people there are confronted with
unprecedented opportunities, new and ill-defined rules, and a daily struggle to deter-
mine the “mechanism” that will eventually govern trade and production. Economists
who dispense advice about government strategies to enable transitions to a market
economy can do so with ample help from “equilibrium theories”. . . , but with vir-
tually no theories about the transition itself. ([31, p. 1]. Italics Added.)

At the current state of economics, transition dynamics can be considered one of
the most poorly understood areas. The major reason is that we know very little about
how to model learning or adaptive agents in a complex transition process.1 Traditional
approaches to modeling adaptive agents are mainly based on econometrics, either the

1 In fact, the whole book of [31] is devoted to this “wild” area.

 J.C. Baltzer AG, Science Publishers
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classical or the Bayesian, and since the celebrated work by [18], econometrics has
been founded on probability theory. However, interesting transition dynamics usually
involves the notion of novelty, which is a very controversial object and may be too
difficult to be dealt with by probability theory. For example, [21] stated: “The majority
of observed phenomena of randomness in Nature (always excluding games of chance)
cannot be and should not be explained by (conventional) probability theory; there is
little or no experimental evidence in favor of (conventional) probability but there is
massive, accumulating evidence that explanations and descriptions should be sought
outside of the conventional framework.” (Ibid, p. 142.)2 Similarly, [32] asserted “For
very complex problems, like predicting earthquakes, or effects of medicine on humans,
we have very poor understanding of the phenomena and we do not know what all the
relevant information is . . . The big problem is to discover which variables are the
relevant predictors.” (Ibid, p. 4.)

Recently, genetic programming has been proposed to model agents’ adaptive be-
havior in a complex transition process whose uncertainty cannot be formalized within
the usual probabilistic framework [10,25]. However, this approach has not been widely
accepted by economists. One of the main reasons is the lack of the theoretical foun-
dation of using genetic programming to model transition dynamics. Therefore, the
purpose of this paper is two-fold. First, motivated by the recent applications of al-
gorithmic information theory in economics, we would like to show the relevance of
genetic programming in transition dynamics given this background. Second, we would
like to supply two concrete applications to illustrate that genetic programming can be
a promising approach to modeling transition dynamics. The first application, which
is designed for the pedagogic purpose, shows that genetic programming can simulate
the non-smooth transition, which is difficult to be captured by conventional toolkits,
such as differential equations and difference equations. In particular, this application
displays the process by which market participants adapt to a typical external shock,
i.e., a sudden change in demand. In the second application, genetic programming is
applied to simulate the adaptive behavior of speculators. The simulation shows that
genetic programming can generate artificial time series with the statistical properties
frequently observed in real financial time series.

The rest of this paper is organized as follows. In section 2, the relevance of
genetic programming to transition dynamics is discussed in the light of Kolmogorov
complexity. Sections 3 and 4 presents the applications of genetic programming men-
tioned as above. Section 5 gives the concluding remarks.

2. Genetic programming and Kolmogorov complexity

While a relevant notion of randomness in economics has yet to be established,
algorithmic randomness or Kolmogorov complexity has recently become the focus of
the attention of many economists who are reexamining randomness [7,15,16,33]. This

2 I owe this reference to Prof. K. Velupillai.
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modern notion of randomness is proposed by A.N. Kolmogorov in 1965 to quan-
tify the randomness of individual objects in an objective and absolute manner.3 The
distinguishing features of Kolmogorov complexity are two-fold.

• It defines randomness from the perspective of individual objects.

• It defines randomness based on finite strings.

In conventional probability theory, randomness cannot be defined without refer-
ence to probability theory, and according to Mises, the existence of probability rests
on the existence of the limit of relative frequency. Therefore, the classical notion of
randomness is a notion based on infinite string rather than a finite one. Furthermore,
the random object, called the random variable in probability theory, refers to a map-
ping from the sample space to the real line. Clearly, it is a notion based on a group
of objects (a sample space) rather than the individual object. Therefore, Kolmogorov
complexity and probability theory results in two fundamentally different notions of
randomness. But which one is more relevant to transition dynamics?

To answer this question, one has to notice that a non-trivial transition process
can be characterized by its introduction of novelties. Technically speaking, it is a
nonergodic process. “Whenever economists talk about “structural breaks” or “changes
in regime”, they are implicitly admitting that the economy is, at least at that point of
time, not operating under the ergodic presumption that the past objective probabilities
will continue to govern future events.” [13, p. 129]. Davidson’s observation may be
further formalized by the following jump process.

A jump process is a continuous-time and discrete-state Markov process. Let Ψ
be the state space which is a collection of models (regimes), i.e.,

Ψ ≡ {f1, f2, . . . , fn, . . .}. (1)

The model (fi) is corresponding to the state i. The cardinality of Ψ may be infinity.
Now, let ω be the waiting time for regime switches or structural changes to occur, and
ω is randomly distributed with the waiting time distribution ℘(ω). If at time t1, the
“switch” operator is on, the state at time [t1], say state j (fj), shall switch to a state k
(fk) (fk ∈ Ψ and k 6= j) at time [t1] + 1 where [.] is the Gauss symbol. The switch
from j to k is randomly determined by the embedded transition matrix T (j, k) where

T (j, k) ≡ Prob
(
(fk) | (fj)

)
, ∀ j, k ∈ Ψ. (2)

Clearly, the jump process described above is in a generalized direction of the
switching regime Markov process proposed by [20]. As a consequence, it shares
some common features with it. First of all, both take structural changes formally
into account. For the switching regime Markov process, this is done by the Markov
transition process and is discrete-time, while for the jump process, it is done by a
waiting time distribution and is hence continuous. Furthermore, through fine-tuning

3 To control the size of this paper to a reasonable limit, a technical introduction to Kolmogorov complexity
is omitted here. The interested reader is referred to [26].
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the parameters of either the Markov transition process or the waiting time distribution,
both models are good enough to simulate different frequencies of structural changes.

Despite these similarities, the term “structural changes” are not used in the same
way in these two models. In switching regime Markov process, there are only a finite
number of states (models). Hence, in the long run, structural changes only mean
revisiting one of these models and have nothing to do with novelties. However, in
the jump process, there are infinite number of states; therefore, even in the long run,
structural changes can always refer to novelties. As a result, these two models also
haves different implications for the significance of adaptation. In the switching regime
Markov process, eventually, there is no need to discover the new pattern. Adaptation
only means to recall the relevant portion of memory. In the jump process, one has
to be alert to the patterns never seen before, and adaptation means the capability of
continuously detecting structural changes and discovering new patterns.

In general, the jump process is nonerogodic. When the stochastic process is
nonerogodic, the usual claim to justify the statistical meaning of a single realization of
time series no longer holds. Furthermore, infrequent structural breaks with novelties
introduced may nullify the use of the large-sample dataset as an effective way of
learning. Thus, a notion of randomness which refers only to individual objects with
finite strings may be more appropriate to interpret a nonergodic world. This is the
reason why we consider Kolmogorov complexity a useful notion of uncertainty observed
in the real-world transition dynamics.

Unfortunately, Kolmogorov complexity is not computable. Therefore, to put
it into application, some approximation techniques are needed and this is done by
Rissanen’s stochastic complexity or the minimum description length principle (MDLP)
[30]. While MDLP has been extensively used to solve model selection problems in
econometrics [23], its relevance to modeling adaptive agents in transition process has
not been well noticed. As [24] pointed out, “Rissanen’s MDL principle is a criterion for
the most economical description of the regularities to be found in “strings” of data. We
should not look at Rissanen’s work as “only” providing a new statistical foundation to
the econometricians; it also offers theorists a way to populate their models with agents
that learn by induction.” [24, p. 6].

In a series of papers [7–9], Chen and Tan used MDL to model the adaptive
perception of investors in financial markets. They found that not only can MDL
formalize [3]’s notion of the efficient market hypothesis, but it also enables us to
observe the transition between sophisticated behavior and myopic behavior. However,
as noticed by [29], while MDL is quite effective in the assessment of hypotheses, given
some data, it is mute on the question of how one can best generate hypotheses deemed
worth assessing. The solution proposed by [29] is to use genetic algorithms to generate
hypotheses. In this paper, we extend their solution by using genetic programming to
generate hypotheses.4

4 The difference between the use of genetic algorithms and genetic programming in modeling adaptive
agents in economics is well documented in [10] and [12].
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3. Simulating transition processes with GP: A pedagogic example

The analysis of an economic model is usually composed of three parts, namely,
the static analysis, the comparative static analysis and the dynamic analysis. The sta-
tic analysis predicts the long-run behavior implied by a model provided other things
are equal. The comparative analysis instructs us how to modify the prediction if ex-
ogenous variables change. Instead of the long-term prediction, the dynamic analysis
informs us of the transition process from the old state to the new one when exogenous
variables change. In conventional education of analytical economics, the mainstream
techniques employed in the adjustment process are differential and difference equa-
tions. Furthermore, associated with the commonly accepted simplification, i.e., the
representative agent, the whole adjustment process can be dramatically reduced to the
study of only a few difference or differential equations. This setup also trivializes one
important aspect of the transition process, i.e., coordination of beliefs, including the
evolution of beliefs of agents.

Motivated by the study of [31], we use genetic programming to provide a
population-based approach, also known as the agent-based approach, to incorporate
the coordinating process of beliefs into transition dynamics. While genetic program-
ming is not the only technique available for modeling transition, economists may
consider this approach attractive because it packs with many old and good economic
ideas, such as the principle of survival of the fittest, the process of random choice
and matching, the usage of primitive ideas, norms, conventions or a rule of thumb,
and the implicit restriction of the complexity of decision making. In addition, it is
a population model. It is our belief that all these features are crucial for modeling
transition processes. Alternatively speaking, if we are thinking of transition processes
within the context of heterogeneous agents who can adapt and learn while subject to
limited cognitive capability (bounded rationality), then genetic programming should
have great potential to serve this need.

3.1. The market: Demand and supply

The particular economic example which we work with is a standard demand
and supply model, more precisely, a cobweb model. The cobweb model used in this
paper is based on [28]. Consider a competitive market composed of n firms which
produce the same goods by employing the same technology and which face the same
cost function described in equation (3):

ci,t = xqi,t +
1
2
ynq2

i,t, (3)

where qi,t is the quantity supplied by firm i at time t, and x and y are the parameters
of the cost function. The production of the goods takes one unit of time, i.e., the
quantity to be supplied at time t must start to be produced at time t− 1. Since at time
t− 1, the price of the goods at time t, Pt, is not available, the decision about optimal
qi,t must be based on the expectations of Pt, i.e., P ei,t.
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Given price expectations P ei,t and the cost function ci,t, the expected profit of firm
i at time t can be expressed as follows:

πei,t = P ei,tqi,t − ci,t. (4)

Given P ei,t, qi,t is chosen at the level such that πei,t can be maximized and, ac-
cording to the first order condition, is given by

qi,t =
1
yn

(
P ei,t − x

)
. (5)

Once qi,t is decided, the aggregate supply of the goods at time t is fixed and Pt,
which sets demand equal to supply, is determined by the demand function:

Pt = A−B
n∑
i=1

qi,t. (6)

Given Pt, the actual profit of firm i at time t is

πi,t = Ptqi,t − ci,t. (7)

In a representative-agent model, it can be shown that the rational expectations
equilibrium price P ∗ and quantity Q∗ are [28]

P ∗t =
Ay +Bx

B + y
, (8)

Q∗t =
A− x
B + y

. (9)

3.2. Experimental design: Shift in the demand curve

The cobweb model is frequently taught in the introductory course in economics,
and economists repeatedly use this model to exemplify the formation of expectations
of the price in a decentralized market [28]. In the literature of bounded rationality,
the cobweb model is also frequently referred as an illustration of learning schemes
[27]. In this paper, we consider two different versions of the cobweb model, one with
low demand and is inherently stable and the other with high demand and is inherently
unstable. The term “inherent stability” is inspired by the cobweb theorem [17] and is
defined in terms of the cobweb ratio B/y, i.e., the ratio of the slope of the demand curve
to that of the supply curve. An economy is inherently stable if its cobweb ratio is lower
than 1 and is inherently unstable if it is higher than 1. In this paper, the stable case
is called Economy 1 (B/y = 0.95) and the unstable case Economy 2 (B/y = 1.05).
The setup of all other parameters of these two economies are given in table 1.

Given these two economies, our purpose is to simulate the transition process
from Economy 1 to Economy 2. This transition process, while very simple, has some
economic significance. First of all, the transition of the economy is a permanent
transition from low demand (P ∗ = 1.12) to high demand (P ∗ = 2.24). In introductory
economics, it corresponds to nothing but a shift in the demand curve. However, to
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Table 1
Parameter values of the cobweb model.

Economy 1 Economy 2

A 2.184 4.592
B 0.0152 0.0168
x 0 0
y 0.016 0.016
n 500 500
(B/y) 0.95 1.05
P ∗ 1.12 2.24

A and B are the parameters of demand curve and x and y are
the parameters of supply curve. B/y is the cobweb ratio. n is
the number of firms. P ∗ is the rational expectations equilibrium
price.

some extent, the economic analysis of institutional changes can always be reduced to
the scenario of either the shift in the demand curve or the shift in the supply curve.
Since in the real world, no one knows where these curves exactly lie, to evaluate how
well the economy can adapt to these shifts is difficult, if not impossible. In this case,
simulations based on a simple and basic transition can be helpful.

Second, the economy before and after transition have different structures. The
one before transition is inherently stable, but the one after is unstable. So, what we
are really simulating is not just a shift in the demand curve but also a change in the
topology around the equilibrium. We believe that the real economy has no difficulty
in adapting to this type of change; however, many existing learning schemes, such
as the recursive least squares, may be in trouble [27]. Therefore, this simulation can
give us a further test on whether genetic programming can approximate the adaptation
observed in the real economy better than the classical or Bayesian schemes.

First we have Economy 1 be the true model for 500 periods and after that Econ-
omy 2 will take over for another 500 periods. Our artificial producers, however, do
not know the relevant parameters of the demand curve, and neither do they know
when the structural break is going to happen. In other words, our artificial producers
have to discover the theoretical equilibrium price and rediscover it by simultaneously
detecting the potential structural change on their own. Moreover, this is not a rep-
resentative agent model. In all our simulations, a large number of producers (500 in
total) are used. Hence, potentially the dimension of the space for producers to adpat
and coordinate can be extremely huge and complex. Without having some features
of self-organization or collective intelligence, it will be hopeless for any producers to
undergo such a coordination and adaptation task.

Genetic programming is thus used to model population learning in the model
defined above. Let GPt, a population of LISP trees, represent a collection of firms’
price forecasting functions at time period t. A firm i, i = 1, . . . ,n, makes a decision
about its production for time t using a tree, gpi,t (gpi,t ∈ GPt), a parse tree written over
the function set and terminal set which are prespecified. In this study, all simulations
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Table 2
Tableau of GP-based learning.

Number of producers (Population size) 500
Number of trees created by the full method 50
Number of trees created by the grow method 50
Function set {+,−,×, %, Exp, Rlog, Sin, Cos}
Terminal set {Pt−1,Pt−2, . . . ,Pt−10,R}
Number of trees created by reproduction 50
Number of trees created by crossover 350
Number of trees created by mutation 100
Probability of mutation 0.0033
Mutation scheme Tree mutation
Maximum depth of tree 17
Probability of leaf selection under crossover 0.5
Number of generations 1000
Maximum number in the domain of Exp 1700
Criterion of fitness Profits

The number of trees created by the full method or grow method is the number of trees
initialized in generation 0 with the depth of tree being 2, 3, 4, 5, and 6. For details, see
[22].

conducted are based on the terminal set which includes the ephemeral random floating-
point constant R ranging over the interval [−9.99, 9.99] and the price lagged up to h
periods, i.e., Pt−1, . . . ,Pt−h. Thus, the forecasting functions that firms may use are
the linear and nonlinear functions of Pt−1, . . . ,Pt−h. Genetic programming techniques
are applied to the population of LISP trees that serve as the forecaster rule for our
heterogeneous population of artificial agents (table 2).

3.3. Simulation results

Given the experimental design proposed above, ten runs of simulation were im-
plemented. The time series plots of the prices over 1000 periods, i.e., {Pt}1000

t=1 are
depicted in figures 1.1–1.10. The prices over the first 500 periods are generated from
Economy 1 and those over the second 500 periods are generated from Economy 2.
The two horizontal lines corresponding to the two theoretical equilibrium prices are
1.12 and 2.24. From these figures, some observations about the transition processes
are made as follows.

First of all, before the structural change, i.e., before period 501, the GP-based
markets have already converged to the theoretical equilibrium price P ∗ (= 1.12).
While sometimes random mutations may drive the equilibrium price away from P ∗

and even cause crashes,5 the markets always have a self-stabilizing feature which can
bring these deviations quickly back to a niche of P ∗. Also, by taking a look at the P ei,t,

5 Here crashes refer to the sudden and dramatic slumps in price. This phenomenon is largely caused by
the tree mutation and hence is artificial. If we turn off the mutation operator once the price moves to
a niche of P ∗, these crashes can be avoided. But, to keep the simulated evolution as autonomous as
possible and to avoid being ad hockery, we decide not to do so.
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we can see that the only surviving belief is that tomorrow’s price shall be the same as
today’s price. Any deviations from this belief caused by mutation cannot sustain.

Second, at the very beginning of the structural change, i.e., at period 501, the
demand curve shifts up suddenly. Since producers do not anticipate this, the quantities
supplied based on the old P ∗ (1.12) are not sufficient to meet the great demand. As a
result, we see that the price jumps dramatically at the beginning of Economy 2 in all
runs. To make this jump and the fluctuation after it more visible, Pts from period 490
to 610 are replotted in figures 2.1–2.10.

Third, after the jump and during the transition phase, the price starts to
fluctuate. These fluctuations not only characterize the transition phase but also signal
a kind of uncertainty to both insiders (producers in the model) and outsiders (model
builders). During the transition phase, producers start to question their original belief
and wonder “what is going on?”. New hypotheses about the world are formed via
genetic operators and they are put to the test. The following is a list of samples,
written in LISP S-expression, from different runs at different generations.

P ei,502 = (% Pt−5 (% Pt−6 (+ Pt−2 Pt−5))), (10)

P ei,503 = (% Pt−5 (%Pt−6 (+ (Log Pt−2) Pt−5))), (11)

P ei,504 = (% (% Pt−4 Pt−4) (% Pt−1 (%Pt−4 Pt−9))), (12)

P ei,504 = (% Pt−9 (% Pt−7 (% Pt−2(% Pt−1Pt−7)))), (13)

P ei,504 = (% Pt−4 (% Pt−7 Pt−3)), (14)

P ei,504 = (× (× Pt−2 Pt−10) Pt−4), (15)

P ei,507 = (× Pt−7 (× Pt−1 Pt−6)), (16)

P ei,517 = (Log (% (+ Pt−10 Pt−2)) (Cos (− (Log Pt−1) (Cos Pt−5)))), (17)

P ei,518 = (× (+ Pt−2 Pt−2) Pt−2), (18)

P ei,521 = (Sin (Sin Pt−2)), (19)

P ei,528 = (Sin Pt−10). (20)

From these examples, we can see that during the transition phase, the accepted
hypothesis “P ei,t = Pt−1” is challenged by the search for more complex forecasting
rules. Due to the random search path of genetic programming, i.e., the random tree
expansion, the accepted hypothesis is more likely to be first challenged by simple
nonlinear forecasting rules and then by complex ones, and some of these complex
forecasting rules may survive for a while before the price finally converges to the new
P ∗, i.e., 2.24.

In addition to the description given above, some other features of transition paths
are summarized as follows.

• The transition phase is nonlinear and non-smooth. It is likely to observe slumps,
crashes, and bursts in the transition phase.

• The transition speed can be very fast as is evidenced by simulations 6 and 10, and
can be slow as well, as simulations 4 and 5 indicate.
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Finally, for all of our simulations, the transition period does not persist for more
than 100 periods (figures 1.1–1.10). From figures 1.1 to 1.10, we can see that the new
equilibrium price (2.24) is rediscovered after a 100-period evolution. While crashes
or bursts can happen occasionally, the self-stabilizing feature still exists.

4. Simulating adaptive speculators with genetic programming

In this section, we shall refer to an artificial database generated from the sim-
ulations conducted in [11]. The original purpose of these simulations is to evaluate
the impact of the trading restrictions on the role of speculative trades in market effi-
ciency. Through genetic programming, [11] constructed artificial speculative markets
and generated the artificial time series data of these markets. They then conducted
a social welfare analysis based on this database and compared the market efficiency
under different financial regulations. Here, based on the same artificial database, we
shall conduct two simple econometric tests. The first is a test for volatility, and the
second is a test for structural changes. In the following, we shall first briefly introduce
the analytical framework and the experimental design of [11].

4.1. The analytical framework

In spirit of the earlier works done by [1] and [2,11] simulated the adaptive
behavior of speculators via genetic programming in a production economy (Muthian
Economy). To extend the model (equations (3)–(7)) so that we can study speculation,
the behavior of speculators has to be specified first. Let Ij,t represent the inventory of
the jth speculator at the end of the tth period; the profit to be realized is

πj,t = Ij,t(Pt+1 − Pt). (21)

Of course, the actual profit πj,t is unknown at the moment when the inventory
plan is conducted; therefore, like producers, speculators tend to set the inventory up
to the level where speculators’ expected utility Euj,t or expected profits Eπj,t can
be maximized. Maximizing Euj,t and Eπj,t can be two quite different objectives.
Generally speaking, the former will take speculators’ risk attitude into account but
the latter will not. We shall follow [28] to assume that the objective function for
speculators is to maximize the expected utility rather than the expected profit.

Without assuming any specific form of utility function, what [28] did was to
approximate the general utility function by taking the second-order Taylor’s series
expansion about the origin:

uj,t ≈ φ(πt) = φ(0) + φ′(0)πj,t +
1
2
φ′′(0)π2

jt. (22)
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Based on equation (22), the approximated utility depends on the moments of the
probability distribution of πt, i.e.,

Euj,t ≈ φ(0) + φ′(0)Eπj,t +
1
2
φ′′(0)Eπ2

j,t. (23)

Solving the first and the second moment of equation (23), we can rewrite the expected
utility function as follows:

Euj,t ≈ φ(0) + φ′(0)Ij,t
(
P ej,t+1 − Pt

)
+

1
2
φ′′(0)I2

j,t

[
σ2
j,t +

(
P ej,t+1 − Pt

)2]
, (24)

where σ2
j,t is the subjective risk (the second moment) perceived by the jth speculator.

The optimal position of the inventory can then be derived approximately by
solving the first order condition and the optimal position of the inventory I∗j,t is given
by

Ij,t = αj
(
P ej,t+1 − Pt

)
, (25)

where αj = −φ′(0)/φ′′(0)σ2
j,t. Equation (25) explicitly shows that speculators’ optimal

decision about the level of inventory depends on their expectations of the price in the
next period, P ej,t+1, and their subjective risk, σ2

j,t.
For a market consisting of n producers and m speculators, the equilibrium con-

dition is given in equation (26),

A

B
− 1
B
Pt +

m∑
j=1

αj
(
P ej,t+1 − Pt

)
=

n∑
i=1

1
yn

(
P ei,t − x

)
+

m∑
j=1

αj
(
P ej,t − Pt−1

)
. (26)

This concludes the construction of our model.

4.2. Experimental design

Since the evolutionary algorithm for producers is the same as the one described
in the previous section, we only describe the evolutionary algorithm for speculators
here. Unlike its application to modeling producers’ adaptive behavior, genetic pro-
gramming is applied to modeling the inventory policy Ij,t of speculators rather than
their price expectations P ej,t. However, since the inventory policy is a function of price
expectations and price expectations are formed based on the history of prices, Ij,t can
be written as a function of the past prices, namely,

Ij,t = Ij,t(Pt−1,Pt−2, . . .). (27)

In the following, genetic programming will be employed to model the adaptation
of the function form of Ij,t. Let GPst , a population of LISP trees, represent a collection
of speculators’ inventory policies Ij,t. A speculator j, j = 1, . . . ,m, makes a decision
about its inventory at time t using a tree, Ij,t (Ij,t ∈ GPst ), a parse tree written over
the function set and terminal set which are given in table 3. The decoding of a parse
tree Ij,t gives the policy function used by speculator j at time period t, i.e., Ij,t(Ωt−1)
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Table 3
Tableau of GP-based adaptation.

Number of producers 300
Number of speculators 100
Number of trees created by the full method 30 (P), 10 (S)
Number of trees created by the grow method 30 (P), 10 (S)
Function set {+,−, Sin, Cos}
Terminal set {Pt−1,Pt−2, . . . ,Pt−10,R}
Number of trees created by reproduction 30 (P), 10 (S)
Number of trees created by crossover 210 (P), 70 (S)
Number of trees created by mutation 60 (P), 20 (S)
Probability of mutation 0.2
Maximum depth of tree 17
Probability of leaf selection under crossover 0.5
Number of generations 1000
Maximum number in the domain of Exp 1700
Criterion of fitness Profit

“P” stands for the producers and “S” stands for the speculators. The number of
trees created by the full method or grow method is the number of trees initialized in
generation 0 with the depth of tree being 2, 3, 4, 5, and 6. For details, see [22].

where Ωt−1 is the information of the past prices up to Pt−1. Evaluating Ij,t(Ωt−1) at
the realization of Ωt−1 will give us the inventory of speculator j at time t, i.e., Ij,t.
Without any further restrictions, the range of Ij,t is (−∞,∞). The case Ij,t < 0 is
called short selling in finance. In this section, short selling is permitted for speculators
subjected to the corresponding requirement for short covering. More precisely, we
allow the speculator to sell short but to be constrained by a maximum amount s.
When the speculator sell short up to s, he is no longer allowed to sell short any more;
instead, he has to buy it back. Also, the short position cannot be kept for more than
d days. In addition to the lower bound of Ij,t, we also set an upper bound of Ij,t, i.e.,
an upper bound of the long position, b.

The raw fitness of a parse tree Ij,t is determined by the value of the speculator’s
payoffs earned at the end of time t+ 1 based on equation (21). To avoid a negative
fitness value, each raw fitness value is then adjusted to produce an adjusted fitness
measure µj,t and is given as follows:

µj,t =

{
πj,t + 50, if πj,t > −50,
0, if πj,t < −50. (28)

The choice of “50” as a threshold is due to the similar consideration in [10] and [12].
Each such adjusted fitness value µj,t is then normalized. The normalized fitness value
pj,t is given in equation (29).

pj,t =
µj,t∑n
j=1 µj,t

. (29)
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Table 4
Parameter values of the cobweb model.

Case A Case B Case C Case D

A 2.184 2.296 3.36 4.48
B 0.0152 0.0168 0.032 0.048
x 0 0 0 0
y 0.016 0.016 0.016 0.016
n 300 300 300 300
m 100 100 100 100
(B/y) 0.95 1.05 2 3
P ∗ 1.12 1.12 1.12 1.12

A and B are the parameters of the demand curve and x and y the
parameters of the supply curve. B/y is the cobweb ratio. n is the
number of producers, and m is the number of speculators. P ∗ is the
rational expectations equilibrium price derived from equation (26).

Table 5
Codes of simulations.

f.r./c.r. 0.95 1.05 2.00 3

B.M. A-0 B-0 C-0 D-0
0.005 A-1 B-1 C-1 D-1
0.01 A-2 B-2 C-2 D-2
0.1 A-3 B-3 C-3 D-3
1.0 A-4 B-4 C-4 D-4
10 A-5 B-5 C-5 D-5

The four numbers appearing in the c.r. row are four cobweb ratios. The
four ratios are encoded by letters A, B, C, D in the ascending order. The
five numbers in the f.r (financial ratio) column are upper limits for the
long and short positions b and s. Here, b and s are set to be identical in
all cases. These five limits are encoded by numbers 1, 2, 3, 4, 5 in the
ascending order. B.M. refers to the benchmark which is the case without
speculators and is encoded by “0”. For those cases with speculative trades,
the duration for the short position, d, is set to be 20.

Once pj,t is determined, GPst+1 is generated from GPst by three primary genetic
operators, i.e., reproduction, crossover, and mutation. All the control parameters for
the Muthian economy are given in table 3.

Given the GP-based adaptive producers and speculators, our computer simulations
were implemented by using the stable case with cobweb ratio 0.95 and the unstable
cases with cobweb ratios 1.05, 2, and 3 with different financial regulations on the long
and short positions, which are denoted by parameters b and s (see tables 4 and 5).

From Case x.1 to Case x.5 (x = A, B, C, D), the trading restrictions on b and s are
gradually relaxed from 0.005 to 10. Since the equilibrium quantity Q∗ is 70 and there
are one hundred speculators in the market, these settings imply that the proportion of
potential speculative trades to Q∗ is relaxed from 1/140 to 100/7. The larger the b and
the s, the larger the possible proportion of “non-productive activities” to the economy.
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Table 6
Reference table of figures 3.1–3.8.

Figure Case GARCH(q,p) Structural changes

3.1 B-4 GARCH(1,1) Yes
3.2 B-4 GARCH(1,1) Yes
3.3 C-2 GARCH(1,1) Yes
3.4 C-4 GARCH(1,1) Yes
3.5 C-5 GARCH(1,1) Yes
3.6 D-0 GARCH(1,1) Yes
3.7 D-3 GARCH(1,1) Yes
3.8 D-4 GARCH(1,1) No

The orders p and q of the GARCH model is determined by the
Schwartz information criterion.

Simulations were conducted for all cases, including the case without speculators
(the benchmark), in accordance with tables 4 and 5. For each case, multiple runs
of simulation were implemented and each run was conducted for one thousand pe-
riods (generations). A database was then established after these simulations. In the
following, we shall conduct two simple tests based on this database, namely, a test
for volatility and a test for structural changes. For the former, we shall conduct the
GARCH test [4], and for the latter, the CUSUMSQ test [6].

4.3. Two econometric tests on “Speculative Markets”

The database, called the “Speculative Markets: Version 1”, has 360 time series.
Each of them has 1000 observations. A detailed report of all these series is beyond
the limit of this paper.6 Here, for illustrative purposes, only eight selected time series
are considered and they are depicted in figures 3.1–3.8.7 Table 6 lists the respective
case of each figure.

The first test is the GARCH test for the time series

∆Pt = Pt − Pt−1. (30)

Few approaches are as pervasive in current econometric research as autoregressive
conditional heteroscedasticity.8 Yet, important questions remain: How do GARCH
models originate? What are their economic foundations? Why do financial markets
show these empirical “signatures”? [2] conjecture a simple evolutionary explanation.

Both in real markets and in our artificial market, agents are constantly exploring and
testing new expectations. Once in a while, randomly, more successful expectations
will be discovered. Such expectations will change the market, and trigger further

6 However, this dataset itself is available upon request.
7 These eight samples are selected in a manner such that they together can represent most of the patterns

observed in other time series.
8 For a survey article, the reader is referred to [5].
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changes in expectations, so that small and large “avalanches” of change will cascade
through the system. (Ibid, p. 19. Italics Added.)

Since GP-based speculators also have the feature of constantly exploring and testing
new expectations, our GARCH test is well motivated.

The procedure of the GARCH test is briefly described as follows.9

• First, the ∆Pt correlations are removed by an AR filter with order chosen by the
Schwartz information criterion (SIC).

• Second, the GARCH-type filters are then applied to the filtered series εt, and the
GARCH(p,q) model is chosen based on SIC.

The resulting GARCH model for each time series ∆Pt is presented in table 6.
From table 6, we can see that the GARCH property generally holds for all selected time
series.10 This result confirms the earlier conjecture by [2] and has further suggested
the possibility that interactive heterogeneous agents driven by genetic programming
may provide us with an economic foundation of ARCH models. Needless to say, more
works are needed in this direction.

The second test is the CUSUM of squares (CUSUMSQ) test for the constancy
over time of the coefficients of the AR model of ∆Pt. This test is motivated by [14]
which shows that infrequent structural changes may result in the nonlinear dependence
of stock returns which may be mistaken as the GARCH effect. The result of this test
is exhibited in figures 4.1–4.8. In these figures, between the two parallel dash lines
is the 95% confidence interval for the CUSUMSQ statistic.11 If this statistic goes
beyond this interval, then a structural change is detected. From figures 4.1–4.8, all
cases evidence structural changes except the last one. What is interesting about this
result is that, in our simulation, there is no external shock or regime change imposed.
Therefore, if a structural change is detected, it is endogenous, and is caused by the
complex interacting adaptive behavior of producers and speculators.

5. Concluding remarks

Using genetic programming, this study proposed a population-based evolutionary
approach to modeling transition dynamics. Since genetic programming can generate
hypotheses automatically, it can fit quite well the characteristics of adaptive agents. In
particular, in a constantly changing environment, such as the jump process, adaptive
agents have to constantly explore and test new expectations in order to survive, and
genetic programming can be a very useful toolkit to capture this attribute. In the peda-
gogic example, we have shown that GP-based adaptive agents can automatically detect
the shift in the demand curve and adapt to it by trying new hypotheses. The transition

9 For details, the interested reader is referred to [19, chapter 21].
10 In fact, the GARCH property turns out to be the most popular property in the database “Speculative

Markets: Version 1”.
11 The CUSUMSQ statistic under the null hypothesis follows a beta distribution.



S.-H. Chen, C.-H. Yeh / Simulating economic transition processes 283



284 S.-H. Chen, C.-H. Yeh / Simulating economic transition processes

process also exhibits the belief-coordinating process which is usually assumed away in
the conventional mathematics of transition dynamics, such as the difference equations
and differential equations.

In the second example, we show that GP-based speculators can generate nonlin-
ear financial time series characterized by the GARCH-like phenomenon. To our best
knowledge, this is the first report to show that some important features of financial
time series analysis can be generated from the GP-based market. Furthermore, if we
perform the CUSUMSQ test on it, we find that the complex interaction process of
these GP-based speculators can even generate endogenous structural changes. This
interesting feature confirms the earlier finding by [1].

We find no evidence that market behavior ever settles down; the population of
predictors continually coevolves. One way to test this is to take agents out of the
system and inject them in again later on. If market behavior is stationary they
should be able to do as well in the future as they are doing today. But we find
that when we “freeze” a successful agent’s predictors early on and inject the agent
into the system much later, the formerly successful agent is now a dinosaur. His
predictions are unadapted and perform poorly. The system has changed. ([1, p. 24].
Italics Added.)
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