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3. Fuzzy Statistic Distribution  

Before introducing new statistic distribution, we first define that how to find the 
expected value and variance for fuzzy sample data. 

3.1 Expected Value and Variance for Fuzzy Sample Data 

Definition 3.1 Expected value for fuzzy sample data (data with multiple values) 

  Let U  be the universal set (a discussion domain),  

{ }kLLLL ,,, 21 K=  

be a set of k -linguistic variables on U , and  

},,2,1,{
2

2

1

1 ni
L
m

L
m

L
mFx

k

ikii
i KL =+++=  

be a sequence of random fuzzy sample on U ,  
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(Nguyen and Wu 2006 [8]) and has the fuzzy Bernoulli distribution. Then, the 

expected value for fuzzy sample data is defined as  
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Definition 3.2 Variance for fuzzy sample data 

  As definition above, we have the variance for fuzzy sample data as following: 
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3.2 Fuzzy Bernoulli and Fuzzy Binomial Distribution 

In this section, we want to introduce some new distribution functions. We have 
known that (e.g. [5]) a Bernoulli trial is an experiment which has only two possible 
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(incompatible) outcomes, which we shall label “success” and “failure”. In general, let 
1=X  if the outcome of Bernoulli trial is a success and 0=X  if it is a failure. Now, 

we say that a Fuzzy Bernoulli experiment is a random experiment, the outcome of 
which can be classified in but one of two mutually exclusive and exhaustive ways, say, 
success or failure (i.e. we let ]1,5.0[∈X  if the outcome of Fuzzy Bernoulli trial is a 
success and ]5.0,0[∈X  if it is a failure.) Hence, a sequence of Fuzzy Bernoulli 
trials occurs. In such a sequence we let π  denote the probability of success on each 
trial. In addition, we will frequently let π−= 1q  denote the probability of failure. 

Now, let X  be a continuous random variable associated with a Fuzzy Bernoulli 
trial by defining it as follows:   

X (success) ]1,5.0[∈  and X (failure) )5.0,0[∈  
That is, the two outcomes, success and failure, are denoted by mutually part of a 
partition set ]1,0[ .  
The p.d.f. of X  can be written as  
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We say that X  has a Fuzzy Bernoulli distribution, and denoted by ),1(~ πFBX . 
We fist derive some properties of the fuzzy Bernoulli distribution. 
 

Theorem 3.3  

a. The Fuzzy Bernoulli density function given in (3.1) is a density function. 
b. If ),1(~ πFBX , then the expected value of X  is  
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So that f  is a density function.  

b. 
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  The moment-generating function is not differentiable at zero, but the moments can 
be calculated by differentiating and then taking 0lim →t . We present it as following: 
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     1= . 
In a sequence of Fuzzy Bernoulli trials, we are often interested in the total number 

of successes and not in the order of their occurrence. If we let the random variable 
M  equal the number of observed successes in n  Fuzzy Bernoulli trials, the 
possible values of M  are any nonnegative numbers. In order to easily denote the 
Fuzzy Binomial distribution, let k  successes occur, where mknm 22 ≤<−  for 

}0{∪∈ Nk  as nm <  and nk =  as nm = , then kn −  failures occur. On the 
above, we say that m  is the observed numbers of M  and N  is defined by natural 
numbers. (The same definitions are in the following.) The number of ways of 
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selecting k  positions for the k  successes in the n  trials is ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
k
n

. Note that, when 

we know the value of m , the values of k  is decided (see Figure 3.1). 

 
Figure 3.1. The relation of m  and k . 

 
The p.d.f. of M  can be written as  
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Another way to present the p.d.f. is like that 
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  We say that M  has a Fuzzy Binomial distribution, and denoted by   
),(~ πnFBM . The constants n  and π  are called the parameters of the fuzzy 

binomial distribution; they correspond to the number n  of trials and the probability 
π  of success on each trial. 
 

Theorem 3.4  

a. The Fuzzy Bernoulli density function given in (3.2) is a density function. 
b. If ),(~ πnFBM , then the expected value of M  is  
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So that f  is a density function. 
b. By the binomial theorem and integral operation again, 
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In next section, we will derive the fuzzy multinomial distribution which is 
expanded of fuzzy binomial distribution. 

3.3 Fuzzy Multinomial Distribution 

First, we want to introduce Fuzzy trinomial distribution, and then extension it to the 
multinomial distribution. 

 

Fuzzy trinomial distribution 

The Fuzzy binomial distribution counts the fuzzy number of “successes” in n  
independent replications of an experiment with two possible outcomes. 
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where { }nkkandkkkkK ≤+≥≥= 212121 ,0,0:),(  ＆ nSmm ∈),( 21 .        (3.3)                
On the above, n  is a positive integer, 1π  and 2π  are nonnegative numbers such that 

121 ≤+ππ .  
In order to prove that f  is a p.d.f. under nS , we must extend the set nS  to 

ASn ∪
~ , where   
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{ }nkkandiforNkknmkmmS iiiin ≤+=∪∈+<≤= 2121 2,1}0{),(5.05.0:),(~  ＆  

nSSA ~
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with A  is measure zero. Note that, S  is the set denoted by  
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Theorem 3.5 

a. The Fuzzy trinomial density function given in (3.3) is a density function. 
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Proof:  
a. Clearly 0),( 21 ≥mmf . 
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So that f  is a density function. 

b. By the trinomial theorem and integral operation again, we have, for the joint 
moment-generation function, 
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Now, let )(log)( tMt =ψ , where ),( 21 ttt =  is a vector. 
Therefore, 
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   Hence 211201221 4
)(lim)0(),cov( ππψψ ntMM

t
−===

→
.                    

Theorem 3.6  

Let )),(,(~),( 2121 ππnFTMM  be a fuzzy trinomial distribution with means 1π  
and 2π . Then ),(~ 11 πnFBM  and ),(~ 11 πnFBM . 
Proof: The marginal moment-generating function of 1M  is  

)0,()(1 tMtM =  
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which is the moment-generating function for ),( 1πnFB , so that ),(~ 11 πnFBM . 
The proof for 2M  is similar. 
We now consider a notation for the fuzzy trinomial distribution which will lead to 

the notation we shall use in the next text for the fuzzy multinomial distribution. Let 
)),(,(~),( 2121 ππnFTMM , and let 213 MMnM −−=  and 213 1 πππ −−= . Then  

),,( 321 MMMM =  has joint density function  

⎪
⎪
⎩

⎪⎪
⎨

⎧

−∈

∈
=

∑∑∑

∑∑∑
*

321321
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*
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*
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!!!

!)2(

      ),,(
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!)2(
2),,(

321
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n
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n
kkk

KKkkkif
kkk

n
n

Kkkkif
kkk

n
nmmmf

πππ

πππ
 

where { }nkkkandkkkkkkK =++≥≥≥= 321321321 0,0,0:),,(  ＆    

*
321 ),,( nSmmm ∈ , 

*
nS  is denoted by { }nmmmmmmmmmSn =++≥≥≥= 321321321

* &0,0,0:),,( .  

Also, we let  

{ }nkkkforiNkmknmkkkK iiiin =++=∪∈≤<−= 321321
* ,&3,2,1}0{,22:),,(  

under the condition *
321 ),,( nSmmm ∈ , then we have a relation between *

nK  and 

*
nS . When 1m , 2m , 3m  decided, 1k , 2k , 3k  are decided. Under the trinomial 
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theorem, it is straightforward to show that ),,( 321 MMM  has joint 
moment-generating function  

⎪
⎩

⎪
⎨

⎧

≠

=++
−−−

=

)0,0,0(),,(                                                                                    1
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πππ

  We note that the joint density function and joint moment-generating function of 
),,( 321 MMM  are somewhat nicer than they are for ),( 21 MM . Notice also that the 

density functions of ),( 21 MM  and ),,( 321 MMM  are ways of representing the same 
model, in which we have n  independent replications of an experiment with three 
possible outcomes. 

When )),(,(~),( 2121 ππnFTMM , the joint distribution of 1M , 2M , and 

213 MMnM −−=  is a special case of the fuzzy multinomial distribution discussed 
in the following. In this case, we often say that ),,( 321 MMMM =  has a  
three-dimensional fuzzy multinomial distribution and write 

),,,(~),,( 3213321 πππnFMMMM , where 213 1 πππ −−= . 
 

Fuzzy multinomial distribution 

We have already considered situations that involve two and three random variables. 
Now, we want to extend it to k  random variables. 

Let ),,( 1 kMMM L=  be a k -dimensional random vector with range 
{ }nmmmmmmS kkkn =++≥≥= LLL 111 &0,,0:),,( . (That is, the iM  are 

nonnegative fuzzy-valued random variables whose sum is n .) We say that 
),,( 1 kMMM L=  has k -dimensional fuzzy multinomial distribution with 

parameters n  and ),,( 1 kπππ L=  and write ),(~),,( 1 πnFMMM kkK  if M  has 
joint density function  

⎪
⎪
⎩

⎪⎪
⎨
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(3.4) 

where 
⎭
⎬
⎫

⎩
⎨
⎧

==≥= ∑
=

nkandkiforkkkkK
k

i
iik

1
21 ,,2,1 0:),,,( KK , nSM ∈ , and  

)1dim( −= kζ . 
On the above, n  is a positive integer and the iπ  are constants such that 

121 =+++ kπππ L . 
Moreover,  
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⎭
⎬
⎫

⎩
⎨
⎧

==∪∈≤<−= ∑
=

nkkforiNkmknmkkkK
k

i
iiiiikn

1
21 &,,2,1}0{,22:),,,( KK . 

Note that nMMM k =+++ L21 , and hence, 121 −−−−−= kk MMMnM L  and 

1211 −−−−−= kk ππππ L . Note also that 
)),(,(~),( 21221 ππnFMMM  ⇔  ),(~ 11 πnFBM , 12 MnM −=  

and ),,,(~),,( 3213321 πππnFMMMM ⇔  )),(,(~),( 2121 ππnFTMM , 

213 MMnM −−= . 
The following theorem summarizes some important facts about the fuzzy 

multinomial distribution. 
 

Theorem 3.7  

a. The fuzzy multinomial density function in (3.4) is a joint density for all positive 
integer n  and kππ ,,1 L  such that 0≥iπ  and 121 =+++ kπππ L . 

b. Let ),(~ πnFMM k , where ),...,,( 21 kMMMM = , ),...,,( 21 kππππ = , 

∑
=

=
k

i
i nM

1
 and 1

1
=∑

=

k

i
iπ . 

Then 
4
21 i

i nEM π+
⋅= , )1(
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)(

2
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nnMVar ππ −+= , jiji

nMM ππ
4

),cov( −= , 

and the joint moment-generation function is 

⎪
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⎪
⎨

⎧
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 where ),,( 1 kttt K= . 

c. If ),(~ πnFMM k , then ),(~ ii nFBM π  and ),,(~),( jiji nFTMM ππ . 

Proof: The same proof as theorem 3.5 & 3.6. 
  The next theorem gives a normal approximation which is often useful. 
 

Theorem 3.8 

Let ),1(~ πFBXi  and ∑
=

==
n

i

i
n n

M
n
xX

1
, where ),(~ πnFBM  and ∑

=

=
n

i
ixM

1
. 

Suppose that =μ  )( iXE  is finite and =2σ ∞<)( iXVar . 

Then  
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)1,0(Nd⎯→⎯  as ∞→n . 

Proof: Since ),1(~ πFBXi , we have that  

=μ
4
21)( π+

=iXE  and =2σ )1(
4
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1)( ππ −+=iXVar . 

Moreover, ∑
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, where ),(~ πnFBM  and  
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nnMVar  
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By the central limit theory, we get that  

2
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)]1(
4
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48
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X n )1,0(Nd⎯→⎯  as ∞→n . 

Hence, 
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)]1(
448
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4
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ππ
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nn

nM
)1,0(Nd⎯→⎯  as ∞→n . 

We have introduced some new distributions in used of fuzzy theorem. Now, we can 
use these distributions to derive a very useful test statistic, called fuzzy chi-square test 
statistic for goodness-of-fit. 

3.4 Fuzzy Chi-square Test Statistic for Goodness-of-Fit 

In this section, we consider applications of very important chi-square statistic. We 
begin our study with the same way by considering the basic chi-square statistic, which 
has only an approximate chi-square distribution. There are many ways to show the 

2χ  test for goodness-of-fit, and we will get the same result in any ways. So that, we 
just only show that in one way. 

 

The l -sample fuzzy multinomial model 

Let iM  be the independent l -dimensional random vectors, ),(~ iiki nFMM π , 
where the in  are known integers and the iπ  are unknown parameter vectors. We 
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call this model the l -sample fuzzy multinomial model. Our main goal for this model 

is to test the equality of the iπ . We let ijM  be the j th component of iM , ijπ  be 

the j th component of iπ  and jL  denote the language variable for kj ,,2,1 K= . 

We can see easily in Table 3.1. 
 

Table 3.1. The table of membership ijM in ijL  

 1L  2L  K  
kL  Total 

1M  11M  12M  K  
kM1  ⋅1M = 1n  

2M  21M  22M  K  
kM 2  ⋅2M = 2n  

M  M  M  M  M  M  

lM  1lM  2lM  K  
lkM  ⋅lM = ln  

Total 1⋅M  2⋅M  K  
kM ⋅  ∑

=

=
l

i
inN

1
 

 

Theorem 3.9  

ijA  is an unbiased estimation of ijπ  for this model, where 
2
12

−=
i

ij
ij n

M
A . 

Proof: Since ),(~ iiki nFMM π , which is implied that ),(~ ijiij nFBM π . 

     So that we have 
4
21

)( ij
iij nME

π+
⋅=  and )1(

448
)(

2

ijij
ii

ij
nnMVar ππ −+= . 

We can get that ijij
i

ij

i

ij AE
n
M

E
n
M

E π==−=− )()
2
12

()]1
4

(
2
1[ .  

Hence ijA  is an unbiased estimation of ijπ . 

Now, we want to test lH πππ === ...: 210  against 01 : HH  is not true. 
Under the null hypothesis 0H  that the iπ  are all equal, and let 

021 ... ππππ ==== l  where ),...,,( 002010 ′= kππππ . Therefore, a sensible estimator 
for the expected frequency for the j th cell in the i th sample is  

N
M

n
N
M

nnE j
i

j
i

j
iij

⋅⋅

∧
∧

⋅=−+⋅=
+

⋅= )]
2
12

(21[
4
1

4
21 0π , 

where ∑=⋅
i

ijj MM  and ∑=
i

inN . 
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Let  
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We call that 
^

kU  is a fuzzy 2χ  and has )1)(1( −− kl  degrees of freedom. 

Since the distribution of 
^

kU  is approximately )1)(1(2 −− klχ , we shall reject 0H  

if )1)(1(2 −−≥
∧

klUk αχ , where α  is the desired significance level of the test. 

In order to prove that )1)(1(2 −−⎯→⎯
∧

klU d
k χ , we must have a theorem and a 

lemma. 
 

Theorem 3.10 (Arnold, 1990 [1]) 

Let ),,,( 21 kXXXX K=  have a multivariate normal distribution, ),(~ ΣμkNX , 
and 0>Σ  is the variance of X , then )(~)()( 21 kXX χμμ −Σ′− − . 
Proof: See Arnold, 1990 [1], p.211-212.  
 

Lemma3.11 (Arnold, 1990 [1]) 

Let A  be a qq×  invertible symmetric matrix, let b  and c  be q -dimensional 
vectors, and let 0≠d  be a number. Then  

bAbd
bAccAccbbdAc 1

21
111 )()( −

−
−−−

′−
′

+′=′−′ . 

Proof: Claim that 1111111 )()( −−−−−−− ′′−+=′− AbbAbAbdAbbdA   
Since )]()([ 111111 bbdAAbbAbAbdA ′−′′−+ −−−−−−  

I
bbAbAbdddbAbdI
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111111111111
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      We get that 1111111 )()( −−−−−−− ′′−+=′− AbbAbAbdAbbdA  
      Hence cAbbAbAbdccAccbbdAc 1111111 )()( −−−−−−− ′′−′+′=′−′  
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Theorem3.12 )1)(1(2 −−⎯→⎯
∧

klU d
k χ . 

Proof: Want to show )1)(1(2 −−⎯→⎯
∧

klU d
k χ , we just only to show that 

)1(2 −⎯→⎯ kU d
kn

χ .   

Now, let ),,,( 21 ′= nknnn MMMM K  and ),,,( 21 ′= kππππ K . 
And let ),,,( 21 ′= nknnn EEEE K  and V  be the KK ×  matrix whose i th diagonal 

element is )1(
4
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iiiiV ππ −=  and whose ),( ji th off-diagonal element is jiijV ππ
4
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−= . 

We have know that )1(
4
1

48
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jiji XX ππ
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By the multinomial central limit theorem, we get that  

4
21 π+

−nX  is approximately )
48
1,0( kk I

n
VN + . 

So that 
n

nXn n 4
21 π+

−
 is approximately )

48
1,0( kk I

n
VN + . 

Hence )(1
nn EMn −−  is approximately )

48
1,0( kk I

n
VN + . 

Since V  is not invertible, let *
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nE  be the )1( −k -dimensional 

vectors and let *V  be the )1()1( −×− kk -dimensional matrix. 
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Hence )1(2 −⎯→⎯= kTU d
nkn

χ .                   

To compute the degrees of freedom in theorem, note that there are 1−l  degrees of 
freedom for each of the k  populations, so that there are )1( −lk  degrees of 
freedom for the whole model. Under the null hypothesis, we are estimating 1−l  

independent parameters, the components of 0π . (Note that ∑ = 10 jπ .) Therefore, 

we would expect the degrees of freedom for this hypothesis to be 
)1)(1()1()1( −−=−−− lkllk . 

 


