3. Fuzzy Statistic Distribution

Before introducing new statistic distribution, we first define that how to find the expected value and variance for fuzzy sample data.

3.1 Expected Value and Variance for Fuzzy Sample Data

Definition 3.1 Expected value for fuzzy sample data (data with multiple values)

Let U be the universal set (a discussion domain),

$$
L=\left\{L_{1}, L_{2}, \ldots, L_{k}\right\}
$$

be a set of k-linguistic variables on U, and

$$
\left\{F x_{i}=\frac{m_{i 1}}{L_{1}}+\frac{m_{i 2}}{L_{2}}+\cdots+\frac{m_{i k}}{L_{k}}, i=1,2, \ldots, n\right\}
$$

be a sequence of random fuzzy sample on U,

$$
m_{i j}\left(\sum_{j=1}^{k} m_{i j}=1\right) \text { is the memberships with respect to } L_{j}
$$

(Nguyen and Wu 2006 [8]) and has the fuzzy Bernoulli distribution. Then, the expected value for fuzzy sample data is defined as

$$
E\left(F x_{i}\right)=\frac{E\left(m_{i 1}\right)}{L_{1}}+\frac{E\left(m_{i 2}\right)}{L_{2}}+\cdots \frac{E\left(m_{i k}\right)}{L_{k}} .
$$

Definition 3.2 Variance for fuzzy sample data

As definition above, we have the variance for fuzzy sample data as following:

$$
\operatorname{var}\left(F x_{i}\right)=\frac{\operatorname{var}\left(m_{i 1}\right)}{L_{1}}+\frac{\operatorname{var}\left(m_{i 2}\right)}{L_{2}}+\cdots \frac{\operatorname{var}\left(m_{i k}\right)}{L_{k}}
$$

3.2 Fuzzy Bernoulli and Fuzzy Binomial Distribution

In this section, we want to introduce some new distribution functions. We have known that (e.g. [5]) a Bernoulli trial is an experiment which has only two possible
(incompatible) outcomes, which we shall label "success" and "failure". In general, let $X=1$ if the outcome of Bernoulli trial is a success and $X=0$ if it is a failure. Now, we say that a Fuzzy Bernoulli experiment is a random experiment, the outcome of which can be classified in but one of two mutually exclusive and exhaustive ways, say, success or failure (i.e. we let $X \in[0.5,1]$ if the outcome of Fuzzy Bernoulli trial is a success and $X \in[0,0.5]$ if it is a failure.) Hence, a sequence of Fuzzy Bernoulli trials occurs. In such a sequence we let π denote the probability of success on each trial. In addition, we will frequently let $q=1-\pi$ denote the probability of failure.

Now, let X be a continuous random variable associated with a Fuzzy Bernoulli trial by defining it as follows:

$$
X \text { (success) } \in[0.5,1] \text { and } X(\text { failure }) \in[0,0.5)
$$

That is, the two outcomes, success and failure, are denoted by mutually part of a partition set $[0,1]$.
The p.d.f. of X can be written as

$$
f(x)=2 \begin{cases}\pi & \text { if } x \in[0.5,1] \tag{3.1}\\ 1-\pi & \text { if } x \in[0,0.5)\end{cases}
$$

We say that X has a Fuzzy Bernoulli distribution, and denoted by $X \sim F B(1, \pi)$. We fist derive some properties of the fuzzy Bernoulli distribution.

Theorem 3.3

a. The Fuzzy Bernoulli density function given in (3.1) is a density function.
b. If $X \sim \operatorname{FB}(1, \pi)$, then the expected value of X is

$$
\mu=E(X)=\frac{1+2 \pi}{4},
$$

and the variance of X is

$$
\sigma^{2}=\operatorname{Var}(X)=\frac{1}{48}+\frac{1}{4} \pi(1-\pi)
$$

Finally, the moment-generating function of X is

$$
M(t)=E\left(e^{t X}\right)= \begin{cases}2\left(\frac{e^{\frac{t}{2}}-1}{t}\right)\left[\pi e^{\frac{t}{2}}+(1-\pi)\right] & \text { if } t \neq 0 \\ 1 & \text { if } t=0\end{cases}
$$

Proof:
a. Note that $f(x) \geq 0$.

Also, $\int_{0}^{1} f(x) d x$

$$
=\int_{0}^{0.5} 2(1-\pi) d x+\int_{0.5}^{1} 2 \pi d x=\left.2(1-\pi) \cdot x\right|_{0} ^{0.5}+\left.2 \pi \cdot x\right|_{0.5} ^{1}=1 .
$$

So that f is a density function.
b. $E(X)=\int_{0.5}^{1} x \cdot 2 \pi d x+\int_{0}^{0.5} x \cdot 2(1-\pi) d x=\frac{1+2 \pi}{4}$, $\operatorname{Var}(X)=E\left(X^{2}\right)-[E(X)]^{2}=\int_{0.5}^{1} x^{2} \cdot 2 \pi d x+\int_{0}^{0.5} x^{2} \cdot 2(1-\pi) d x-\left(\frac{1+2 \pi}{4}\right)^{2}$ $=\frac{1}{48}+\frac{1}{4} \pi(1-\pi)$, and the moment-generating function of X is $M(t)=E\left(e^{t X}\right)=\int_{0.5}^{1} e^{t x} \cdot 2 \pi d x+\int_{0}^{0.5} e^{t x} \cdot 2(1-\pi) d x$ $=\left.2 \pi \cdot \frac{1}{t} e^{t x}\right|_{0.5} ^{1}+\left.2(1-\pi) \frac{1}{t} e^{t x}\right|_{0} ^{0.5}$
$=2 \pi \cdot \frac{1}{t}\left(e^{t}-e^{\frac{t}{2}}\right)+2(1-\pi) \cdot \frac{1}{t}\left(e^{\frac{t}{2}}-1\right)$
$=2 \pi \frac{e^{t}-e^{\frac{t}{2}}}{t}+2(1-\pi) \frac{e^{\frac{t}{2}}-1}{t}$
$=2 \cdot \frac{1}{t}\left[\pi e^{t}+(1-2 \pi) e^{\frac{t}{2}}-(1-\pi)\right]$
$=2 \cdot \frac{1}{t}\left(\pi e^{\frac{t}{2}}+(1-\pi)\right)\left(e^{\frac{t}{2}}-1\right)$
$=2\left(\frac{e^{\frac{t}{2}}-1}{t}\right)\left[\pi e^{\frac{t}{2}}+(1-\pi)\right]$ for $t \neq 0$.
The moment-generating function is not differentiable at zero, but the moments can be calculated by differentiating and then taking $\lim _{t \rightarrow 0}$. We present it as following:

$$
\begin{aligned}
M(0) & =\lim _{t \rightarrow 0} M(t)=\lim _{t \rightarrow 0} 2\left(\frac{e^{\frac{t}{2}}-1}{t}\right)\left[\pi e^{\frac{t}{2}}+(1-\pi)\right]=\lim _{t \rightarrow 0} 2 \frac{\left(e^{\frac{t}{2}}-1\right)\left[\pi e^{\frac{t}{2}}+(1-\pi)\right]}{t} \\
& =\lim _{t \rightarrow 0}\left\{2\left(e^{\frac{t}{2}} \cdot \frac{1}{2}\right)\left[\pi e^{\frac{t}{2}}+(1-\pi)\right]+2\left(e^{\frac{t}{2}}-1\right)\left[\pi e^{\frac{t}{2}} \cdot \frac{1}{2}\right]\right\} \quad \text { (by L'Hospital's Rule) } \\
& =1
\end{aligned}
$$

In a sequence of Fuzzy Bernoulli trials, we are often interested in the total number of successes and not in the order of their occurrence. If we let the random variable M equal the number of observed successes in n Fuzzy Bernoulli trials, the possible values of M are any nonnegative numbers. In order to easily denote the Fuzzy Binomial distribution, let k successes occur, where $2 m-n<k \leq 2 m$ for $k \in N \cup\{0\}$ as $m<n$ and $k=n$ as $m=n$, then $n-k$ failures occur. On the above, we say that m is the observed numbers of M and N is defined by natural numbers. (The same definitions are in the following.) The number of ways of
selecting k positions for the k successes in the n trials is $\binom{n}{k}$. Note that, when we know the value of m, the values of k is decided (see Figure 3.1).

Figure 3.1. The relation of m and k.

The p.d.f. of M can be written as

$$
\begin{equation*}
f(m)=\frac{2}{n} \sum_{k \in \Omega}\binom{n}{k} \pi^{k}(1-\pi)^{n-k} \tag{3.2}
\end{equation*}
$$

where $\Omega=\{k \in N \cup\{0\} \mid 2 m-n<k \leq 2 m$ for $m<n$ and $m=n$ for $k=n\}$.
Another way to present the p.d.f. is like that
or

$$
f(m)=\frac{2}{n}\left\{\begin{array}{ccc}
\binom{n}{0} \pi^{0}(1-\pi)^{n-0}, & 0 \leq m<0.5 n, & k=0 \\
\binom{n}{1} \pi^{1}(1-\pi)^{n-1}, & 0.5 \leq m<0.5(n+1), & k=1 . \\
\binom{n}{n} \pi^{n}(1-\pi)^{n-n}, & 0.5 n \leq m \leq 0.5(n+n), & k=n
\end{array}\right.
$$

We say that M has a Fuzzy Binomial distribution, and denoted by $M \sim F B(n, \pi)$. The constants n and π are called the parameters of the fuzzy binomial distribution; they correspond to the number n of trials and the probability π of success on each trial.

Theorem 3.4

a. The Fuzzy Bernoulli density function given in (3.2) is a density function.
b. If $M \sim \operatorname{FB}(n, \pi)$, then the expected value of M is

$$
\mu=E(M)=n \cdot \frac{1+2 \pi}{4},
$$

and the variance of M is

$$
\sigma^{2}=\operatorname{Var}(M)=\frac{n^{2}}{48}+\frac{n}{4} \pi(1-\pi)
$$

Finally, the moment-generating function of M is

$$
M(t)= \begin{cases}\frac{2}{n} \cdot \frac{e^{\frac{n}{2} t}-1}{t}\left[\pi e^{\frac{t}{2}}+(1-\pi)\right]^{n} & \text { if } t \neq 0 . \\ 1 & \text { if } t=0\end{cases}
$$

Proof:
a. Note that, $f(m) \geq 0$.

Also, by the binomial theorem and integral operation,

$$
\begin{aligned}
& \int_{0}^{n} f(m) d m=\int_{0}^{n} \frac{2}{n} \sum_{k \in \Omega}\binom{n}{k} \pi^{k}(1-\pi)^{n-k} d m \\
& =\frac{2}{n}\left\{\int_{0}^{0.5 n}\binom{n}{0} \pi^{0}(1-\pi)^{n-0} d m+\int_{0.5}^{0.5(n+1)}\binom{n}{1} \pi^{1}(1-\pi)^{n-1} d m+\cdots+\int_{0.5 n}^{0.5(n+n)}\binom{n}{n} \pi^{n}(1-\pi)^{n-n} d m\right\} \\
& =\frac{2}{n} \sum_{k=0}^{n} \int_{0.5 k}^{0.5(n+k)}\binom{n}{k} \pi^{k}(1-\pi)^{n-k} d m=\left.\frac{2}{n} \sum_{k=0}^{n}\binom{n}{k} \pi^{k}(1-\pi)^{n-k} \cdot m\right|_{0.5 k} ^{0.5(n+k)} \\
& =\frac{2}{n} \sum_{k=0}^{n}\binom{n}{k} \pi^{k}(1-\pi)^{n-k} \cdot \frac{n}{2}=\sum_{k=0}^{n}\binom{n}{k} \pi^{k}(1-\pi)^{n-k}=[\pi+(1-\pi)]^{n}=1 .
\end{aligned}
$$

So that f is a density function.
b. By the binomial theorem and integral operation again,

$$
\begin{aligned}
M(t) & =E\left(e^{t M}\right)=\frac{2}{n} \sum_{k=0}^{n} \int_{0.5 k}^{0.5(n+k)} e^{t m} \cdot\binom{n}{k} \pi^{k}(1-\pi)^{n-k} d m \\
& =\left.\frac{2}{n} \sum_{k=0}^{n}\binom{n}{k} \pi^{k}(1-\pi)^{n-k} \cdot \frac{1}{t} e^{t m}\right|_{0.5 k} ^{0.5(n+k)} \\
& =\frac{2}{n} \cdot \frac{1}{t} \sum_{k=0}^{n}\binom{n}{k} \pi^{k}(1-\pi)^{n-k}\left[e^{\frac{t}{2}(n+k)}-e^{\frac{t}{2} k}\right] \\
& =\frac{2}{n} \cdot \frac{1}{t}\left(e^{\frac{n}{2} t}-1\right) \sum_{k=0}^{n}\binom{n}{k}\left(e^{\frac{t}{2}} \pi\right)^{k}(1-\pi)^{n-k} \\
& =\frac{2}{n} \cdot \frac{e^{\frac{n}{2} t}-1}{t}\left[\pi e^{\frac{t}{2}}+(1-\pi)\right]^{n} \text { for } t \neq 0 .
\end{aligned}
$$

As $t=0$, the same proof as theorem 3.3 b .
Therefore, $\psi(t)=\log M(t)=\log \frac{2}{n}+\log \frac{e^{\frac{n}{2} t}-1}{t}+n \cdot \log \left(\pi e^{\frac{t}{2}}+1-\pi\right)$.
And $\psi(0)=\log M(0)=\log 1=0$.

$$
\psi^{\prime}(t)=\frac{t}{e^{\frac{n}{2} t}-1} \cdot \frac{e^{\frac{n}{2} t} \frac{n}{2} \cdot t-\left(e^{\frac{n}{2} t}-1\right) \cdot 1}{t^{2}}+n \cdot \frac{\pi e^{\frac{t}{2}} \frac{1}{2}}{\pi e^{\frac{t}{2}}+1-\pi} .
$$

So that $\mu=\psi^{\prime}(0)=\lim _{t \rightarrow 0} \frac{\psi(t)-\psi(0)}{t-0}=\lim _{t \rightarrow 0} \frac{\psi(t)}{t}=\lim _{t \rightarrow 0} \psi^{\prime}(t) \quad$ (by L'Hospital's Rule)

$$
=\lim _{t \rightarrow 0}\left[\frac{t}{e^{\frac{n}{2} t}-1} \cdot \frac{e^{\frac{n}{2} t} \frac{n}{2} \cdot t-\left(e^{\frac{n}{2} t}-1\right)}{t^{2}}+n \cdot \frac{\pi e^{\frac{t}{2}} \frac{1}{2}}{\pi e^{\frac{t}{2}}+1-\pi}\right]=n \cdot \frac{1+2 \pi}{4} .
$$

Moreover,

$$
\begin{aligned}
\psi^{\prime \prime}(t)= & \frac{1 \cdot\left(e^{\frac{n}{2} t}-1\right)-t \cdot e^{\frac{n}{2} t} \frac{n}{2}}{\left(e^{\frac{n}{2} t}-1\right)^{2}} \cdot \frac{e^{\frac{n}{2} t} \frac{n}{2} \cdot t-\left(e^{\frac{n}{2} t}-1\right)}{t^{2}} \\
& +\frac{t}{e^{\frac{n}{2} t}-1} \cdot \frac{\left[e^{\frac{n}{2} t}\left(\frac{n}{2}\right)^{2} \cdot t+e^{\frac{n}{2} t} \frac{n}{2} \cdot 1-e^{\frac{n}{2} t} \frac{n}{2}\right] \cdot t^{2}-\left[e^{\frac{n}{2} t} \frac{n}{2} \cdot t-\left(e^{\frac{n}{2} t}-1\right)\right] \cdot 2 t}{t^{4}}
\end{aligned}
$$

$$
+n \cdot \frac{\pi e^{\frac{t}{2}}\left(\frac{1}{2}\right)^{2}\left(\pi e^{\frac{t}{2}}+1-\pi\right)-\left(\pi e^{\frac{t}{2}} \frac{1}{2}\right)^{2}}{\left(\pi e^{\frac{t}{2}}+1-\pi\right)^{2}} .
$$

Hence $\sigma^{2}=\psi^{\prime \prime}(0)=\lim _{t \rightarrow 0} \frac{\psi^{\prime}(t)-\psi^{\prime}(0)}{t-0}=\lim _{t \rightarrow 0} \frac{\psi^{\prime}(t)-\mu}{t}=\lim _{t \rightarrow 0} \psi^{\prime \prime}(t)$
(by L'Hospital's Rule)

$$
=\frac{n^{2}}{48}+\frac{n}{4} \pi(1-\pi) .
$$

In next section, we will derive the fuzzy multinomial distribution which is expanded of fuzzy binomial distribution.

3.3 Fuzzy Multinomial Distribution

First, we want to introduce Fuzzy trinomial distribution, and then extension it to the multinomial distribution.

Fuzzy trinomial distribution

The Fuzzy binomial distribution counts the fuzzy number of "successes" in n independent replications of an experiment with two possible outcomes.

Let $M=\left(M_{1}, M_{2}\right)$ be a bivariate random vector whose range is $S_{n}=\left\{\left(m_{1}, m_{2}\right): m_{1} \geq 0, m_{2} \geq 0 \& m_{1}+m_{2} \leq n\right\}$ (That is, m_{1} and m_{2} are nonnegative real values such that $m_{1}+m_{2} \leq n$). Also, we let $K_{n}=\left\{\left(k_{1}, k_{2}\right): 2 m_{i}-n<k_{i} \leq 2 m_{i}, k_{i} \in N \cup\{0\}\right.$ for $\left.i=1,2 \& k_{1}+k_{2} \leq n\right\}$ under the condition S_{n}, then we have a relation between K_{n} and S_{n}. When m_{1}, m_{2} decided, k_{1}, k_{2} are decided. Hence, M has a Fuzzy trinomial distribution with parameters n and $\pi=\left(\pi_{1}, \pi_{2}\right)$, written $M=\left(M_{1}, M_{2}\right) \sim F T\left(n,\left(\pi_{1}, \pi_{2}\right)\right)$, if M has joint density function

$$
f\left(m_{1}, m_{2}\right)=2 \begin{cases}\left(\frac{2}{n}\right)^{2} \sum_{k_{1}} \sum_{k_{2}} \frac{n!}{k_{1}!k_{2}!\left(n-k_{1}-k_{2}\right)!} \pi_{1}^{k_{1}} \pi_{2}^{k_{2}}\left(1-\pi_{1}-\pi_{2}\right)^{n-k_{1}-k_{2}} & \text { if }\left(k_{1}, k_{2}\right) \in K_{n} \tag{3.3}\\ \left(\frac{2}{n}\right)^{2} \sum_{k_{1}} \sum_{k_{2}} \frac{n!}{k_{1}!k_{2}!\left(n-k_{1}-k_{2}\right)!} \pi_{1}^{k_{1}} \pi_{2}^{k_{2}}\left(1-\pi_{1}-\pi_{2}\right)^{n-k_{1}-k_{2}} & \text { if }\left(k_{1}, k_{2}\right) \in K-K_{n}\end{cases}
$$

where $K=\left\{\left(k_{1}, k_{2}\right): k_{1} \geq 0, k_{2} \geq 0\right.$, and $\left.k_{1}+k_{2} \leq n\right\} \quad \& \quad\left(m_{1}, m_{2}\right) \in S_{n}$.
On the above, n is a positive integer, π_{1} and π_{2} are nonnegative numbers such that $\pi_{1}+\pi_{2} \leq 1$.
In order to prove that f is a p.d.f. under S_{n}, we must extend the set S_{n} to $\tilde{S}_{n} \cup A$, where

$$
\tilde{S}_{n}=\left\{\left(m_{1}, m_{2}\right): 0.5 k_{i} \leq m_{i}<0.5\left(n+k_{i}\right), k_{i} \in N \cup\{0\} \text { for } i=1,2 \text { and } k_{1}+k_{2} \leq n\right\} \text { \& }
$$

$$
A=S-\tilde{S}_{n}
$$

with A is measure zero. Note that, S is the set denoted by

$$
S=\left\{\left(m_{1}, m_{2}\right): 0 \leq m_{1} \leq n \& 0 \leq m_{2} \leq n\right\} .
$$

Theorem 3.5

a. The Fuzzy trinomial density function given in (3.3) is a density function.
b. If $\left(M_{1}, M_{2}\right) \sim F T\left(n,\left(\pi_{1}, \pi_{2}\right)\right)$, then $E M_{i}=n \cdot \frac{1+2 \pi_{i}}{4}$,
$\operatorname{Var}\left(M_{i}\right)=\frac{n^{2}}{48}+\frac{n}{4} \pi_{i}\left(1-\pi_{i}\right), \operatorname{cov}\left(M_{1}, M_{2}\right)=-\frac{n}{4} \pi_{1} \pi_{2}$, and the joint moment-generation function is

$$
M\left(t_{1}, t_{2}\right)= \begin{cases}\left(\frac{2}{n}\right)^{2} \cdot\left(\frac{e^{\frac{n}{2} t_{1}}}{t_{1}}\right)\left(\frac{e^{\frac{n}{t_{2}}}-1}{t_{2}}\right)\left[\pi_{1} e^{\frac{t_{1}}{2}}+\pi_{2} e^{\frac{t_{2}}{2}}+\left(1-\pi_{1}-\pi_{2}\right)\right]^{n} & \text { if }\left(t_{1}, t_{2}\right)=(0,0) \\ 1 & \text { if }\left(t_{1}, t_{2}\right) \neq(0,0)\end{cases}
$$

Proof:
a. Clearly $f\left(m_{1}, m_{2}\right) \geq 0$.

By the trinomial theorem and integral operation,

$$
\begin{aligned}
& \iint_{S_{n}} f\left(m_{1}, m_{2}\right) d m_{1} d m_{2}=\int_{0}^{n} \int_{0}^{n-m_{2}} f\left(m_{1}, m_{2}\right) d m_{1} d m_{2} \\
& =\int_{0}^{n} \int_{0}^{n-m_{2}} 2\left(\frac{2}{n}\right)^{2} \sum_{\left(k_{1}, k_{2}\right) \in K} \frac{n!}{k_{1}!k_{2}!\left(n-k_{1}-k_{2}\right)!} \pi^{k_{1}} \pi_{2}^{k_{2}}\left(1-\pi_{1}-\pi_{2}\right)^{n-k_{1}-k_{2}} d m_{1} d m_{2} \\
& =2\left(\frac{2}{n}\right)^{2} \sum_{\left(k_{1}, k_{2}\right) \in K} \sum_{\tilde{S}_{n} \cup A} \frac{1}{2} \iint_{S_{1}} \frac{n!}{k_{1}!k_{2}!\left(n-k_{1}-k_{2}\right)!} \pi_{1}^{k_{1}} \pi_{2}^{k_{2}}\left(1-\pi_{1}-\pi_{2}\right)^{n-k_{1}-k_{2}} d m_{1} d m_{2} \\
& =\left(\frac{2}{n}\right)^{2} \sum_{\left(k_{1}, k_{2}\right) \in K}\left[\iint_{S_{n}} \frac{n!}{k_{1}!k_{2}!\left(n-k_{1}-k_{2}\right)!} \pi_{1}^{k_{1}} \pi_{2}^{k_{2}}\left(1-\pi_{1}-\pi_{2}\right)^{n-k_{1}-k_{2}} d m_{1} d m_{2}+\right. \\
& \left.\quad \iint_{A} 0 d m_{1} d m_{2}\right] \\
& =\left(\frac{2}{n}\right)^{2} \sum_{\left(k_{1}, k_{2}\right) \in K} \sum_{0.5 k_{2}}^{0.5\left(n+k_{2}\right)} \int_{0.5 k_{1}}^{0.5\left(n+k_{1}\right)} \frac{n!}{k_{1}!k_{2}!\left(n-k_{1}-k_{2}\right)!} \pi_{1}^{k_{1}} \pi_{2}^{k_{2}}\left(1-\pi_{1}-\pi_{2}\right)^{n-k_{1}-k_{2}} d m_{1} d m_{2}
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\frac{2}{n}\right)^{2} \sum_{\left(k_{1}, k_{2}\right) \in K} \frac{n!}{k_{1}!k_{2}!\left(n-k_{1}-k_{2}\right)!} \pi_{1}^{k_{1}} \pi_{2}^{k_{2}}\left(1-\pi_{1}-\pi_{2}\right)^{n-k_{1}-k_{2}} \cdot\left[\left.m_{1}\right|_{0.5 k_{1}} ^{0.5\left(n+k_{1}\right)}\right] \cdot\left[\left.m_{2}\right|_{0.5 k_{2}} ^{0.5\left(n+k_{2}\right)}\right] \\
& =\left(\frac{2}{n}\right)^{2} \sum_{\left(k_{1}, k_{2}\right) \in K} \frac{n!}{k_{1}!k_{!}!\left(n-k_{1}-k_{2}\right)!} \pi_{1}^{k_{1}} \pi_{2}^{k_{2}}\left(1-\pi_{1}-\pi_{2}\right)^{n-k_{1}-k_{2}} \cdot\left(\frac{n}{2}\right)\left(\frac{n}{2}\right) \\
& =\sum_{\left(k_{1}, k_{2}\right) \in K} \sum_{k_{1}!k_{2}!\left(n-k_{1}-k_{2}\right)!} \pi_{1}^{k_{1}} \pi_{2}^{k_{2}}\left(1-\pi_{1}-\pi_{2}\right)^{n-k_{1}-k_{2}} \\
& =\left[\pi_{1}+\pi_{2}+\left(1-\pi_{1}-\pi_{2}\right)\right]^{n}=1 .
\end{aligned}
$$

So that f is a density function.
b. By the trinomial theorem and integral operation again, we have, for the joint moment-generation function,

$$
\begin{aligned}
& M\left(t_{1}, t_{2}\right)=E\left(e^{t_{1} m_{1}+t_{2} m_{2}}\right) \\
& =\left(\frac{2}{n}\right)^{2} \sum_{\left(k_{1}, k_{2}\right) \in K} \int_{0.5 k_{2}}^{0.5\left(n+k_{2}\right)} \int_{0.5 k_{1}}^{0.5\left(n+k_{1}\right)} e^{t_{1} m_{1}} \cdot e^{t_{2} m_{2}} \frac{n!}{k_{1}!k_{2}!\left(n-k_{1}-k_{2}\right)!} \pi_{1}^{k_{1}} \pi_{2}^{k_{2}}\left(1-\pi_{1}-\pi_{2}\right)^{n-k_{1}-k_{2}} d m_{1} d m_{2} \\
& =\left(\frac{2}{n}\right)^{2} \sum_{\left(k_{1}, k_{2}\right) \in K} \frac{n!}{k_{1}!k_{2}!\left(n-k_{1}-k_{2}\right)!} \pi_{1}^{k_{1}} \pi_{2}^{k_{2}}\left(1-\pi_{1}-\pi_{2}\right)^{n-k_{1}-k_{2}} \cdot\left[\left.\frac{e^{t_{1} m_{1}}}{t_{1}}\right|_{0.5 k_{1}} ^{0.5\left(n+k_{1}\right)}\right] \cdot\left[\left.\frac{e^{t_{2} m_{2}}}{t_{2}}\right|_{0.5 k_{2}} ^{0.5\left(n+k_{2}\right)}\right] \\
& =\left(\frac{2}{n}\right)^{2}\left(\frac{e^{\frac{n}{2} t_{1}}-1}{t_{1}}\right)\left(\frac{e^{\frac{n}{2} t_{2}}-1}{t_{2}}\right) \sum_{\left(k_{1}, k_{2}\right) \in K} \frac{n!}{k_{1}!k_{2}!\left(n-k_{1}-k_{2}\right)!} \pi_{1}^{k_{1}} \pi_{2}^{k_{2}}\left(1-\pi_{1}-\pi_{2}\right)^{n-k_{1}-k_{2}} \\
& =\left(\frac{2}{n}\right)^{2}\left(\frac{e^{\frac{n}{2} t_{1}}-1}{t_{1}}\right)\left(\frac{e^{\frac{n}{2} t_{2}}-1}{t_{2}}\right)\left[\pi_{1} e^{\frac{t_{1}}{2}}+\pi_{2} e^{\frac{t_{2}}{2}}+\left(1-\pi_{1}-\pi_{2}\right)\right]^{n} \text { for }\left(t_{1}, t_{2}\right) \neq(0,0) .
\end{aligned}
$$

The moment-generating function is not differentiable at $\left(t_{1}, t_{2}\right)=(0,0)$, but the moments can be calculated by differentiating and then taking $\lim _{\left(t_{1}, t_{2}\right) \rightarrow(0,0)}$.

Then $M(0)=M(0,0)=\lim _{\left(t_{1}, t_{2}\right) \rightarrow(0,0)} M\left(t_{1}, t_{2}\right)$

$$
\begin{aligned}
& =\lim _{\left(t_{1}, t_{2}\right) \rightarrow(0,0)}\left(\frac{2}{n}\right)^{2}\left(\frac{e^{\frac{n}{2} t_{1}}}{t_{1}}\right)\left(\frac{e^{\frac{n}{2} t_{2}}-1}{t_{2}}\right)\left[\pi_{1} e^{\frac{t_{1}}{2}}+\pi_{2} e^{\frac{t_{2}}{2}}+\left(1-\pi_{1}-\pi_{2}\right)\right]^{n} \\
& \left(\text { Let } t_{1}=r \cos \theta, t_{2}=r \sin \theta . \text { If }\left(t_{1}, t_{2}\right) \rightarrow(0,0) \text {, then } r \rightarrow 0^{+} .\right) \\
& =\lim _{r \rightarrow 0^{+}}\left(\frac{2}{n}\right)^{2}\left(\frac{e^{\frac{n}{2} r \cos \theta}-1}{r \cos \theta}\right)\left(\frac{e^{\frac{n}{2} \sin \theta}-1}{r \sin \theta}\right)\left[\pi_{1} e^{\frac{r \cos \theta}{2}}+\pi_{2} e^{\frac{r \sin \theta}{2}}+\left(1-\pi_{1}-\pi_{2}\right)\right]^{n} \\
& =1 .
\end{aligned}
$$

Now, let $\psi(t)=\log M(t)$, where $t=\left(t_{1}, t_{2}\right)$ is a vector.
Therefore,
$\psi(t)=2 \cdot \log \left(\frac{2}{n}\right)+\log \left(\frac{e^{\frac{n}{2} t_{1}}-1}{t_{1}}\right)+\log \left(\frac{e^{\frac{n}{2} t_{2}}-1}{t_{2}}\right)+n \cdot \log \left(\pi_{1} e^{\frac{t_{1}}{2}}+\pi_{2} e^{\frac{t_{2}}{2}}+1-\pi_{1}-\pi_{2}\right)$, and $\psi(0)=\log M(0)=\log 1=0$.

$$
\begin{aligned}
& \psi_{i}(t)=\frac{\partial \psi(t)}{\partial t_{i}}=\frac{t_{i}}{e^{\frac{n}{2} t_{i}}}-1 \quad \cdot \frac{e^{\frac{n}{2} t_{i}} \frac{n}{2} \cdot t_{i}-\left(e^{\frac{n}{2} t_{i}}-1\right) \cdot 1}{t_{i}^{2}}+n \cdot \frac{\pi_{i} e^{\frac{t_{i}}{2}} \frac{1}{2}}{\pi_{1} e^{\frac{t_{1}}{2}}+\pi_{2} e^{\frac{t_{2}}{2}}+1-\pi_{1}-\pi_{2}} . \\
& \mu=E M_{i}=\psi_{i}(0)=\lim _{t \rightarrow 0} \psi_{i}(t)=\lim _{t \rightarrow 0}\left[\frac{t_{i}}{e^{\frac{n}{2}}-1} \cdot \frac{e^{\frac{n}{2} t_{i}} \frac{n}{2} \cdot t_{i}-\left(e^{\frac{n_{t}}{t_{i}}}-1\right)}{t_{i}^{2}}+n \cdot \frac{\pi_{i} e^{\frac{t_{i}}{2}} \frac{1}{2}}{\pi_{1} e^{\frac{t_{1}}{2}}+\pi_{2} e^{\frac{t_{2}}{2}}+1-\pi_{1}-\pi_{2}}\right] \\
& =n \cdot \frac{1+2 \pi_{i}}{4}, \\
& \psi_{i i}(t)=\frac{\partial^{2} \psi(t)}{\partial t_{i}{ }^{2}}=\frac{1 \cdot\left(e^{\frac{n}{2} t_{i}}-1\right)-t_{i} \cdot e^{\frac{n}{2} t_{i}} \frac{n}{2}}{\left(e^{\frac{n}{2} t_{i}}-1\right)^{2}} \cdot \frac{e^{\frac{n}{2} t_{i}} \frac{n}{2} \cdot t_{i}-\left(e^{\frac{n}{t_{i}}}-1\right)}{t_{i}{ }^{2}} \\
& +\frac{t_{i}}{e^{\frac{n}{t_{i}}}-1} \cdot \frac{\left[e^{\frac{n}{2} t_{i}}\left(\frac{n}{2}\right)^{2} \cdot t_{i}+e^{\frac{n}{2} t_{i}} \frac{n}{2} \cdot 1-e^{\frac{n}{2} t_{i}} \frac{n}{2}\right] \cdot t_{i}^{2}-\left[e^{\frac{n}{2} t_{i}} \frac{n}{2} \cdot t_{i}-\left(e^{\frac{n}{t_{i}}}-1\right)\right] \cdot 2 t_{i}}{t_{i}^{4}} \\
& +n \cdot \frac{\pi_{i} e^{\frac{t_{i}}{2}}\left(\frac{1}{2}\right)^{2}\left(\pi_{1} e^{\frac{t_{1}}{2}}+\pi_{2} e^{\frac{t_{2}}{2}}+1-\pi_{1}-\pi_{2}\right)-\left(\pi_{i} e^{\frac{t_{i}}{2}} \frac{1}{2}\right)^{2}}{\left(\pi_{1} e^{\frac{t_{1}}{2}}+\pi_{2} e^{\frac{t_{2}}{2}}+1-\pi_{1}-\pi_{2}\right)^{2}} . \\
& \sigma^{2}=\operatorname{var}\left(M_{i}\right)=\psi_{i i}(0)=\lim _{t \rightarrow 0} \psi_{i i}(t)=\frac{n^{2}}{48}+\frac{n}{4} \pi_{i}\left(1-\pi_{i}\right) \text {, } \\
& \psi_{i j}(t)=\frac{\partial^{2} \psi(t)}{\partial t_{j} \partial t_{i}}=\frac{\partial}{\partial t_{j}}\left(\psi_{i}(t)\right) \\
& =\frac{\partial}{\partial t_{j}}\left[\frac{t_{i}}{e^{\frac{n}{2} t_{i}}-1} \cdot \frac{e^{\frac{n}{2} t_{i}} \frac{n}{2} \cdot t_{i}-\left(e^{\frac{n}{2} t_{i}}-1\right) \cdot 1}{t_{i}{ }^{2}}+n \cdot \frac{\pi_{i} e^{\frac{t_{i}}{2}} \frac{1}{2}}{\pi_{1} e^{\frac{t_{1}}{2}}+\pi_{2} e^{\frac{t_{2}}{2}}+1-\pi_{1}-\pi_{2}}\right] \\
& =n \cdot\left[\frac{-\pi_{i} e^{\frac{t_{i}}{2}} \frac{1}{2} \cdot \pi_{j} e^{\frac{t_{j}}{2}} \frac{1}{2}}{\left(\pi_{1} e^{\frac{t_{1}}{2}}+\pi_{2} e^{\frac{t_{2}}{2}}+1-\pi_{1}-\pi_{2}\right)^{2}}\right] .
\end{aligned}
$$

Hence $\operatorname{cov}\left(M_{1}, M_{2}\right)=\psi_{12}(0)=\lim _{t \rightarrow 0} \psi_{12}(t)=-\frac{n}{4} \pi_{1} \pi_{2}$.

Theorem 3.6

Let $\left(M_{1}, M_{2}\right) \sim F T\left(n,\left(\pi_{1}, \pi_{2}\right)\right)$ be a fuzzy trinomial distribution with means π_{1} and π_{2}. Then $M_{1} \sim F B\left(n, \pi_{1}\right)$ and $M_{1} \sim F B\left(n, \pi_{1}\right)$.
Proof: The marginal moment-generating function of M_{1} is

$$
\begin{aligned}
M_{1}(t) & =M(t, 0) \\
& =\lim _{\left(t_{1}, t_{2}\right) \rightarrow(t, 0)}\left(\frac{2}{n}\right)^{2}\left(\frac{e^{\frac{n}{t_{1}}}-1}{t_{1}}\right)\left(\frac{e^{\frac{n}{2} t_{2}}-1}{t_{2}}\right)\left[\pi_{1} e^{\frac{t_{1}}{2}}+\pi_{2} e^{\frac{t_{2}}{2}}+\left(1-\pi_{1}-\pi_{2}\right)\right]^{n} \\
& =\left(\frac{2}{n}\right)^{2}\left(\frac{e^{\frac{n}{2} t}-1}{t}\right)\left[\pi_{1} e^{\frac{t}{2}}+\pi_{2} e^{0}+\left(1-\pi_{1}-\pi_{2}\right)\right]^{n} \cdot \lim _{t_{2} \rightarrow 0}\left(\frac{e^{\frac{n}{2} t_{2}}-1}{t_{2}}\right) \\
& =\left(\frac{2}{n}\right)\left(\frac{e^{\frac{n}{2} t}-1}{t}\right)\left[\pi_{1} e^{\frac{t}{2}}+\left(1-\pi_{1}\right)\right]^{n}
\end{aligned}
$$

which is the moment-generating function for $\operatorname{FB}\left(n, \pi_{1}\right)$, so that $M_{1} \sim F B\left(n, \pi_{1}\right)$. The proof for M_{2} is similar.
We now consider a notation for the fuzzy trinomial distribution which will lead to the notation we shall use in the next text for the fuzzy multinomial distribution. Let $\left(M_{1}, M_{2}\right) \sim F T\left(n,\left(\pi_{1}, \pi_{2}\right)\right)$, and let $M_{3}=n-M_{1}-M_{2}$ and $\pi_{3}=1-\pi_{1}-\pi_{2}$. Then $M=\left(M_{1}, M_{2}, M_{3}\right)$ has joint density function

$$
f^{*}\left(m_{1}, m_{2}, m_{3}\right)=2 \begin{cases}\left(\frac{2}{n}\right)^{3} \sum \sum \sum \frac{n!}{k_{1}!k_{2}!k_{3}!} \pi_{1}^{k_{1}} \pi_{2}^{k_{2}} \pi_{3}^{k_{3}} & \text { if }\left(k_{1}, k_{2}, k_{3}\right) \in K_{n}^{*} \\ \left(\frac{2}{n}\right)^{3} \sum \sum \sum \frac{n!}{k_{1}!k_{2}!k_{3}!} \pi_{1}^{k_{1}} \pi_{2}^{k_{2}} \pi_{3}^{k_{3}} & \text { if }\left(k_{1}, k_{2}, k_{3}\right) \in K-K_{n}^{*}\end{cases}
$$

where $K=\left\{\left(k_{1}, k_{2}, k_{3}\right): k_{1} \geq 0, k_{2} \geq 0, k_{3} \geq 0\right.$ and $\left.k_{1}+k_{2}+k_{3}=n\right\} \quad \&$

$$
\left(m_{1}, m_{2}, m_{3}\right) \in S_{n}{ }^{*},
$$

$S_{n}{ }^{*}$ is denoted by $S_{n}{ }^{*}=\left\{\left(m_{1}, m_{2}, m_{3}\right): m_{1} \geq 0, m_{2} \geq 0, m_{3} \geq 0 \& m_{1}+m_{2}+m_{3}=n\right\}$.
Also, we let

$$
K_{n}^{*}=\left\{\left(k_{1}, k_{2}, k_{3}\right): 2 m_{i}-n<k_{i} \leq 2 m_{i}, k_{i} \in N \cup\{0\} \text { fori }=1,2,3, \& k_{1}+k_{2}+k_{3}=n\right\}
$$

under the condition $\left(m_{1}, m_{2}, m_{3}\right) \in S_{n}^{*}$, then we have a relation between $K_{n}{ }^{*}$ and $S_{n}{ }^{*}$. When m_{1}, m_{2}, m_{3} decided, k_{1}, k_{2}, k_{3} are decided. Under the trinomial
theorem, it is straightforward to show that $\left(M_{1}, M_{2}, M_{3}\right)$ has joint moment-generating function

$$
M\left(t_{1}, t_{2}, t_{3}\right)= \begin{cases}\left(\frac{2}{n}\right)^{3}\left(\frac{e^{\frac{n}{2} t_{1}}-1}{t_{1}}\right)\left(\frac{e^{\frac{n}{2_{2}}}-1}{t_{2}}\right)\left(\frac{e^{\frac{n}{2} t_{3}}-1}{t_{3}}\right)\left[\pi_{1} e^{\frac{t_{1}}{2}}+\pi_{2} e^{\frac{t_{2}}{2}}+\pi_{3} e^{\frac{t_{3}}{2}}\right]^{n} & \text { if }\left(t_{1}, t_{2}, t_{3}\right)=(0,0,0) \\ 1 & \text { if }\left(t_{1}, t_{2}, t_{3}\right) \neq(0,0,0)\end{cases}
$$

We note that the joint density function and joint moment-generating function of $\left(M_{1}, M_{2}, M_{3}\right)$ are somewhat nicer than they are for $\left(M_{1}, M_{2}\right)$. Notice also that the density functions of (M_{1}, M_{2}) and (M_{1}, M_{2}, M_{3}) are ways of representing the same model, in which we have n independent replications of an experiment with three possible outcomes.

When $\left(M_{1}, M_{2}\right) \sim F T\left(n,\left(\pi_{1}, \pi_{2}\right)\right)$, the joint distribution of M_{1}, M_{2}, and $M_{3}=n-M_{1}-M_{2}$ is a special case of the fuzzy multinomial distribution discussed in the following. In this case, we often say that $M=\left(M_{1}, M_{2}, M_{3}\right)$ has a three-dimensional fuzzy multinomial distribution and write $\left(M_{1}, M_{2}, M_{3}\right) \sim F M_{3}\left(n, \pi_{1}, \pi_{2}, \pi_{3}\right)$, where $\pi_{3}=1-\pi_{1}-\pi_{2}$.

Fuzzy multinomial distribution

We have already considered situations that involve two and three random variables. Now, we want to extend it to k random variables.

Let $M=\left(M_{1}, \cdots, M_{k}\right)$ be a k-dimensional random vector with range $S_{n}=\left\{\left(m_{1}, \cdots, m_{k}\right): m_{1} \geq 0, \cdots, m_{k} \geq 0 \& m_{1}+\cdots+m_{k}=n\right\}$. (That is, the M_{i} are nonnegative fuzzy-valued random variables whose sum is n.) We say that $M=\left(M_{1}, \cdots, M_{k}\right)$ has k-dimensional fuzzy multinomial distribution with parameters n and $\pi=\left(\pi_{1}, \cdots, \pi_{k}\right)$ and write $\left(M_{1}, \ldots, M_{k}\right) \sim F M_{k}(n, \pi)$ if M has joint density function

$$
f\left(m_{1}, \ldots, m_{k}\right)=\zeta \begin{cases}\left(\frac{2}{n}\right)^{k} \sum \cdots \sum \frac{n!}{k_{1}!\cdots k_{k}!} \pi_{1}^{k_{1}} \pi_{2}^{k_{2}} \cdots \pi_{k}^{k_{k}} & \text { if }\left(k_{1}, k_{2}, \ldots, k_{k}\right) \in K_{n} \tag{3.4}\\ \left(\frac{2}{n}\right)^{k} \sum \cdots \sum \frac{n!}{k_{1}!\cdots k_{k}!} \pi_{1}^{k_{1}} \pi_{2}^{k_{2}} \cdots \pi_{k}^{k_{k}} & \text { if }\left(k_{1}, k_{2}, \ldots, k_{k}\right) \in K-K_{n}\end{cases}
$$

where $K=\left\{\left(k_{1}, k_{2}, \ldots, k_{k}\right): k_{i} \geq 0\right.$ for $i=1,2, \ldots, k$ and $\left.\sum_{i=1}^{k} k_{i}=n\right\}, M \in S_{n}$, and

$$
\zeta=\operatorname{dim}(k-1) .
$$

On the above, n is a positive integer and the π_{i} are constants such that

$$
\pi_{1}+\pi_{2}+\cdots+\pi_{k}=1
$$

Moreover,

$$
K_{n}=\left\{\left(k_{1}, k_{2}, \ldots, k_{k}\right): 2 m_{i}-n<k_{i} \leq 2 m_{i}, k_{i} \in N \cup\{0\} \text { fori }=1,2, \ldots, k \& \sum_{i=1}^{k} k_{i}=n\right\} .
$$

Note that $M_{1}+M_{2}+\cdots+M_{k}=n$, and hence, $M_{k}=n-M_{1}-M_{2}-\cdots-M_{k-1}$ and $\pi_{k}=1-\pi_{1}-\pi_{2}-\cdots-\pi_{k-1}$. Note also that

$$
\left(M_{1}, M_{2}\right) \sim F M_{2}\left(n,\left(\pi_{1}, \pi_{2}\right)\right) \Leftrightarrow M_{1} \sim F B\left(n, \pi_{1}\right), \quad M_{2}=n-M_{1}
$$

and $\left(M_{1}, M_{2}, M_{3}\right) \sim F M_{3}\left(n, \pi_{1}, \pi_{2}, \pi_{3}\right) \Leftrightarrow\left(M_{1}, M_{2}\right) \sim F T\left(n,\left(\pi_{1}, \pi_{2}\right)\right)$,

$$
M_{3}=n-M_{1}-M_{2} .
$$

The following theorem summarizes some important facts about the fuzzy multinomial distribution.

Theorem 3.7

a. The fuzzy multinomial density function in (3.4) is a joint density for all positive integer n and π_{1}, \cdots, π_{k} such that $\pi_{i} \geq 0$ and $\pi_{1}+\pi_{2}+\cdots+\pi_{k}=1$.
b. Let $M \sim F M_{k}(n, \pi)$, where $M=\left(M_{1}, M_{2}, \ldots, M_{k}\right), \pi=\left(\pi_{1}, \pi_{2}, \ldots, \pi_{k}\right)$, $\sum_{i=1}^{k} M_{i}=n$ and $\sum_{i=1}^{k} \pi_{i}=1$.

Then $E M_{i}=n \cdot \frac{1+2 \pi_{i}}{4}, \operatorname{Var}\left(M_{i}\right)=\frac{n^{2}}{48}+\frac{n}{4} \pi_{i}\left(1-\pi_{i}\right), \operatorname{cov}\left(M_{i}, M_{j}\right)=-\frac{n}{4} \pi_{i} \pi_{j}$, and the joint moment-generation function is

$$
M(t)= \begin{cases}\left(\frac{2}{n}\right)^{k}\left(\frac{e^{\frac{n}{2} t_{1}}}{t_{1}}\right) \cdots\left(\frac{e^{\frac{n}{2} t_{k}}}{t_{k}}\right)\left[\pi_{1} e^{\frac{t_{1}}{2}}+\pi_{2} e^{\frac{t_{2}}{2}}+\cdots+\pi_{k} e^{\frac{t_{k}}{2}}\right]^{n} & \text { if } t=0, \\ 1 & \text { if } t \neq 0\end{cases}
$$

where $t=\left(t_{1}, \ldots, t_{k}\right)$.
c. If $M \sim F M_{k}(n, \pi)$, then $M_{i} \sim F B\left(n, \pi_{i}\right)$ and $\left(M_{i}, M_{j}\right) \sim F T\left(n, \pi_{i}, \pi_{j}\right)$.

Proof: The same proof as theorem 3.5 \& 3.6.
The next theorem gives a normal approximation which is often useful.

Theorem 3.8

Let $X_{i} \sim F B(1, \pi)$ and $\bar{X}_{n}=\sum_{i=1}^{n} \frac{x_{i}}{n}=\frac{M}{n}$, where $M \sim F B(n, \pi)$ and $M=\sum_{i=1}^{n} x_{i}$.
Suppose that $\mu=E\left(X_{i}\right)$ is finite and $\sigma^{2}=\operatorname{Var}\left(X_{i}\right)<\infty$.
Then

$$
\frac{M-n \cdot \frac{1+2 \pi}{4}}{\left[\frac{n^{2}}{48}+\frac{n}{4} \pi(1-\pi)\right]^{1 / 2}} \xrightarrow{d} N(0,1) \text { as } n \rightarrow \infty .
$$

Proof: Since $X_{i} \sim F B(1, \pi)$, we have that

$$
\mu=E\left(X_{i}\right)=\frac{1+2 \pi}{4} \text { and } \sigma^{2}=\operatorname{Var}\left(X_{i}\right)=\frac{1}{48}+\frac{1}{4} \pi(1-\pi) .
$$

Moreover, $\bar{X}_{n}=\sum_{i=1}^{n} \frac{x_{i}}{n}=\frac{M}{n}$, where $M \sim F B(n, \pi)$ and

$$
\mu=E(M)=n \cdot \frac{1+2 \pi}{4}, \sigma^{2}=\operatorname{Var}(M)=\frac{n^{2}}{48}+\frac{n}{4} \pi(1-\pi)
$$

Hence $\mu=E\left(\bar{X}_{n}\right)=E\left(\frac{M}{n}\right)=\frac{1}{n} E(M)=\frac{1}{n} \cdot\left(n \cdot \frac{1+2 \pi}{4}\right)=\frac{1+2 \pi}{4}$ and $\sigma^{2}=\operatorname{Var}\left(\bar{X}_{n}\right)=\operatorname{Var}\left(\frac{M}{n}\right)=\frac{1}{n^{2}} \operatorname{Var}(M)=\frac{1}{n^{2}}\left[\frac{n^{2}}{48}+\frac{n}{4} \pi(1-\pi)\right]=\frac{1}{48}+\frac{1}{4 n} \pi(1-\pi)$.
By the central limit theory, we get that

$$
\begin{aligned}
& \text { } \begin{aligned}
& \frac{\bar{X}_{n}-\mu}{\left[\frac{1}{48}+\frac{1}{4 n} \pi(1-\pi)\right]^{1 / 2}} \xrightarrow{d} N(0,1) \text { as } n \rightarrow \infty . \\
\text { Hence, } & \frac{M-n \cdot \frac{1+2 \pi}{4}}{\left[\frac{n^{2}}{48}+\frac{n}{4} \pi(1-\pi)\right]^{1 / 2}} \xrightarrow{d} N(0,1) \text { as } n \rightarrow \infty .
\end{aligned} . . .
\end{aligned}
$$

We have introduced some new distributions in used of fuzzy theorem. Now, we can use these distributions to derive a very useful test statistic, called fuzzy chi-square test statistic for goodness-of-fit.

3.4 Fuzzy Chi-square Test Statistic for Goodness-of-Fit

In this section, we consider applications of very important chi-square statistic. We begin our study with the same way by considering the basic chi-square statistic, which has only an approximate chi-square distribution. There are many ways to show the χ^{2} test for goodness-of-fit, and we will get the same result in any ways. So that, we just only show that in one way.

The l-sample fuzzy multinomial model

Let M_{i} be the independent l-dimensional random vectors, $M_{i} \sim F M_{k}\left(n_{i}, \pi_{i}\right)$, where the n_{i} are known integers and the π_{i} are unknown parameter vectors. We
call this model the l-sample fuzzy multinomial model. Our main goal for this model is to test the equality of the π_{i}. We let $M_{i j}$ be the j th component of $M_{i}, \pi_{i j}$ be the j th component of π_{i} and L_{j} denote the language variable for $j=1,2, \ldots, k$. We can see easily in Table 3.1.

Table 3.1. The table of membership $M_{i j}$ in $L_{i j}$

	L_{1}	L_{2}	\cdots	L_{k}	Total
M_{1}	M_{11}	M_{12}	\cdots	$M_{1 k}$	$M_{1 .}=n_{1}$
M_{2}	M_{21}	M_{22}	\cdots	$M_{2 k}$	$M_{2 \cdot}=n_{2}$
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots
M_{l}	$M_{l 1}$	$M_{l 2}$	\cdots	$M_{l k}$	$M_{l \cdot}=n_{l}$
Total	$M_{\cdot 1}$	$M_{\cdot 2}$	\cdots	$M_{\cdot k}$	$N=\sum_{i=1}^{l} n_{i}$

Theorem 3.9

$A_{i j}$ is an unbiased estimation of $\pi_{i j}$ for this model, where $A_{i j}=\frac{2 M_{i j}}{n_{i}}-\frac{1}{2}$.
Proof: Since $M_{i} \sim F M_{k}\left(n_{i}, \pi_{i}\right)$, which is implied that $M_{i j} \sim F B\left(n_{i}, \pi_{i j}\right)$.
So that we have $E\left(M_{i j}\right)=n_{i} \cdot \frac{1+2 \pi_{i j}}{4}$ and $\operatorname{Var}\left(M_{i j}\right)=\frac{n_{i}^{2}}{48}+\frac{n_{i}}{4} \pi_{i j}\left(1-\pi_{i j}\right)$.
We can get that $E\left[\frac{1}{2}\left(\frac{4 M_{i j}}{n_{i}}-1\right)\right]=E\left(\frac{2 M_{i j}}{n_{i}}-\frac{1}{2}\right)=E\left(A_{i j}\right)=\pi_{i j}$.
Hence $A_{i j}$ is an unbiased estimation of $\pi_{i j}$.
Now, we want to test $H_{0}: \pi_{1}=\pi_{2}=\ldots=\pi_{l}$ against $H_{1}: H_{0}$ is not true.
Under the null hypothesis H_{0} that the π_{i} are all equal, and let
$\pi_{1}=\pi_{2}=\ldots=\pi_{l}=\pi_{0}$ where $\pi_{0}=\left(\pi_{01}, \pi_{02}, \ldots, \pi_{0 k}\right)^{\prime}$. Therefore, a sensible estimator for the expected frequency for the j th cell in the i th sample is

$$
\hat{E_{i j}}=n_{i} \cdot \frac{1+2 \hat{\pi_{0 j}}}{4}=n_{i} \cdot \frac{1}{4}\left[1+2\left(\frac{2 M_{\cdot j}}{N}-\frac{1}{2}\right)\right]=n_{i} \cdot \frac{M_{\cdot j}}{N},
$$

where $M_{\cdot j}=\sum_{i} M_{i j}$ and $N=\sum_{i} n_{i}$.

Let
$\hat{U}_{k}=\sum_{i=1}^{l}\left\{\sum_{j=1}^{k-1} \frac{\left(M_{i j}-\hat{E_{i j}}\right)^{2}}{\hat{B}_{i j}}+\frac{4\left[\sum_{j=1}^{k-1}\left(M_{i j}-\hat{E_{i j}}\right)\left(1-\frac{n_{i}^{2}}{48 \hat{B_{i j}}}\right)\right]^{2}}{n_{i}-4 \sum_{j=1}^{k-1} \hat{B_{i j}}\left(1-\frac{n_{i}^{2}}{48 \hat{B_{i j}}}\right)^{2}}\right\}$, where $\hat{B_{i j}}=\frac{1}{2} \hat{E}_{i j}-\frac{n_{i}}{8}+\frac{n_{i}^{2}}{48}$.
We call that \hat{U}_{k} is a fuzzy χ^{2} and has $(l-1)(k-1)$ degrees of freedom.
Since the distribution of \hat{U}_{k} is approximately $\chi^{2}(l-1)(k-1)$, we shall reject H_{0} if $\hat{U}_{k} \geq \chi_{\alpha}{ }^{2}(l-1)(k-1)$, where α is the desired significance level of the test.

In order to prove that $\hat{U}_{k} \xrightarrow{d} \chi^{2}(l-1)(k-1)$, we must have a theorem and a lemma.

Theorem 3.10 (Arnold, 1990 [1])
Let $X=\left(X_{1}, X_{2}, \ldots, X_{k}\right)$ have a multivariate normal distribution, $X \sim N_{k}(\mu, \Sigma)$, and $\Sigma>0$ is the variance of X, then $(X-\mu)^{\prime} \Sigma^{-1}(X-\mu) \sim \chi^{2}(k)$.
Proof: See Arnold, 1990 [1], p.211-212.

Lemma3.11 (Arnold, 1990 [1])
Let A be a $q \times q$ invertible symmetric matrix, let b and c be q-dimensional vectors, and let $d \neq 0$ be a number. Then

$$
c^{\prime}\left(A-d^{-1} b b^{\prime}\right)^{-1} c=c^{\prime} A^{-1} c+\frac{\left(c^{\prime} A^{-1} b\right)^{2}}{d-b^{\prime} A^{-1} b} .
$$

Proof: Claim that $\left(A-d^{-1} b b^{\prime}\right)^{-1}=A^{-1}+\left(d-b^{\prime} A^{-1} b\right)^{-1} A^{-1} b b^{\prime} A^{-1}$

$$
\begin{aligned}
\text { Since } & {\left[A^{-1}+\left(d-b^{\prime} A^{-1} b\right)^{-1} A^{-1} b b^{\prime} A^{-1}\right]\left(A-d^{-1} b b^{\prime}\right) } \\
& =A^{-1} A+\left(d-b^{\prime} A^{-1} b\right)^{-1} A^{-1} b b^{\prime} A^{-1} A-A^{-1} d^{-1} b b^{\prime}-\left(d-b^{\prime} A^{-1} b\right)^{-1} A^{-1} b b^{\prime} A^{-1} d^{-1} b b^{\prime} \\
& =I+\left[\left(d-b^{\prime} A^{-1} b\right)^{-1}-d^{-1}-d^{-1}\left(d-b^{\prime} A^{-1} b\right)^{-1}\right] A^{-1} b b^{\prime} \\
& =I
\end{aligned}
$$

We get that $\left(A-d^{-1} b b^{\prime}\right)^{-1}=A^{-1}+\left(d-b^{\prime} A^{-1} b\right)^{-1} A^{-1} b b^{\prime} A^{-1}$
Hence $c^{\prime}\left(A-d^{-1} b b^{\prime}\right)^{-1} c=c^{\prime} A^{-1} c+c^{\prime}\left(d-b^{\prime} A^{-1} b\right)^{-1} A^{-1} b b^{\prime} A^{-1} c$

$$
\begin{aligned}
& =c^{\prime} A^{-1} c+\frac{c^{\prime} A^{-1} b b^{\prime} A^{-1} c}{d-b^{\prime} A^{-1} b} \\
& =c^{\prime} A^{-1} c+\frac{\left(c^{\prime} A^{-1} b\right)^{2}}{d-b^{\prime} A^{-1} b}
\end{aligned}
$$

Theorem3.12 $\hat{U}_{k} \xrightarrow{d} \chi^{2}(l-1)(k-1)$.

Proof: Want to show $\hat{U}_{k} \xrightarrow{d} \chi^{2}(l-1)(k-1)$, we just only to show that

$$
U_{k_{n}} \xrightarrow{d} \chi^{2}(k-1) .
$$

Now, let $M_{n}=\left(M_{n 1}, M_{n 2}, \ldots, M_{n k}\right)^{\prime}$ and $\pi=\left(\pi_{1}, \pi_{2}, \ldots, \pi_{k}\right)^{\prime}$.
And let $E_{n}=\left(E_{n 1}, E_{n 2}, \ldots, E_{n k}\right)^{\prime}$ and V be the $K \times K$ matrix whose i th diagonal element is $V_{i i}=\frac{1}{4} \pi_{i}\left(1-\pi_{i}\right)$ and whose (i, j) th off-diagonal element is $V_{i j}=-\frac{1}{4} \pi_{i} \pi_{j}$.

We have know that $\operatorname{Var}\left(X_{i}\right)=\frac{1}{48}+\frac{1}{4} \pi_{i}\left(1-\pi_{i}\right)$, and
$\operatorname{cov}\left(X_{i}, X_{j}\right)=-\frac{1}{4} \pi_{i} \pi_{j}$, for $i \neq j$.
First, we show that $n^{-1}\left(M_{n}-E_{n}\right)$ is approximately $N_{k}\left(0, \frac{V}{n}+\frac{1}{48} I_{k}\right)$.
Since $M_{n} \sim F M_{k}(n, \pi)$, where $\pi=\left(\pi_{1}, \pi_{2}, \ldots, \pi_{k}\right)^{\prime}$ and $M_{n}=n \overline{X_{n}}$.
We have known that $E\left(\bar{X}_{n}\right)=\frac{1+2 \pi}{4}$ and $\operatorname{Var}\left(\bar{X}_{n}\right)=\frac{V}{n}+\frac{1}{48} I_{k}$.
Therefore $E_{n}=E M_{n}=n \cdot \frac{1+2 \pi}{4}$ and $\operatorname{Var}\left(M_{n}\right)=n \cdot V+\frac{n^{2}}{48} I_{k}$.
By the multinomial central limit theorem, we get that

$$
\bar{X}_{n}-\frac{1+2 \pi}{4} \text { is approximately } N_{k}\left(0, \frac{V}{n}+\frac{1}{48} I_{k}\right) .
$$

So that $\frac{n \bar{X}_{n}-n \frac{1+2 \pi}{4}}{n}$ is approximately $N_{k}\left(0, \frac{V}{n}+\frac{1}{48} I_{k}\right)$.
Hence $n^{-1}\left(M_{n}-E_{n}\right)$ is approximately $N_{k}\left(0, \frac{V}{n}+\frac{1}{48} I_{k}\right)$.
Since V is not invertible, let $M_{n}{ }^{*}$ and $E_{n}{ }^{*}$ be the ($k-1$)-dimensional vectors and let V^{*} be the $(k-1) \times(k-1)$-dimensional matrix.
Then, we have that $n^{-1}\left(M_{n}{ }^{*}-E_{n}^{*}\right)$ is approximately $N_{k-1}\left(0, \frac{V^{*}}{n}+\frac{1}{48} I_{k-1}\right)$.
By theorem 3.10, we have that

$$
T_{n}=\left[n^{-1}\left(M_{n}{ }^{*}-E_{n}^{*}\right)\right]^{\prime}\left(\frac{V^{*}}{n}+\frac{1}{48} I_{k-1}\right)^{-1}\left[n^{-1}\left(M_{n}{ }^{*}-E_{n}^{*}\right)\right] \sim \chi^{2}(k-1),
$$

which imply that $T_{n}=\left(M_{n}{ }^{*}-E_{n}{ }^{*}\right)^{\prime}\left(n V^{*}+\frac{n^{2}}{48} I_{k-1}\right)^{-1}\left(M_{n}{ }^{*}-E_{n}{ }^{*}\right) \sim \chi^{2}(k-1)$,
where $n V^{*}+\frac{n^{2}}{48} I_{k-1}=\frac{1}{4} D_{k-1}+\frac{n^{2}}{48} I_{k-1}-\frac{1}{4 n} F_{n}{ }^{*} F_{n}{ }^{\prime}$.
Let $D_{k-1}=\left[\begin{array}{cccc}n \pi_{1} & 0 & \cdots & 0 \\ 0 & n \pi_{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & n \pi_{k-1}\end{array}\right]$ and $F_{n}=\left(n \pi_{1}, n \pi_{2}, \cdots, n \pi_{k}\right)^{\prime}$.
Let $C_{n}=M_{n}{ }^{*}-E_{n}{ }^{*}, \quad A=\frac{1}{4} D_{k-1}+\frac{n^{2}}{48} I_{k-1}, \quad b=F_{n}{ }^{*} \& d=4 n$.
By lemma 3.11,

$$
\begin{aligned}
T_{n} & =\left(M_{n}{ }^{*}-E_{n}{ }^{*}\right)^{\prime}\left(n V^{*}+\frac{n^{2}}{48} I_{k-1}\right)^{-1}\left(M_{n}{ }^{*}-E_{n}^{*}\right) \\
& =\left(M_{n}{ }^{*}-E_{n}{ }^{*}\right)^{\prime}\left(\frac{1}{4} D_{k-1}+\frac{n^{2}}{48} I_{k-1}\right)^{-1}\left(M_{n}{ }^{*}-E_{n}{ }^{*}\right)+\frac{\left[\left(M_{n}{ }^{*}-E_{n}{ }^{*}\right)^{\prime}\left(\frac{1}{4} D_{k-1}+\frac{n^{2}}{48} I_{k-1}\right)^{-1} F_{n}{ }^{*}\right]^{2}}{4 n-F_{n}{ }^{*}\left(\frac{1}{4} D_{k-1}+\frac{n^{2}}{48} I_{k-1}\right)^{-1} F_{n}^{*}} \\
& =\sum_{i=1}^{k-1} \frac{\left(M_{n i}-E_{n i}\right)^{2}}{B_{n i}}+\frac{\left[4 \sum_{i=1}^{k-1}\left(M_{n i}-E_{n i}\right)\left(1-\frac{n^{2}}{48 B_{n i}}\right)\right]^{2}}{4 n-16 \sum_{i=1}^{k-1} B_{n i}\left(1-\frac{n^{2}}{48 B_{n i}}\right)^{2}} \\
& =\sum_{i=1}^{k-1} \frac{\left(M_{n i}-E_{n i}\right)^{2}}{B_{n i}}+\frac{4\left[\sum_{i=1}^{k-1}\left(M_{n i}-E_{n i}\right)\left(1-\frac{n^{2}}{48 B_{n i}}\right)\right]^{2}}{n-4 \sum_{i=1}^{k-1} B_{n i}\left(1-\frac{n^{2}}{48 B_{n i}}\right)^{2}}, \text { where } B_{n i}=\frac{1}{2} E_{n i}-\frac{n}{8}+\frac{n^{2}}{48} .
\end{aligned}
$$

Hence $U_{k_{n}}=T_{n} \xrightarrow{d} \chi^{2}(k-1)$.
To compute the degrees of freedom in theorem, note that there are $l-1$ degrees of freedom for each of the k populations, so that there are $k(l-1)$ degrees of freedom for the whole model. Under the null hypothesis, we are estimating $l-1$ independent parameters, the components of π_{0}. (Note that $\sum \pi_{0 j}=1$.) Therefore, we would expect the degrees of freedom for this hypothesis to be $k(l-1)-(l-1)=(k-1)(l-1)$.

