3. Fuzzy Statistic Distribution

Before introducing new statistic distribution, we first define that how to find the
expected value and variance for fuzzy sample data.

3.1 Expected Value and Variance for Fuzzy Sample Data

Definition 3.1 Expected value for fuzzy sample data (data with multiple values)
Let U Dbe the universal set (a discussion domain),
L={L,L,....L}

be a set of k -linguistic variableson U, and

m, m m, .
{Fx,=—L+—2 4.+ % §=12..n}
2 k

be a sequence of random fuzzy sample on U ,

m; (Q_m; =1) is the memberships with respectto L,

&

I
=

]

(Nguyen and Wu 2006 [8]) and has the fuzzy Bernoulli distribution. Then, the

expected value for fuzzy sample data is defined as

E(Fx) = E(my) E(:mz) e E([nik) |

Definition 3.2 Variance for fuzzy sample data

As definition above, we have the variance for fuzzy sample data as following:

var(my)  var(my,)  var(m)

var(Fx;) =
L, L, L,

3.2 Fuzzy Bernoulli and Fuzzy Binomial Distribution

In this section, we want to introduce some new distribution functions. We have
known that (e.g. [5]) a Bernoulli trial is an experiment which has only two possible
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(incompatible) outcomes, which we shall label “success” and “failure”. In general, let
X =1 if the outcome of Bernoulli trial is a success and X =0 ifitis a failure. Now,
we say that a Fuzzy Bernoulli experiment is a random experiment, the outcome of
which can be classified in but one of two mutually exclusive and exhaustive ways, say,
success or failure (i.e. we let X €[0.5,1] if the outcome of Fuzzy Bernoulli trial is a
success and X [0,0.5] if it is a failure.) Hence, a sequence of Fuzzy Bernoulli
trials occurs. In such a sequence we let 7 denote the probability of success on each
trial. In addition, we will frequently let q=1-z denote the probability of failure.

Now, let X be a continuous random variable associated with a Fuzzy Bernoulli
trial by defining it as follows:

X (success)e [0.5,1] and X (failure) e [0, 0.5)
That is, the two outcomes, success and failure, are denoted by mutually part of a
partition set [0, 1].
The p.d.f. of X can be written as
£ = 2 {n .if x €[0.5,1] 3.1)
1-z if xe€[0, 0.5)

We say that X has a Fuzzy Bernoulli distribution, and denoted by X ~ FB(1, 7).
We fist derive some properties of the fuzzy Bernoulli distribution.

Theorem 3.3
a. The Fuzzy Bernoulli density function given in (3.1) is a density function.
b. If X ~FB( ), then the expected value of X is

1+2x
u= E(X)= 7

and the variance of X is

2

1 1
= Var(X)=—+=-z(-7).
o (X) =gt 5707

Finally, the moment-generating function of X is

t

eZ

M (t) = E(e%) = 4 2( t_l)[ﬂe2+(l—7r)] if t=0.

1 ift=0

Proof:
a. Notethat f(x)>0.

1
Also, J.Of(x)dx
0.5 1 0.5 1
= [ 20-mydx+ [ 2mdx =2(1-7) K" + 27X, =1
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Sothat f isa density function.

b, E(X):I:5x~27zdx+_[;'5x-2(1—7z)dx:1+42”,
Var(X) = E(X?) ~[E(X)F = [ x*-2zdx+ [ "X’ 2(1- r)dx— (H27y?
05 0 4
1 1 . : .
= 4—8+—7z(1— x), and the moment-generating function of X is

M(t)= E@€%) = [ e"-2zdx+ [ e*-2(1-x)dx

X

1 1«
05 + 2(1—7[);6

05
0

=27zée
t

1 > 1,2
= 27z-f(et -e2)+2(1-n) -E(e2 -1)

t t

t_ a2 2 _
A YR

=2

=2 %[ﬁet +(1- 27[)92 -(1-7)]

t

= 2-%(7ze; +(1-7))(e? -1)

t

e? -1

=2 )[7ze2+(1—7z)] for t=0.

The moment-generating function is not differentiable at zero, but the moments can
be calculated by differentiating and then taking lim,_,,. We present it as following:
t t

ezt_l)[nei + (-] = lima & =Dre B2

M (0) = limM () = lim 2(

t

= [ilrg{Z(eE -%)[ne; +(1-7)]+ 2(92 —1)[7ze% -%]} (by L’Hospital’s Rule)

=1.

In a sequence of Fuzzy Bernoulli trials, we are often interested in the total number
of successes and not in the order of their occurrence. If we let the random variable
M equal the number of observed successes in n Fuzzy Bernoulli trials, the
possible values of M are any nonnegative numbers. In order to easily denote the
Fuzzy Binomial distribution, let k successes occur, where 2m—-n<k <2m for
ke Nu{0} as m<n and k=n as m=n, then n—k failures occur. On the
above, we say that m is the observed numbers of M and N is defined by natural
numbers. (The same definitions are in the following.) The number of ways of
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. .. . . . n
selecting k positions for the k successes in the n trials is (k] Note that, when

we know the value of m, the values of k is decided (see Figure 3.1).

k
m ® “=a O
n-1 ® : bl O :
1 : 1
| I |
1 | 1
. T O | I
1 | 1
1 I 1
1 I 1
1 I 1
1 I 1
1L ® k=1 : o) [ :
I
0 | k=0 0 ) i >
8 1 niz2 n-1/2 n "
Figure 3.1. The relationof m and k.
The p.d.f. of M can be written as
n
f(m) :EZ{ }Tk(l_ﬂ)nk’ (3.2)
n keQ k

where Q ={k e Nu{0}|2m—n<k£2m form<nand m=n for k =n}.

Another way to present the p.d.f. is like that

(8](1 )", 0<m<05, k=0
M- M- o), 05<m<1 k=01
oJ-or+(ra-m 5<mel -0,
(gj(l )" @n L=z + Uﬂ 1= 7)™, 1<m<15, k=012
n n n ,

f(m):— (OJ(l )" (1 rl-7)" + ( - Jﬁ” '1-7),05(n-1)<m<0.5nk=0,1--,n-1
@;;1(1 7[)"1+(2J7r2(1—7r)n2+---+(:Jﬂn, 05n<m<05n+1), k=12--n
[2};2(1 )+ (;Jﬂ's(l—ﬂ)n3+---+(:jﬂ'n, 05 +1)<m<05(n+2), k=23--n
(:Ji[ 0.5(2n —1) <m £0.5(n + n), k=n

or
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n
(Ojﬂ'o(l—ﬂ')”o, 0<m<0.5n, k=0

f(m) =2 Gjﬁla—ﬂ)”l, 05<m<05(n+1), k=1,
n

n .
(njﬂn(l—”)”", 05n<m<05(n+n), k=n

We say that M has a Fuzzy Binomial distribution, and denoted by
M ~ FB(n,z). The constants n and =z are called the parameters of the fuzzy

binomial distribution; they correspond to the number n of trials and the probability
7 of success on each trial.

Theorem 3.4
a. The Fuzzy Bernoulli density function given in (3.2) is a density function.
b. If M ~ FB(n,r), then the expected value of M is

L= E(M):n-1+427[,

and the variance of M is
2
o’ = Var(M :n—+27r1—7r.
(M) 28 4( )

Finally, the moment-generating function of M is

n

2 _ t
M (1) = E-et L - if t=0.
n
1 if t=0

Proof:
a. Notethat, f(m)>0.

Also, by the binomial theorem and integral operation,

jo” f (m)dm = j;%z[:},k(l_ﬁ)n_kdm

keQ

_2 osn( N 4 -0 05(n+)( N o1 o5(n+n)( N nen
_H{Io [O}z 1-7) dm+j [Jna—n) dm+--.+jo_5n [njn 1-7)""dm}

0.5
0.5(n+k)

L (e 23 (s m e

Ni>o k=0

= %i[gjﬂ'k (1—7[)n‘k g = i(EJﬂ-k (1_72.)n—k _ [7Z'+ (1_71_)]n ~1
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Sothat f isa density function.
b. By the binomial theorem and integral operation again,

M(t) = EE") =< Z [ oo tm.(E]ﬂka—ﬂ)”kdm

0.5k

= sz_:;{kj”k(l_ )"~ -;et

m| 0.5(n+k)
0.5k

n(n Yoeky Lk
=EEZ (- 7)"*[e? -e? ]
n tig\k

21 !
n

-I(e2 1)2( ](e 7)@-7)"

gt
%.e 1[7rez+(1—7r)]” for t=0.

As t =0, the same proof as theorem 3.3 b.

n

2 1 !
+n-log(ze? +1-r).

Therefore, w(t) =logM (t) = Iog% +log €

And y(0)=1logM (0) =logl=0.

n n t
t e2 ;-t—(e2 -1-1 7ze21
y't)=——- > +N—
n t t
ez -1 el +l-rx

Sothat s =y'(0) = limZ D =¥ _ im '/’t(t) ~limy/(t) (b L"Hospital’s Rule)

t—0 t_O
LI :
| e E-t—(e -1) e, 1+ 27
=|Im[ . +n- ]:n- .
t—0 Et t2 L 4
g2 —1 e’ +1l-rx
Moreover,
1- (e2 -1)-t- e2 e (e )
V) =—r Lt
(e? ~1)?
t [ (0)2 t+e? Toa—e? NP —[e? Dot (e? —1)]-2t
N Y, 2 2 2
n t!
e? -1
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1 t ]
7792(5)2(7262 +1-7)—(7e? 5)2

+n- -

(re? +1-7)?

Hence o° =y"(0) = m¥ ') -v'(0) Imw’(tz— yr

4)0 t-0 t—0

= limy"(t)
(by L’Hospital’s Rule)

n2

n
=—+—n(l-x
1 1-7).
In next section, we will derive the fuzzy multinomial distribution which is
expanded of fuzzy binomial distribution.

3.3 Fuzzy Multinomial Distribution

First, we want to introduce Fuzzy trinomial distribution, and then extension it to the
multinomial distribution.

Fuzzy trinomial distribution

The Fuzzy binomial distribution counts the fuzzy number of *“successes” in n
independent replications of an experiment with two possible outcomes.

Let M =(M;,M,) be a bivariate random vector whose range is
S, ={(m,m,):m >0,m,>0&m, +m,<n} (That is, m_ and m, are nonnegative
real values such that m+m,<n ). Also, we let
K, = {(k.k,):2m —n <k, < 2m, k e N U{0} fori =12 &k, +k, <n} under the
condition S., then we have a relation between K, and S,. When m,, m,
decided, k,, k, are decided. Hence, M has a Fuzzy trinomial distribution with
parameters n and 7 = (x,7,),written M =(M;,M,) ~ FT(n,(7,,7,)),if M has
joint density function

(;) PO k k),m%kz(1—7r1—7r2>"'kfk2 if (kk;) €K,
ky Ky -

f(m,m,)=2
kagq . n—k,—k, _
(_) kaZ K, k'(n k DAY 7y (= = ) it (k. k,) e K=K,
where K = {(kl,kz) 'k, 20,k, >0, and k, +k, < n} & (m,m,)eSs,. (3.3)

On the above, n isa positive integer, 7, and 7z, are nonnegative numbers such that
7w+, <1.
In order to prove that f is a p.d.f. under S,, we must extend the set S, to

§n U A, where
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S, ={(m,m,): 0.5k <m <0.5(n+k),k € NU{0}fori=12andk +k, <n} &

A=S-§

with A is measure zero. Note that, S is the set denoted by

={(m,m,):0<m <n&0<m, <n}.

Theorem 3.5

a. The Fuzzy trinomial density function given in (3.3) is a density function.

b. If (M,M,)~FT(n,(r,x,)),then EM, = n_1+427fi ’

2
Var(M,) = %+%7zi (1-m), cov(M,M,) = —27;17:2 , and the joint

moment-generation function is

M) =] EE D +met +0-m-m)] i (Gt = (0.0)

1 if (t,,t,) = (0,0)

Proof:
a. Clearly f(m,m,)>0.
By the trinomial theorem and integral operation,

Uuwm@mmwzﬁﬁ“fmmwmw@

n- mz k n—k, -k
= — “x, (-7, — 2 dm, dm
jj ( ) (kzk;K kK l(n k "k )|771 7, (=7 —1,) L 4,

n! k K n-k; —k
= 2 — 1 2 1_ N ) de dm
( ’ %;KZJ‘[ kl!kz!(n—kl_kz)!”l 7y " (=7, —715) ,dm,

n!

jj 0dm,dm,]

0.5(n+k,) £0.5(n+k;) n! ko
= (_) Zz J. ’ J. ' 77, (L= 7, — ,)" " 2 dm, dm,
(i 0k Joske Ik, I(n—k, —k,)!
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0.5(n+k;)

_(_) 22 Tl —k k).”1“%“(1—”1—ﬂz)”‘“‘“-[mllo;-,kl 1-[my 03]

(ke kp)eK
k k n—k; -k
=(— o, =-m —m,) —
()%%Kkk,(_k o e m ) Q)
= Zz 72'1k17rzk2 (-7 — ;)"

(ky Ky )eK k l(n k -k )'
=[m+7,+Q-7—x,)]" =1.
Sothat f isa density function.
b. By the trinomial theorem and integral operation again, we have, for the joint

moment-generation function,
M (tl,t ) _ E(et1m1+t2m2)

0.5(n+k,) £0.5(n+k;) n! e
= (_) ZZ '[ +k, J‘ +kq et1m1 . etzmz ﬂ_lk17z_2k2 (l_ﬂ,l _ﬂ_z)n kg kzdmldmz
(i )ek “05K2 205k k1K, !(n—k, —k,)!
— (_) zz ki kK, (1_ _ )n—klsz .[etli‘O.S(erl)] . [etZL‘O.S(nJrkz)]
(aoyer Ktk '(n k k )'7rl 2 G t, 0.5k; 0.5k,
n n
2,8 -1, e?z k
= (_)2( ) 72. 2 (1_72. - )n—kl—k2
oy %;Kkk'(n k)l T

n n

= (§)2(92 tl_l)(ezt _1)[71'1951 + ”2952 + (1_7[1 _72'2)]n for (t'l’tZ) * (0’0)'

2

The moment-generating function is not differentiable at (t,t,) =(0,0), but the

moments can be calculated by differentiating and then taking lim ;-

Then M(0)=M(0,0)= lim M(t,t,)

(t,t2)—>(0,0)

n n

ErEHEDmet +x,e7 +@-m- 7))

(tl z)—>(0 0)n 1 )

(Let t, =rcosé, t,=rsing.If (t,t,) > (0,0),then r > 0".)

r0050 Ersine ;
) 2 e2 _1 e2 1 rcosé rsin @
= lim (= re 2 +me 2 +(Q-m-m)]
HO*(n)( rcosd X rsing m ? d=m -zl
=1.
Now, let w(t) =logM (t), where t = (t,t,) isa vector.

Therefore,
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?1 b t t,

1//(t)=2-log(%)+log(e ) 10gE—"Y s n-log(re? + w02 +1-7, -1,
2
and w(0) =logM(0) =logl=0.
e’ Ny —(egti ~1)-1 zz'e%—
(t)_al//(t) ntti 2 . e . 2
b ez -1 i me?+me? +1-m -,
egt'n- (egt ) ;ze%1
4=EM, 1//,(0)—I|mz//,(t)—llm[t 2 = 2
ez 1 ‘ me? +m,e? +l-m —-x,
1+ 27,
=nN- ,
4
s -n E'fin E'fi
1.(e? -1)-¢ .e2 ez —-t.—(e? -1
vty = 2YO _ & Dt e i
ii 2 n 2
ot (egtl _1)2 t;
; [2 o t+e2'2- —]t e t—(ez -]-2,
+ r'lI 4
e2' 1 t‘
] b L iiq
7riez(5)2(7zle2 + 7,2 +1-7 —7,)—(7e? 5)2
+n- T -
(re2 +z,e2 +1-m, —m,)°
1 2 1 2
n> n
52=Var(Mi):l//ii(0):|tLrg'//ii(t):4_8+Z7Ti(1_7fi)a
52'//() 0
- (t (t
vy (1) = at o, tj(t//.())
gtin gti %'
5 t e E-ti—(e -1)-1 e 5
el {2 L E— ]
J ez’ 1 ' me? +me? +1-x —r,
t, Y
—7z,ez—~7zje21
2
=n-[— t ]

2 o 2
(me? +me? +1-m —1m,)
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Hence cov(M;,M,) =y,(0) = Itinon//lz (t) = _%7717[2 -

Theorem 3.6

Let (M;,M,) ~ FT(n,(7,,7,)) be a fuzzy trinomial distribution with means =,
and z,.Then M, ~FB(n,z,) and M, ~ FB(n,7,).
Proof: The marginal moment-generating function of M, is
M, (t) = M(t,0)

-1 e2 -1 4 bt n
T ‘HI 0>(F) ( X t Nme? +me? +(1-m —1))]
1142 )
2 e%t -1 2 egtz -1
B (H)Z( 782 +me’ + (-7 )" -lim( t )
27> )
2. e2 —1 t n
= (H)( ze? +(1-r)]

which is the moment-generating function for FB(n,z,), so that M, ~ FB(n,z,).

The proof for M, is similar.

We now consider a notation for the fuzzy trinomial distribution which will lead to
the notation we shall use in the next text for the fuzzy multinomial distribution. Let
(M,M,) ~ FT(n,(7,,7,)), and let M;=n-M,-M, and z,=1-7,—7x,. Then
M = (M,;,M,,M,) has joint density function

2 n! . .
(H)szzz W!ks!72'1k1”2k27z'3k3 if (ky,k,,k;) € K,

2,3 Ntk ke .
(H) Zzz mﬂl Ty Tty if (ky,k,, K;) € K=K,
where K = {(k,,k,,k;) : k, > 0,k, >0, k, > 0and k, +k, +k, =n} &

f*(m1’ m21m3) =2

(m,m,,m)eSsS, ,

S, isdenoted by S, ={(m,m,,m;):m >0,m,>0,m,>0&m, +m,+m,=nj.

Also, we let

K, ={(k,k,,k;) : 2m, —n <k, < 2m,k e N U{0}fori =1,2,3,&k, +k, +k, = n}
under the condition (m,m,,m,) S, then we have a relation between K. and

S.. When m_, m,, m, decided, k,, k,, k, are decided. Under the trinomial
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theorem, it is straightforward to show that (M;,M,,M;) has joint
moment-generating function

o Tt Tt t t t
2,5,2 -1 ez -1 e?2 -1 o = o
Mttt = (PC I lme smet +metl i () = 0,00
2 3
1 if (t,t,,t;) = (0,0,0)

We note that the joint density function and joint moment-generating function of
(M;,M,,M,) are somewhat nicer than they are for (M,,M,). Notice also that the
density functions of (M;,M,) and (M,;,M,,M,) are ways of representing the same
model, in which we have n independent replications of an experiment with three
possible outcomes.

When (M;,M,) ~ FT(n,(7,,7,)) , the joint distribution of M,, M, , and
M; =n-M, -M, is a special case of the fuzzy multinomial distribution discussed
in the following. In this case, we often say that M =(M;,M,,M;) has a
three-dimensional fuzzy multinomial distribution and write
(M,M,,M,) ~ FM,(n, 7, 7,,7;) , Where 7, =1-7, —7,.

Fuzzy multinomial distribution

We have already considered situations that involve two and three random variables.

Now, we want to extend itto k random variables.

Let M =(M,---,M,) be a k -dimensional random vector with range
S, ={(m,-~-,m):m >0,---,m, 20&m, +---+m,=n} . (That is, the M, are
nonnegative fuzzy-valued random variables whose sum is n.) We say that
M =(M,,---,M,) has k -dimensional fuzzy multinomial distribution with
parameters n and 7 =(x,---,7,) and write (M,,...,M,)~FM,(n,z) if M has

joint density function

2 n! :
(H)kzz kI..-k|7Z'1k1”2k2"'7rkkk it (k. ky,oo k) € K
f(m,...m)=¢ 2. l.n! k* L o
(H) ZZ mﬁllﬂ'zz'”ﬂk ‘ if (kl,kz,...,kk)EK—Kn
1" k*
(3.4)
Kk
where K ={(k1,k2,...,kk):ki >0 fori=12,...,kand Zki :n}, MeS,, and

i=1
¢ =dimk-1).
On the above, n is a positive integer and the 7z, are constants such that
A, ++ =1,

Moreover,
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K
K, :{(kl,kz,...,kk):Zmi -n<k <2m,k e N {0} fori :1,2,...,k&2ki = n}.

i=1
Note that M, +M, +---+ M, =n, and hence, M, =n-M,-M,—----—M,_; and
n,=1-m —m,—---—m_, . Note also that
(M, M,) ~ FM,(n, (7, 7,)) < M, ~FB(h,7z), M,=n-M,
and (M;,M;,M;) ~ FM;(n, 7,7, 73) < (M, M,) ~ FT(n, (7, 7,)),
M,=n-M,-M,.
The following theorem summarizes some important facts about the fuzzy
multinomial distribution.

Theorem 3.7

a. The fuzzy multinomial density function in (3.4) is a joint density for all positive
integer n and =,---,7, suchthat 7, >0 and =, +7,+---+7, =1.

b. Let M ~FM,(n,z),where M =(M,M,,...M,),7=(7,7,,.,7,),

K Kk
> M;=n and > 7 =1.
i=1 i=1

1+2r, n> n

n
Then EM, =n- , Var(M,) =—+—7,(1-x), cov(M;,M.)=——r,
i (M) 48 4ﬂ( ;) ( i) 4ﬂﬂ

j 1
and the joint moment-generation function is

h Tt t t t
2 2 -1 2 -1 2 2 Kk i
M (t) = (—)k(e " )~--(e " Nrme? +r,e2 +--+re?]" ift=0
n 1 k

1 ift=0

where t=(t,...,t,).
c. If M~FM(nx),then M, ~FB(nr) and (M;,M;)~FT(n,7,7;).

Proof: The same proof as theorem 3.5 & 3.6.
The next theorem gives a normal approximation which is often useful.

Theorem 3.8

Let X, ~FB(Lz) and X, :Zﬁ:M,Where M ~FB(n,z) and M =>x.
i1 N n i-1

Suppose that = E(X,) isfiniteand o =Var(X,) <.

Then
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M _n.1+27z

¢ 5N(0,1) as n— .

2

[28 ; 272(1— N

Proof: Since X; ~ FB(1, ), we have that

4=E(X) =27 and o? =Var(X,) = —+ 1701 1).
48 4
= Lx M
Moreover, X, :Z—':—,Where M ~ FB(n,z) and
it n N
2
ﬂ:E(M)=n.1+27Z, JZ:Var(M)=n—+E7r(1—7z)
48 4
Hence u=E(X)=EMy=temy=1.(n.1027) 127
n n n 4 4

- M 1 1.n° n 1 1
?=Var(X,)=Var(—) = —Var(M) = [ —+—7z(l-7)] = —+—7x(l- 7).
o (X)) (n) " (M) r]2[48 47r( 7)] 18 4n7z'( )

By the central limit theory, we get that

: f”_” P © yN(0,1) as n— oo,
- 4+ 1_ 2

Lyg * g4

M—n-l+27z

Hence, ¢ 5N(0,1) as n— .

2

n“ n Y
—+—7(l- )]
[ R (1-7)]
We have introduced some new distributions in used of fuzzy theorem. Now, we can

use these distributions to derive a very useful test statistic, called fuzzy chi-square test
statistic for goodness-of-fit.

3.4 Fuzzy Chi-square Test Statistic for Goodness-of-Fit

In this section, we consider applications of very important chi-square statistic. We
begin our study with the same way by considering the basic chi-square statistic, which
has only an approximate chi-square distribution. There are many ways to show the
y° test for goodness-of-fit, and we will get the same result in any ways. So that, we

just only show that in one way.

The |-sample fuzzy multinomial model

Let M, be the independent |-dimensional random vectors, M, ~ FM,(n,,7,) ,
where the n, are known integers and the 7z, are unknown parameter vectors. We
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call this model the [|-sample fuzzy multinomial model. Our main goal for this model
is to test the equality of the z,. We let M;; be the jth component of M;, 7; be

the jth component of 7, and L; denote the language variable for j=1,2,....k.

We can see easily in Table 3.1.

Table 3.1. The table of membership M; in L

I—1 LZ l—k Total
Ml Mll MlZ Mlk Ml :nl
M, M,, M,, M, M, =n,
M, My M, M, M, =n,
|
Total M, M, M, N=>n,
i=1
Theorem 3.9
A; is an unbiased estimation of 7z; for this model, where A; = —3
n

Proof: Since M; ~ FM, (n;, 7;) , which is implied that M;, ~ FB(n;, 7;) .

2

1+ 27, n. n.
So that we have E(M;)=n;- 1 L and Var(Mij)=4—'8+Z'7rij(1—7rij).

am, 2M,
1) = E(—!
n n

We can get that E[%( —%) =E(A) =7;.

Hence A; isan unbiased estimation of 7;.

Now, we wanttotest H,: =, =z, =..=x against H,: H, isnottrue.
Under the null hypothesis H, thatthe 7z, are all equal, and let
=7, =..=7m =71, Where 7z, = (7, 7y, 7)) - Therefore, a sensible estimator
for the expected frequency for the jth cell in the ith sample is

2M
N

1427,
4

A 1 g1 i
E.=n =n-=[1+2 ! - )=n —L,
ij i i 4[ ( 2)] i

where M ;=>M; and N=>n,.
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Let

k-1 n n_2 2
A , 4[Z(Mij - Eij)(l_ = )] )
A I k1(M. —E. j=1 48 B.. N n ) )
U :z{z( i IJ) + 4 }’WhereB..zlE"—ﬂ+n—'.
SVILY. B. P n2 "2 8 48
i=1  j=1 ij ni _42 Bij (1_ i . )2
= 48B,

We call that U, isafuzzy »° andhas (I-1)(k—1) degrees of freedom.
Since the distribution of U, is approximately »*(1-1)(k —1), we shall reject H,
if ij > ;(az(l —1)(k —-1), where « is the desired significance level of the test.

In order to prove that UAKL);(Z(I -1(k -1), we must have a theorem and a

lemma.

Theorem 3.10 (Arnold, 1990 [1])

Let X = (X, X,,...,X,) have a multivariate normal distribution, X ~ N, (x,%),
and >0 isthevariance of X, then (X — )™ (X —u) ~ 7*(K).
Proof: See Arnold, 1990 [1], p.211-212.

Lemma3.11 (Arnold, 1990 [1])

Let A bea gxq invertible symmetric matrix, let b and ¢ be q-dimensional
vectors, and let d # 0 be a number. Then
c'(A-dbb)*c=cA'c+ ﬂ .
d-b'A™b
Proof: Claim that (A—d~'bb")™" = A™ +(d —=b’A™0) ' Abb’A™
Since [A™ +(d —b'A”b) " Abb’A™](A-d 'bb’)
=A"A+(d-bA™) T ATO'ATTA- ATd b’ — (d —b’Ab) " Abb’A'd b
=1 +[(d-bA™)™" —d"-d™(d -b’A"'b) " ]A Db’
=1
We getthat (A—dbb) ™" = A"+ (d-b'A™b) A 'bb’'A™
Hence c'(A—dbb)*c=cA'c+c'(d—b’/A'b)"A'bb’A™c
c’A'bb’A™'c
d-b'A'b
(c’A'b)?
d-b'A'b

=cA'c+

=cA'c+
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Theorem3.12 U, —* 5 42(1 ~1)(k —1).

Proof: Want to show UAk —4 5 7°(1-1)(k —1), we just only to show that

U, ——z*k-1).

Now, let M, =(M_ ;M ,,....M_,) and 7z =(z,7,,...,7,) .

Andlet E, =(E,,E,,.....,E,) and V bethe KxK matrix whose ith diagonal

elementis V, = %ﬂ'i (1-m) and whose (i, j) th off-diagonal element isV;, = —%72'

We have know that Var(X,) = 4i8+%ﬁi (1-r),and

cov(X;, X;) = —%ﬂ'iﬂ'j for i j.

First, we show that n™*(M_—E ) is approximately N (O,!-Fil ).
n n k 48 k
n

Since M, ~ FM, (n,z), where 7 = (x,,7,,...,7.)'and M_=nX, .

1427 and Var(X,) =!+ilk.
n

48

2
1+ 27 and Var(M,)=n-V +2—8Ik.

We have known that E(X,) =

Therefore E, =EM, =n-

By the multinomial central limit theorem, we get that

- T . v 1

- is approximately N, (0,—+—1,).

n PP y N0 =721

nin_nl‘FZﬂ' v .
Sothat — 4 s approximately N, (0,—+—1,).

n n 48

4 . . vV 1

Hence n~ (M, —E,) isapproximately Nk(O,—+4—8Ik).
n

Since V isnotinvertible, let M.~ and E,  bethe (k—1)-dimensional

vectors and let V™ bethe (k —1) x (k —1) -dimensional matrix.

*

Then, we have that n™(M, —E,) is approximately Nk_l(O,V—+4i8Ik_l) .
n

By theorem 3.10, we have that
T, =M, ~ET
n 4

3 L) (M, —E)]~ 2 (k-1),
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2
deﬂmmymm'n=(M;—Ejﬂmf+£§ug4mmf—aj~g%k—n,

. n 1 n? 1.

where nV +—I, . ==D, . +—I, ,—F F .

48 k-1 4 k-1 48 k-1 4n n'n

nr, 0 .- 0

0 nz, - 0 ,
Let D, =| . — : and F, =(nz,nz,,---,nxz)".

0 0 - nrz

. . 1 n? .
Let C,=M, —E, , AZZDk‘1+4_8|k‘l’ b=F & d=4n.

By lemma 3.11,

2
T=(M =BV 4 1) (M, - )

2

* ey, 1 n i
evdp L T EYG DL )R
=(M, —E, )’(ZDK,1+4—8|k,1)’1(Mn -E, )+ 1 "
4n— I:n (Z Dk—1+%lk—l)_an
STV —E - P
B k-1 (Mni _ Eni)z [ |Z=1:( ni ni)( - 485m )]
- Zl B + k-1 r]2 )
. ni 4n-16> B (1—
Z i 488m)
k-1 n2 )
4 (M. —E )1-
k-1 (Mni _ Eni)2 [|Z=1:( ni nl)( 48Bni )] n n2
:Z B * k-1 n2 , where B =§Eni_§+4_8-
= n n-4% B, (1- 2
Z = ap )

Hence U, =T,—— y*(k-1).

To compute the degrees of freedom in theorem, note that there are | —1 degrees of
freedom for each of the k populations, so that there are k(l—-1) degrees of

freedom for the whole model. Under the null hypothesis, we are estimating | -1

independent parameters, the components of 7z,. (Note that Zﬂ'o ; =1.) Therefore,

we would expect the degrees of freedom for
k(I-)-(-2)=(k-1(1-2).
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