5. Conclusion

Sine fuzzy thinking is bore in everybody's mind, but we do not often use the fuzzy survey in society because having not a corrective test statistic to deal with the fuzzy numbers. In this paper, we try to find a formula, called fuzzy χ^{2}, to deal with fuzzy data. We use the fuzzy binomial distribution to find expected value and variance. Hence we can find the estimator for $\pi_{i j}$ in l-sample fuzzy multinomial model. Moreover, we use the central limit theorem to get an approximately normal distribution. We hope that we can use the similar proof as traditional Pearson's χ^{2} to find out the fuzzy χ^{2}. We also present an example in Section4. We use two ways, traditional χ^{2} and fuzzy χ^{2}, to test the hypothesis.

But there must be something to be improved in the future:

1. How is the sensitivity of the result when sample is small?
2. How to prove that $A_{i j}$ is the best estimator for $\pi_{i j}$?
3. The test statistic of fuzzy χ^{2} is somewhat complex, we may use the computer to find out.
