7 p-Adic Series

We all familiar with the classical results on real series, for example, in [1]. In
this section, we will study the p-adic series and compare the analogue between
the p-adic case and the classical case. We have defined the convergence of p-adic
sequences and p-adic Cauchy sequences in the previous sections. As in the classical

case, we can also define the p-adic series. We will take it for granted.

Now, given a sequence {a,} in Q. In the classical case, if ) ° | a,, converges,
then lim,,_, a, = 0 , however, the converse is not true, for example, the harmonic

Series _1 = diverges. In € p-adlc case, 1t can € nappeneda. In ract, we nave
ies Y7 | L diverges. In the p-adi , it can’t be happened. In fact, we h

Theorem 7.1 A p-adic series Y | a, converges if and only if lim, o a, = 0 .
Moreover,

o
2 an

n=1

§m3X|an|p.

p

Proof. Suppose that the series Y~ a, converges. Let

n
Sn: E Qe
k=1

and

lim S, = x.

n—oo
Then we have

lim a, = lim (S, — S,-1) = 0.

n—oo n—oo
To prove the converse, suppose that lim,, .., a, = 0. Then, for every ¢ > 0 , there

exists a positive integer N such that | a, |p < € for any n > N. We have

[ S = Suly =l @1+ am ], < max [a;, <e

Therefore, {5,} is a Cauchy sequence in Q,. Since Q, is the completion of Q

with respect to the p-adic valuation |- |, {S,} converges, i.e., 37 a, converges,
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Moreover,

NE
$

= lim | S, |
n—oo
n=1 p
= lim |a; + ... + an |,
n—oo
< lim max{|a; |p R |p}

n—oo

§m§X|an|p.

As usual, we have some examples as follows.

Example 7.2 Let © € Z, and {a,} be the canonical representation of x given
in Theorem 7.1. If we write o, = > 1" a;p", then the p-adic series Y~ a,p"

converges to T, i.e. T =y > Qpp".

Example 7.3 There erists a series »_ -, a, with a, € Q for alln = 1,2,...,
such that Y 7 | a, converges in Qp, for all prime p. In fact, let {p1,po, ...} be the

sequence of all primes, and define
ap =py---pr,n=12....
Given an arbitrary prime p. Then we have
g fnly = i 1Pr -l = i 7 =0

Therefore, > 7 | a, converges in Q, by Theorem 7.1.
Example 7.4 Let p, and ps be distinct primes. Then, obviously, the series > .~ | p

converges in Q,, and diverges in Qp,. Similarly, Y 2, py converges in Q,, and

diverges in Qp, .
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Example 7.5 Given an arbitrary prime p, Y~ n! converges in Q,. In fact, it is

known that

_n—S8p _n_ logn 1
], = p 5 < pEr

Y

where S, = ag + - - - + ag if
n:ao—i—alp%—-“—l—akpkandogaigp—lforall()gigk’.

Since

) n logn X 1 logn 1
1 — HN=1 — ) = 400
nl—>nolo(p —1 logp +1) nan}o[n(p —1 nlogp * n>] oo,

we obtain that

n logn
lim p_ﬁﬂlogpﬂ) =0.
n—oo

Then

lim [n!|, =0,

n—oo

and hence Y~ n! converges in Q, by Theorem 7.1.

Theorem 7.6 (generalized Geometric Series) The p-adic geometric series

1—=x

= a
Zax": if lxf, <1
n=0

Proof. Since, for |z, <1, we have

. n _ . n __
lim faz"|, = Tim [al,|z], =0,

so Y ,az™ converges by Theorem 7.1. Let

n

Sn:Zaxk, n=12,....

k=0

Thus S, — =5, = a(l — "), and




Then we have

limSn:1 ,i.e.Zam"zla if |z|, <1

— X

Theorem 7.7 Let Y a, be a p-adic series. If > 7  a, converges, then so is

Ezoz()(_l)n_lan'

Proof. Since Y~ a, converges, by Theorem 7.1, lim,_.~ a, = 0 which implies
that lim, ..(—1)""'a, = 0. Again, by Theorem 7.1, > >° (—1)""'a, converges.
U

Remark. Theorem 7.7 is not true in the classical case. For example, Y > %

converges, but > >° (=1)""1. % =Y, = diverges.
Definition 7.8 A series )" ay is called absolutely convergent if 37" (| a, |, con-
verges. 1t is called conditionally convergent if >~ a, converges but >~ |a, |p

diverges.
Theorem 7.9 Absolute convergence of >~ a, implies convergence.

Proof. Suppose that the series ) ;a, absolutely convergent, i.e. > 7" |ay |,
converges. Then lim, . |a, |p = 0. Hence, lim, ., a, = 0. By Theorem 7.1,

> an converges [
n=0 """ ges.

In the classical case, there exist series which converges conditionally, for ex-

(=)

ample, the alternating series > -, converges conditionally. Similarly, the
following example shows that, in the p-adic case, there exists a series which con-

verges conditionally.
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Example 7.10 Consider the following consecutive terms of the series: 1; p repeated
p times; p? repeated p? times; etc. These terms tend to 0, hence the series converges.

However,
[o.¢]

n=0

Definition 7.11 Let Y~  a, be a p-adic series and o be a bijective mapping. The

series Y " Gg(n) 15 called a rearrangement of > an.

Clearly, if > " Qo) is a rearrangement of Y " a,, then > .~ a, is also a

rearrangement of Y > Qo(n)-
As in the classical case, we have

Theorem 7.12 Let )~  a, be an absolutely convergent series having sum x. Then

every rearrangement of Y o @, also converges absolutely and has sum .
However, in the p-adic case, we have the following result.

Theorem 7.13 Let Y . a, be a p-adic series. Then Y, a, converges with sum

z if and only if every rearrangement of >~ a, converges with the same sum x.

Proof. Suppose that Zoof =xand > 7
By Theorem 7.1, > >°

o @, is an rearrangement of zn 0 Gn-

- a,, converges, so it suffices to show that ) > = z. For

any positive number €, there is a positive integer N such that for all n > N,

0o N
D=

n=0 n=0

<€, and

|an|p<e, ‘a;

p

Put #; = 32" a, and 2} = 32N @, and denote by x, and ,, respectively, the

n=0 ""n>

sums of all terms in " >° ja, and ) for which |a, |, > € and | a,, ‘ >e Itis

nOn

clear that x5 and x2 have the same terms, hence xy = xQ. The sum x; differs from
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zo by the terms satisfying |a, [, < ¢, and the sum , differs from 2, by the terms

satisfying | a;l ’p < €. Therefore,

/ ’
|21 — 22|, < eand ’xl—xQ <€,

p

which implies that

< €.
P

‘$1‘—'$1
Combining this with
[e%S) N
RUES S8 R
n=0 n=0

we obtain

[es) N

/
E an—g a, | <e€
n=0 n=0 P

Since N can be arbitrary large, we see that the series >~ a;l converges and

o0 o0
!
E a, = E a, = T.
n=0 n=0
The other direction is obvious. O

Theorem 7.14 Let Y > a, and Y~ b, be two p-adic series. Suppose that there
exist positive constant ¢ and N € N such that | a, |, < ¢| by |, forn > N. If 37" (b,

converges absolutely, then so is Y 2 Gy.

Proof. By the comparison test, >~ (| a, |, converges. Hence, Y 7 a, converges

absolutely. 0

Theorem 7.15 Let Y > a, and Y - b, be two p-adic series, and suppose that
lim,, 3 =1 Then Y7 a, absolutely converges if , and only if, >~ b, abso-

lutely converges.

Proof. There exists N € N such that for all n > N,

an __
bn 1

< % Therefore,
p

for all n > N, we have
23
p 2

1<an
2

n

o7



Thus, for all n > N,

1 3
§‘bn’p< ‘an’p< éybn‘pa
and the theorem follows from Theorem 7.14. 0

Remark. Theorem 7.15 also holds if lim,, .. 3> = ¢, provided that ¢ # 0. If
lim, . §* = 0, we can only conclude that absolute convergence of > o by, implies

the absolute convergence of Y7 .

In real analysis, we have the Dirichlet’s test and Abel’s test for series. We can

generalize these two tests as follows.

Corollary 7.16 Let )" a, be a p-adic series whose partial sum form a bounded
sequence and {b,} be a sequence in Q, which converges to 0. Then > 7 a,b,

converges to 0.
Proof. Let A, = a3 + -+ + a, and assume that | A4, |p < M for all n. For all
n €N,

| @by, |p =[(Ay — Ap1)bn |p
T |‘/47'7'_‘/47'7'_1 |p|bn|p

< M|b,],.

Hence, lim,_.o b, = 0 implies lim, .. (a,b,) = 0. By Theorem 7.1, > >° 'a,b,

converges. ]

Theorem 7.17 The series Y | a,b, converges to 0 if >~ a, converges and if

{bn} is a sequence in Q, which converges to 0.

Proof. Convergence of > a, implies {A4,} is a bounded sequence, where A,, =

ai + - -+ + a,. Applying the preceding corollary, we complete the proof. O
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