7 *p*-Adic Series

We all familiar with the classical results on real series, for example, in [1]. In this section, we will study the *p*-adic series and compare the analogue between the *p*-adic case and the classical case. We have defined the convergence of *p*-adic sequences and *p*-adic Cauchy sequences in the previous sections. As in the classical case, we can also define the *p*-adic series. We will take it for granted.

Now, given a sequence $\{a_n\}$ in \mathbb{Q}_{∞} . In the classical case, if $\sum_{n=1}^{\infty} a_n$ converges, then $\lim_{n\to\infty} a_n = 0$, however, the converse is not true, for example, the harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges. In the *p*-adic case, it can't be happened. In fact, we have

Theorem 7.1 A p-adic series $\sum_{n=1}^{\infty} a_n$ converges if and only if $\lim_{n\to\infty} a_n = 0$. Moreover,

 $\left|\sum_{n=1}^{\infty} a_n\right|_p \le \max_n |a_n|_p.$

Proof. Suppose that the series $\sum_{n=1}^{\infty} a_n$ converges. Let \underline{n}

$$S_n = \sum_{k=1}^{n} a_k$$

and

$$\lim_{n \to \infty} S_n = x.$$

Then we have

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} (S_n - S_{n-1}) = 0.$$

To prove the converse, suppose that $\lim_{n\to\infty} a_n = 0$. Then, for every $\epsilon > 0$, there exists a positive integer N such that $|a_n|_p < \epsilon$ for any $n \ge N$. We have

$$|S_m - S_n|_p = |a_{n+1} + \dots + a_m|_p \le \max_{n+1 \le i \le m} |a_i|_p < \epsilon$$

Therefore, $\{S_n\}$ is a Cauchy sequence in \mathbb{Q}_p . Since \mathbb{Q}_p is the completion of \mathbb{Q} with respect to the *p*-adic valuation $|\cdot|_p$, $\{S_n\}$ converges, i.e., $\sum_{n=1}^{\infty} a_n$ converges.

Moreover,

$$\sum_{n=1}^{\infty} a_n \Big|_p = \lim_{n \to \infty} |S_n|$$
$$= \lim_{n \to \infty} |a_1 + \dots + a_n|_p$$
$$\leq \lim_{n \to \infty} \max\{|a_1|_p, \dots, |a_n|_p\}$$
$$\leq \max_n |a_n|_p.$$

As usual, we have some examples as follows.

Example 7.2 Let $x \in \mathbb{Z}_p$ and $\{\alpha_n\}$ be the canonical representation of x given in Theorem 7.1. If we write $\alpha_n = \sum_{i=0}^n a_i p^n$, then the p-adic series $\sum_{n=0}^{\infty} \alpha_n p^n$ converges to x, i.e. $x = \sum_{n=0}^{\infty} \alpha_n p^n$.

Example 7.3 There exists a series $\sum_{n=1}^{\infty} a_n$ with $a_n \in \mathbb{Q}$ for all n = 1, 2, ..., such that $\sum_{n=1}^{\infty} a_n$ converges in \mathbb{Q}_p , for all prime p. In fact, let $\{p_1, p_2, ...\}$ be the sequence of all primes, and define

$$a_n = p_1^n \cdots p_n^n, \ n = 1, 2, \dots$$

Given an arbitrary prime p. Then we have

$$\lim_{n \to \infty} |a_n|_p = \lim_{n \to \infty} |p_1^n \cdots p_n^n|_p = \lim_{n \to \infty} p^{-n} = 0.$$

Therefore, $\sum_{n=1}^{\infty} a_n$ converges in \mathbb{Q}_p by Theorem 7.1.

Example 7.4 Let p_1 and p_2 be distinct primes. Then, obviously, the series $\sum_{n=1}^{\infty} p_1^n$ converges in \mathbb{Q}_{p_1} and diverges in \mathbb{Q}_{p_2} . Similarly, $\sum_{n=1}^{\infty} p_2^n$ converges in \mathbb{Q}_{p_2} and diverges in \mathbb{Q}_{p_1} .

Example 7.5 Given an arbitrary prime p, $\sum_{n=0}^{\infty} n!$ converges in \mathbb{Q}_p . In fact, it is known that

$$|n!|_p = p^{-\frac{n-S_n}{p-1}} \le p^{-\frac{n}{p-1} + (\frac{\log n}{\log p} + 1)},$$

where $S_n = a_0 + \cdots + a_k$ if

$$n = a_0 + a_1 p + \dots + a_k p^k \text{ and } 0 \le a_i \le p - 1 \text{ for all } 0 \le i \le k.$$

Since

$$\lim_{n \to \infty} \left(\frac{n}{p-1} - \frac{\log n}{\log p} + 1\right) = \lim_{n \to \infty} \left[n\left(\frac{1}{p-1} - \frac{\log n}{n\log p} + \frac{1}{n}\right)\right] = +\infty,$$

in that

we obtain that

$$\lim_{n \to \infty} p^{-\frac{n}{p-1} + (\frac{\log n}{\log p} + 1)} = 0$$

Then

$$\lim_{n \to \infty} |n!|_p = 0,$$

and hence $\sum_{n=0}^{\infty} n!$ converges in \mathbb{Q}_p by Theorem 7.1.

Theorem 7.6 (generalized Geometric Series) The p-adic geometric series

Proof. Since, for $|x|_p < 1$, we have

$$\lim_{n \to \infty} |ax^n|_p = \lim_{n \to \infty} |a|_p |x|_p^n = 0,$$

so $\sum_{n=0}^{\infty}ax^n$ converges by Theorem 7.1. Let

$$S_n = \sum_{k=0}^n ax^k, \ n = 1, 2, \dots$$

Thus $S_n - xS_n = a(1 - x^{n+1})$, and

$$S_n = a(\frac{1}{1-x} - \frac{x^{n+1}}{1-x}), \ n = 1, 2, \dots$$

Then we have

$$\lim_{n \to \infty} S_n = \frac{a}{1-x}, \text{ i.e. } \sum_{n=0}^{\infty} ax^n = \frac{a}{1-x} \text{ if } |x|_p < 1.$$

Theorem 7.7 Let $\sum_{n=0}^{\infty} a_n$ be a p-adic series. If $\sum_{n=0}^{\infty} a_n$ converges, then so is $\sum_{n=0}^{\infty} (-1)^{n-1} a_n.$

Proof. Since $\sum_{n=0}^{\infty} a_n$ converges, by Theorem 7.1, $\lim_{n\to\infty} a_n = 0$ which implies that $\lim_{n\to\infty}(-1)^{n-1}a_n = 0$. Again, by Theorem 7.1, $\sum_{n=0}^{\infty}(-1)^{n-1}a_n$ converges.

Remark. Theorem 7.7 is not true in the classical case. For example, $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$ converges, but $\sum_{n=1}^{\infty} (-1)^{n-1} \cdot \frac{(-1)^{n-1}}{n} = \sum_{n=1}^{\infty} \frac{1}{n}$ diverges.

Definition 7.8 A series $\sum_{n=0}^{\infty} a_n$ is called absolutely convergent if $\sum_{n=0}^{\infty} |a_n|_p$ converges. It is called conditionally convergent if $\sum_{n=0}^{\infty} a_n$ converges but $\sum_{n=0}^{\infty} |a_n|_p$ diverges. Theorem 7.9 Absolute convergence of $\sum_{n=0}^{\infty} a_n$ implies convergence.

Proof. Suppose that the series $\sum_{n=0}^{\infty} a_n$ absolutely convergent, i.e. $\sum_{n=0}^{\infty} |a_n|_p$ converges. Then $\lim_{n\to\infty} |a_n|_p = 0$. Hence, $\lim_{n\to\infty} a_n = 0$. By Theorem 7.1, $\sum_{n=0}^{\infty} a_n$ converges.

In the classical case, there exist series which converges conditionally, for example, the alternating series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$ converges conditionally. Similarly, the following example shows that, in the *p*-adic case, there exists a series which converges conditionally.

Example 7.10 Consider the following consecutive terms of the series: 1; p repeated p times; p^2 repeated p^2 times; etc. These terms tend to 0, hence the series converges. However,

$$\sum_{n=0}^{\infty} |a_n|_p = 1 + p \cdot p^{(-1)} + p^2 \cdot p^{(-2)} + \dots = \infty.$$

Definition 7.11 Let $\sum_{n=0}^{\infty} a_n$ be a p-adic series and σ be a bijective mapping. The series $\sum_{n=0}^{\infty} a_{\sigma(n)}$ is called a rearrangement of $\sum_{n=0}^{\infty} a_n$.

Clearly, if $\sum_{n=0}^{\infty} a_{\sigma(n)}$ is a rearrangement of $\sum_{n=0}^{\infty} a_n$, then $\sum_{n=0}^{\infty} a_n$ is also a rearrangement of $\sum_{n=0}^{\infty} a_{\sigma(n)}$.

As in the classical case, we have

Theorem 7.12 Let $\sum_{n=0}^{\infty} a_n$ be an absolutely convergent series having sum x. Then every rearrangement of $\sum_{n=0}^{\infty} a_n$ also converges absolutely and has sum x. However, in the *p*-adic case, we have the following result.

Theorem 7.13 Let $\sum_{n=0}^{\infty} a_n$ be a p-adic series. Then $\sum_{n=0}^{\infty} a_n$ converges with sum x if and only if every rearrangement of $\sum_{n=0}^{\infty} a_n$ converges with the same sum x.

Proof. Suppose that $\sum_{n=0}^{\infty} a_n = x$ and $\sum_{n=0}^{\infty} a'_n$ is an rearrangement of $\sum_{n=0}^{\infty} a_n$. By Theorem 7.1, $\sum_{n=0}^{\infty} a'_n$ converges, so it suffices to show that $\sum_{n=0}^{\infty} a'_n = x$. For any positive number ϵ , there is a positive integer N such that for all $n \geq N$,

$$|a_n|_p < \epsilon, |a'_n|_p < \epsilon, \text{ and } \left|\sum_{n=0}^{\infty} a_n - \sum_{n=0}^{N} a_n\right|_p < \epsilon.$$

Put $x_1 = \sum_{n=0}^{N} a_n$ and $x'_1 = \sum_{n=0}^{N} a'_n$, and denote by x_2 and x'_2 , respectively, the sums of all terms in $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=0}^{\infty} a'_n$ for which $|a_n|_p \ge \epsilon$ and $|a'_n|_p \ge \epsilon$. It is clear that x_2 and x'_2 have the same terms, hence $x_2 = x'_2$. The sum x_1 differs from x_2 by the terms satisfying $|a_n|_p < \epsilon$, and the sum x'_1 differs from x'_2 by the terms satisfying $|a'_n|_p < \epsilon$. Therefore,

$$|x_1 - x_2|_p < \epsilon$$
 and $|x_1' - x_2'|_p < \epsilon$,

which implies that

$$\left\| x_1 - x_1' \right\|_p < \epsilon.$$

Combining this with

$$\left| \sum_{n=0}^{\infty} a_n - \sum_{n=0}^{N} a_n \right|_p < \epsilon,$$
$$\left| \sum_{n=0}^{\infty} a_n - \sum_{n=0}^{N} a_n' \right|_p < \epsilon.$$

we obtain

Since N can be arbitrary large, we see that the series $\sum_{n=0}^{\infty} a'_n$ converges and

$$\sum_{n=0}^{\infty} a_n = \sum_{n=0}^{\infty} a'_n = x.$$

The other direction is obvious.

Theorem 7.14 Let $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=0}^{\infty} b_n$ be two p-adic series. Suppose that there exist positive constant c and $N \in \mathbb{N}$ such that $|a_n|_p \leq c |b_n|_p$ for $n \geq N$. If $\sum_{n=0}^{\infty} b_n$ converges absolutely, then so is $\sum_{n=0}^{\infty} a_n$.

Proof. By the comparison test, $\sum_{n=0}^{\infty} |a_n|_p$ converges. Hence, $\sum_{n=0}^{\infty} a_n$ converges absolutely.

Theorem 7.15 Let $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=0}^{\infty} b_n$ be two p-adic series, and suppose that $\lim_{n\to\infty} \frac{a_n}{b_n} = 1$. Then $\sum_{n=0}^{\infty} a_n$ absolutely converges if , and only if, $\sum_{n=0}^{\infty} b_n$ absolutely converges.

Proof. There exists $N \in \mathbb{N}$ such that for all $n \ge N$, $\left| \frac{a_n}{b_n} - 1 \right|_p < \frac{1}{2}$. Therefore, for all $n \ge N$, we have

$$\frac{1}{2} < \left| \frac{a_n}{b_n} \right|_p < \frac{3}{2}.$$

Thus, for all $n \ge N$,

$$\frac{1}{2} |b_n|_p < |a_n|_p < \frac{3}{2} |b_n|_p,$$

and the theorem follows from Theorem 7.14.

Remark. Theorem 7.15 also holds if $\lim_{n\to\infty} \frac{a_n}{b_n} = c$, provided that $c \neq 0$. If $\lim_{n\to\infty} \frac{a_n}{b_n} = 0$, we can only conclude that absolute convergence of $\sum_{n=0}^{\infty} b_n$ implies the absolute convergence of $\sum_{n=0}^{\infty} a_n$.

In real analysis, we have the Dirichlet's test and Abel's test for series. We can generalize these two tests as follows.

Corollary 7.16 Let $\sum_{n=0}^{\infty} a_n$ be a *p*-adic series whose partial sum form a bounded sequence and $\{b_n\}$ be a sequence in \mathbb{Q}_p which converges to 0. Then $\sum_{n=1}^{\infty} a_n b_n$ converges to 0.

Proof. Let $A_n = a_1 + \dots + a_n$ and assume that $|A_n|_p \leq M$ for all n. For all $n \in \mathbb{N}$, $|a_n b_n|_p = |(A_n - A_{n-1})b_n|_p$ $= |A_n - A_{n-1}|_p |b_n|_p$

Hence, $\lim_{n\to\infty} b_n = 0$ implies $\lim_{n\to\infty} (a_n b_n) = 0$. By Theorem 7.1, $\sum_{n=0}^{\infty} a_n b_n$ converges.

Theorem 7.17 The series $\sum_{n=1}^{\infty} a_n b_n$ converges to 0 if $\sum_{n=0}^{\infty} a_n$ converges and if $\{b_n\}$ is a sequence in \mathbb{Q}_p which converges to 0.

Proof. Convergence of $\sum_{n=0}^{\infty} a_n$ implies $\{A_n\}$ is a bounded sequence, where $A_n =$ $a_1 + \cdots + a_n$. Applying the preceding corollary, we complete the proof.