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7 p-Adic Series

We all familiar with the classical results on real series, for example, in [1]. In

this section, we will study the p-adic series and compare the analogue between

the p-adic case and the classical case. We have defined the convergence of p-adic

sequences and p-adic Cauchy sequences in the previous sections. As in the classical

case, we can also define the p-adic series. We will take it for granted.

Now, given a sequence {an} in Q∞. In the classical case, if
∑∞

n=1 an converges,

then limn→∞ an = 0 , however, the converse is not true, for example, the harmonic

series
∑∞

n=1
1
n

diverges. In the p-adic case, it can’t be happened. In fact, we have

Theorem 7.1 A p-adic series
∑∞

n=1 an converges if and only if limn→∞ an = 0 .

Moreover, ∣∣∣∣∣
∞∑

n=1

an

∣∣∣∣∣
p

≤ max
n
| an |p .

Proof . Suppose that the series
∑∞

n=1 an converges. Let

Sn =
n∑

k=1

ak

and

lim
n→∞

Sn = x.

Then we have

lim
n→∞

an = lim
n→∞

(Sn − Sn−1) = 0.

To prove the converse, suppose that limn→∞ an = 0. Then, for every ε > 0 , there

exists a positive integer N such that | an |p < ε for any n ≥ N . We have

|Sm − Sn |p = | an+1 + ... + am |p ≤ max
n+1≤i≤m

| ai |p < ε.

Therefore, {Sn} is a Cauchy sequence in Qp. Since Qp is the completion of Q

with respect to the p-adic valuation | · |p, {Sn} converges, i.e. ,
∑∞

n=1 an converges.
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Moreover,

∣∣∣∣∣
∞∑

n=1

an

∣∣∣∣∣
p

= lim
n→∞

|Sn |

= lim
n→∞

| a1 + ... + an |p
≤ lim

n→∞
max{| a1 |p , ..., | an |p}

≤ max
n
| an |p .

❑

As usual, we have some examples as follows.

Example 7.2 Let x ∈ Zp and {αn} be the canonical representation of x given

in Theorem 7.1. If we write αn =
∑n

i=0 aip
n, then the p-adic series

∑∞
n=0 αnp

n

converges to x, i.e. x =
∑∞

n=0 αnpn.

Example 7.3 There exists a series
∑∞

n=1 an with an ∈ Q for all n = 1, 2, . . .,

such that
∑∞

n=1 an converges in Qp, for all prime p. In fact, let {p1, p2, . . .} be the

sequence of all primes, and define

an = pn
1 · · · pn

n, n = 1, 2, . . . .

Given an arbitrary prime p. Then we have

lim
n→∞

| an |p = lim
n→∞

| pn
1 · · · pn

n |p = lim
n→∞

p−n = 0.

Therefore,
∑∞

n=1 an converges in Qp by Theorem 7.1.

Example 7.4 Let p1 and p2 be distinct primes. Then, obviously, the series
∑∞

n=1 pn
1

converges in Qp1 and diverges in Qp2. Similarly,
∑∞

n=1 pn
2 converges in Qp2 and

diverges in Qp1.
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Example 7.5 Given an arbitrary prime p,
∑∞

n=0 n! converges in Qp. In fact, it is

known that

|n! |p = p−
n−Sn
p−1 ≤ p−

n
p−1

+( log n
log p

+1),

where Sn = a0 + · · ·+ ak if

n = a0 + a1p + · · ·+ akp
k and 0 ≤ ai ≤ p− 1 for all 0 ≤ i ≤ k.

Since

lim
n→∞

(
n

p− 1
− log n

log p
+ 1) = lim

n→∞
[n(

1

p− 1
− log n

n log p
+

1

n
)] = +∞,

we obtain that

lim
n→∞

p−
n

p−1
+( logn

logp
+1) = 0.

Then

lim
n→∞

|n! |p = 0,

and hence
∑∞

n=0 n! converges in Qp by Theorem 7.1.

Theorem 7.6 (generalized Geometric Series) The p-adic geometric series

∞∑
n=0

axn =
a

1− x
if |x |p < 1

.

Proof . Since, for |x |p < 1, we have

lim
n→∞

| axn |p = lim
n→∞

| a |p |x |np = 0,

so
∑∞

n=0 axn converges by Theorem 7.1. Let

Sn =
n∑

k=0

axk, n = 1, 2, . . . .

Thus Sn − xSn = a(1− xn+1), and

Sn = a(
1

1− x
− xn+1

1− x
), n = 1, 2, . . . .
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Then we have

lim
n→∞

Sn =
a

1− x
, i.e.

∞∑
n=0

axn =
a

1− x
if |x |p < 1.

❑

Theorem 7.7 Let
∑∞

n=0 an be a p-adic series. If
∑∞

n=0 an converges, then so is
∑∞

n=0(−1)n−1an.

Proof . Since
∑∞

n=0 an converges, by Theorem 7.1, limn→∞ an = 0 which implies

that limn→∞(−1)n−1an = 0. Again, by Theorem 7.1,
∑∞

n=0(−1)n−1an converges.

❑

Remark. Theorem 7.7 is not true in the classical case. For example,
∑∞

n=1
(−1)n−1

n

converges, but
∑∞

n=1(−1)n−1 · (−1)n−1

n
=

∑∞
n=1

1
n

diverges.

Definition 7.8 A series
∑∞

n=0 an is called absolutely convergent if
∑∞

n=0 | an |p con-

verges. It is called conditionally convergent if
∑∞

n=0 an converges but
∑∞

n=0 | an |p
diverges.

Theorem 7.9 Absolute convergence of
∑∞

n=0 an implies convergence.

Proof . Suppose that the series
∑∞

n=0 an absolutely convergent, i.e.
∑∞

n=0 | an |p
converges. Then limn→∞ | an |p = 0. Hence, limn→∞ an = 0. By Theorem 7.1,
∑∞

n=0 an converges. ❑

In the classical case, there exist series which converges conditionally, for ex-

ample, the alternating series
∑∞

n=1
(−1)n−1

n
converges conditionally. Similarly, the

following example shows that, in the p-adic case, there exists a series which con-

verges conditionally.
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Example 7.10 Consider the following consecutive terms of the series: 1; p repeated

p times; p2 repeated p2 times; etc. These terms tend to 0, hence the series converges.

However,
∞∑

n=0

| an |p = 1 + p · p(−1) + p2 · p(−2) + · · · = ∞.

Definition 7.11 Let
∑∞

n=0 an be a p-adic series and σ be a bijective mapping. The

series
∑∞

n=0 aσ(n) is called a rearrangement of
∑∞

n=0 an.

Clearly, if
∑∞

n=0 aσ(n) is a rearrangement of
∑∞

n=0 an, then
∑∞

n=0 an is also a

rearrangement of
∑∞

n=0 aσ(n).

As in the classical case, we have

Theorem 7.12 Let
∑∞

n=0 an be an absolutely convergent series having sum x. Then

every rearrangement of
∑∞

n=0 an also converges absolutely and has sum x.

However, in the p-adic case, we have the following result.

Theorem 7.13 Let
∑∞

n=0 an be a p-adic series. Then
∑∞

n=0 an converges with sum

x if and only if every rearrangement of
∑∞

n=0 an converges with the same sum x.

Proof . Suppose that
∑∞

n=0 an = x and
∑∞

n=0 a
′
n is an rearrangement of

∑∞
n=0 an.

By Theorem 7.1,
∑∞

n=0 a
′
n converges, so it suffices to show that

∑∞
n=0 a

′
n = x. For

any positive number ε, there is a positive integer N such that for all n ≥ N ,

| an |p < ε,
∣∣∣ a

′
n

∣∣∣
p

< ε, and

∣∣∣∣∣
∞∑

n=0

an −
N∑

n=0

an

∣∣∣∣∣
p

< ε.

Put x1 =
∑N

n=0 an and x
′
1 =

∑N
n=0 a

′
n, and denote by x2 and x

′
2, respectively, the

sums of all terms in
∑∞

n=0 an and
∑∞

n=0 a
′
n for which | an |p ≥ ε and

∣∣ a
′
n

∣∣
p
≥ ε. It is

clear that x2 and x
′
2 have the same terms, hence x2 = x

′
2. The sum x1 differs from
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x2 by the terms satisfying | an |p < ε, and the sum x
′
1 differs from x

′
2 by the terms

satisfying
∣∣ a

′
n

∣∣
p

< ε. Therefore,

|x1 − x2 |p < ε and
∣∣∣ x

′
1 − x

′
2

∣∣∣
p

< ε,

which implies that ∣∣∣x1 − x
′
1

∣∣∣
p

< ε.

Combining this with ∣∣∣∣∣
∞∑

n=0

an −
N∑

n=0

an

∣∣∣∣∣
p

< ε,

we obtain ∣∣∣∣∣
∞∑

n=0

an −
N∑

n=0

a
′
n

∣∣∣∣∣
p

< ε.

Since N can be arbitrary large, we see that the series
∑∞

n=0 a
′
n converges and

∞∑
n=0

an =
∞∑

n=0

a
′
n = x.

The other direction is obvious. ❑

Theorem 7.14 Let
∑∞

n=0 an and
∑∞

n=0 bn be two p-adic series. Suppose that there

exist positive constant c and N ∈ N such that | an |p ≤ c | bn |p for n ≥ N . If
∑∞

n=0 bn

converges absolutely, then so is
∑∞

n=0 an.

Proof . By the comparison test,
∑∞

n=0 | an |p converges. Hence,
∑∞

n=0 an converges

absolutely. ❑

Theorem 7.15 Let
∑∞

n=0 an and
∑∞

n=0 bn be two p-adic series, and suppose that

limn→∞ an

bn
= 1. Then

∑∞
n=0 an absolutely converges if , and only if,

∑∞
n=0 bn abso-

lutely converges.

Proof . There exists N ∈ N such that for all n ≥ N ,
∣∣∣ an

bn
− 1

∣∣∣
p

< 1
2
. Therefore,

for all n ≥ N , we have
1

2
<

∣∣∣∣
an

bn

∣∣∣∣
p

<
3

2
.
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Thus, for all n ≥ N ,
1

2
| bn |p < | an |p <

3

2
| bn |p ,

and the theorem follows from Theorem 7.14. ❑

Remark. Theorem 7.15 also holds if limn→∞ an

bn
= c, provided that c 6= 0. If

limn→∞ an

bn
= 0, we can only conclude that absolute convergence of

∑∞
n=0 bn implies

the absolute convergence of
∑∞

n=0 an.

In real analysis, we have the Dirichlet’s test and Abel’s test for series. We can

generalize these two tests as follows.

Corollary 7.16 Let
∑∞

n=0 an be a p-adic series whose partial sum form a bounded

sequence and {bn} be a sequence in Qp which converges to 0. Then
∑∞

n=1 anbn

converges to 0.

Proof . Let An = a1 + · · · + an and assume that |An |p ≤ M for all n. For all

n ∈ N,

| anbn |p = | (An − An−1)bn |p
= |An − An−1 |p | bn |p
≤ M | bn |p .

Hence, limn→∞ bn = 0 implies limn→∞(anbn) = 0. By Theorem 7.1,
∑∞

n=0 anbn

converges. ❑

Theorem 7.17 The series
∑∞

n=1 anbn converges to 0 if
∑∞

n=0 an converges and if

{bn} is a sequence in Qp which converges to 0.

Proof . Convergence of
∑∞

n=0 an implies {An} is a bounded sequence, where An =

a1 + · · ·+ an. Applying the preceding corollary, we complete the proof. ❑
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