7 p-Adic Series

We all familiar with the classical results on real series, for example, in [1]. In this section, we will study the p-adic series and compare the analogue between the p-adic case and the classical case. We have defined the convergence of p-adic sequences and p-adic Cauchy sequences in the previous sections. As in the classical case, we can also define the p-adic series. We will take it for granted.

Now, given a sequence $\left\{a_{n}\right\}$ in \mathbb{Q}_{∞}. In the classical case, if $\sum_{n=1}^{\infty} a_{n}$ converges, then $\lim _{n \rightarrow \infty} a_{n}=0$, however, the converse is not true, for example, the harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges. In the p-adic case, it can't be happened. In fact, we have

Theorem 7.1 A p-adic series $\sum_{n=1}^{\infty} a_{n}$ converges if and only if $\lim _{n \rightarrow \infty} a_{n}=0$. Moreover,

$$
\left|\sum_{n=1}^{\infty} a_{n}\right|_{p} \leq \max _{n}\left|a_{n}\right|_{p}
$$

Proof. Suppose that the series $\sum_{n=1}^{\infty} a_{n}$ converges. Let

$$
S_{n}=\sum_{k=1}^{n} a_{k}
$$

and

$$
\lim _{n \rightarrow \infty} S_{n}=x
$$

Then we have

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty}\left(S_{n}-S_{n-1}\right)=0
$$

To prove the converse, suppose that $\lim _{n \rightarrow \infty} a_{n}=0$. Then, for every $\epsilon>0$, there exists a positive integer N such that $\left|a_{n}\right|_{p}<\epsilon$ for any $n \geq N$. We have

$$
\left|S_{m}-S_{n}\right|_{p}=\left|a_{n+1}+\ldots+a_{m}\right|_{p} \leq \max _{n+1 \leq i \leq m}\left|a_{i}\right|_{p}<\epsilon
$$

Therefore, $\left\{S_{n}\right\}$ is a Cauchy sequence in \mathbb{Q}_{p}. Since \mathbb{Q}_{p} is the completion of \mathbb{Q} with respect to the p-adic valuation $|\cdot|_{p},\left\{S_{n}\right\}$ converges, i.e., $\sum_{n=1}^{\infty} a_{n}$ converges.

Moreover,

$$
\begin{aligned}
\left|\sum_{n=1}^{\infty} a_{n}\right|_{p} & =\lim _{n \rightarrow \infty}\left|S_{n}\right| \\
& =\lim _{n \rightarrow \infty}\left|a_{1}+\ldots+a_{n}\right|_{p} \\
& \leq \lim _{n \rightarrow \infty} \max \left\{\left|a_{1}\right|_{p}, \ldots,\left|a_{n}\right|_{p}\right\} \\
& \leq \max _{n}\left|a_{n}\right|_{p} .
\end{aligned}
$$

As usual, we have some examples as follows.

Example 7.2 Let $x \in \mathbb{Z}_{p}$ and $\left\{\alpha_{n}\right\}$ be the canonical representation of x given in Theorem 7.1. If we write $\alpha_{n}=\sum_{i=0}^{n} a_{i} p^{n}$, then the p-adic series $\sum_{n=0}^{\infty} \alpha_{n} p^{n}$ converges to x, i.e. $x=\sum_{n=0}^{\infty} \alpha_{n} p^{n}$.

Example 7.3 There exists a series $\sum_{n=1}^{\infty} a_{n}$ with $a_{n} \in \mathbb{Q}$ for all $n=1,2, \ldots$, such that $\sum_{n=1}^{\infty} a_{n}$ converges in \mathbb{Q}_{p}, for all prime p. In fact, let $\left\{p_{1}, p_{2}, \ldots\right\}$ be the sequence of all primes, and define

$$
a_{n}=p_{1}^{n} \cdots p_{n}^{n}, n \subseteq 1,2, \ldots
$$

Given an arbitrary prime p. Then we have

$$
\lim _{n \rightarrow \infty}\left|a_{n}\right|_{p}=\lim _{n \rightarrow \infty}\left|p_{1}^{n} \cdots p_{n}^{n}\right|_{p}=\lim _{n \rightarrow \infty} p^{-n}=0
$$

Therefore, $\sum_{n=1}^{\infty} a_{n}$ converges in \mathbb{Q}_{p} by Theorem 7.1.

Example 7.4 Let p_{1} and p_{2} be distinct primes. Then, obviously, the series $\sum_{n=1}^{\infty} p_{1}^{n}$ converges in $\mathbb{Q}_{p_{1}}$ and diverges in $\mathbb{Q}_{p_{2}}$. Similarly, $\sum_{n=1}^{\infty} p_{2}^{n}$ converges in $\mathbb{Q}_{p_{2}}$ and diverges in $\mathbb{Q}_{p_{1}}$.

Example 7.5 Given an arbitrary prime $p, \sum_{n=0}^{\infty} n$! converges in \mathbb{Q}_{p}. In fact, it is known that

$$
|n!|_{p}=p^{-\frac{n-S_{n}}{p-1}} \leq p^{-\frac{n}{p-1}+\left(\frac{\log n}{\log p}+1\right)}
$$

where $S_{n}=a_{0}+\cdots+a_{k}$ if

$$
n=a_{0}+a_{1} p+\cdots+a_{k} p^{k} \text { and } 0 \leq a_{i} \leq p-1 \text { for all } 0 \leq i \leq k
$$

Since

$$
\lim _{n \rightarrow \infty}\left(\frac{n}{p-1}-\frac{\log n}{\log p}+1\right)=\lim _{n \rightarrow \infty}\left[n\left(\frac{1}{p-1}-\frac{\log n}{n \log p}+\frac{1}{n}\right)\right]=+\infty
$$

we obtain that

Then

$$
\lim _{n \rightarrow \infty} p^{-\frac{n}{p-1}+\left(\frac{\log n}{\log p}+1\right)}=0
$$

$$
\lim _{n \rightarrow \infty}|n!|_{p}=0
$$

and hence $\sum_{n=0}^{\infty} n$! converges in \mathbb{Q}_{p} by Theorem 7.1.

Theorem 7.6 (generalized Geometric Series) The p-adic geometric series

$$
\sum_{n=0}^{\infty} a x^{n}=\frac{a}{1-x} \text { if }|x|_{p}<1
$$

Proof. Since, for $|x|_{p}<1$, we have

$$
\lim _{n \rightarrow \infty}\left|a x^{n}\right|_{p}=\lim _{n \rightarrow \infty}|a|_{p}|x|_{p}^{n}=0
$$

so $\sum_{n=0}^{\infty} a x^{n}$ converges by Theorem 7.1. Let

$$
S_{n}=\sum_{k=0}^{n} a x^{k}, \quad n=1,2, \ldots
$$

Thus $S_{n}-x S_{n}=a\left(1-x^{n+1}\right)$, and

$$
S_{n}=a\left(\frac{1}{1-x}-\frac{x^{n+1}}{1-x}\right), \quad n=1,2, \ldots
$$

Then we have

$$
\lim _{n \rightarrow \infty} S_{n}=\frac{a}{1-x}, \text { i.e. } \sum_{n=0}^{\infty} a x^{n}=\frac{a}{1-x} \text { if }|x|_{p}<1
$$

Theorem 7.7 Let $\sum_{n=0}^{\infty} a_{n}$ be a p-adic series. If $\sum_{n=0}^{\infty} a_{n}$ converges, then so is $\sum_{n=0}^{\infty}(-1)^{n-1} a_{n}$.

Proof. Since $\sum_{n=0}^{\infty} a_{n}$ converges, by Theorem 7.1, $\lim _{n \rightarrow \infty} a_{n}=0$ which implies that $\lim _{n \rightarrow \infty}(-1)^{n-1} a_{n}=0$. Again, by Theorem 7.1, $\sum_{n=0}^{\infty}(-1)^{n-1} a_{n}$ converges.

Remark. Theorem 7.7 is not true in the classical case. For example, $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$ converges, but $\sum_{n=1}^{\infty}(-1)^{n-1} \cdot \frac{(-1)^{n}-1}{n}=\sum_{n=1}^{\infty} \frac{1}{n}$ diverges.

Definition 7.8 A series $\sum_{n=0}^{\infty} a_{n}$ is called absolutely convergent if $\sum_{n=0}^{\infty}\left|a_{n}\right|_{p}$ converges. It is called conditionally convergent if $\sum_{n=0}^{\infty} a_{n}$ converges but $\sum_{n=0}^{\infty}\left|a_{n}\right|_{p}$ diverges.

Theorem 7.9 Absolute convergence of $\sum_{n=0}^{\infty} a_{n}$ implies convergence.

Proof. Suppose that the series $\sum_{n=0}^{\infty} a_{n}$ absolutely convergent, i.e. $\sum_{n=0}^{\infty}\left|a_{n}\right|_{p}$ converges. Then $\lim _{n \rightarrow \infty}\left|a_{n}\right|_{p}=0$. Hence, $\lim _{n \rightarrow \infty} a_{n}=0$. By Theorem 7.1, $\sum_{n=0}^{\infty} a_{n}$ converges.

In the classical case, there exist series which converges conditionally, for example, the alternating series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$ converges conditionally. Similarly, the following example shows that, in the p-adic case, there exists a series which converges conditionally.

Example 7.10 Consider the following consecutive terms of the series: 1; p repeated p times; p^{2} repeated p^{2} times; etc. These terms tend to 0 , hence the series converges. However,

$$
\sum_{n=0}^{\infty}\left|a_{n}\right|_{p}=1+p \cdot p^{(-1)}+p^{2} \cdot p^{(-2)}+\cdots=\infty
$$

Definition 7.11 Let $\sum_{n=0}^{\infty} a_{n}$ be a p-adic series and σ be a bijective mapping. The series $\sum_{n=0}^{\infty} a_{\sigma(n)}$ is called a rearrangement of $\sum_{n=0}^{\infty} a_{n}$.

Clearly, if $\sum_{n=0}^{\infty} a_{\sigma(n)}$ is a rearrangement of $\sum_{n=0}^{\infty} a_{n}$, then $\sum_{n=0}^{\infty} a_{n}$ is also a rearrangement of $\sum_{n=0}^{\infty} a_{\sigma(n)}$.

As in the classical case, we have

Theorem 7.12 Let $\sum_{n=0}^{\infty} a_{n}$ be an absolutely convergent series having sum x. Then every rearrangement of $\sum_{n=0}^{\infty} a_{n}$ also converges absolutely and has sum x.

However, in the p-adic case, we have the following result.

Theorem 7.13 Let $\sum_{n=0}^{\infty} a_{n}$ be a p-adic series. Then $\sum_{n=0}^{\infty} a_{n}$ converges with sum x if and only if every rearrangement of $\sum_{n=0}^{\infty} a_{n}$ converges with the same sum x.

Proof. Suppose that $\sum_{n=0}^{\infty} a_{n}=x$ and $\sum_{n=0}^{\infty} a_{n}^{\prime}$ is an rearrangement of $\sum_{n=0}^{\infty} a_{n}$. By Theorem 7.1, $\sum_{n=0}^{\infty} a_{n}^{\prime}$ converges, so it suffices to show that $\sum_{n=0}^{\infty} a_{n}^{\prime}=x$. For any positive number ϵ, there is a positive integer N such that for all $n \geq N$,

$$
\left|a_{n}\right|_{p}<\epsilon, \quad\left|a_{n}^{\prime}\right|_{p}<\epsilon, \text { and }\left|\sum_{n=0}^{\infty} a_{n}-\sum_{n=0}^{N} a_{n}\right|_{p}<\epsilon
$$

Put $x_{1}=\sum_{n=0}^{N} a_{n}$ and $x_{1}^{\prime}=\sum_{n=0}^{N} a_{n}^{\prime}$, and denote by x_{2} and x_{2}^{\prime}, respectively, the sums of all terms in $\sum_{n=0}^{\infty} a_{n}$ and $\sum_{n=0}^{\infty} a_{n}^{\prime}$ for which $\left|a_{n}\right|_{p} \geq \epsilon$ and $\left|a_{n}^{\prime}\right|_{p} \geq \epsilon$. It is clear that x_{2} and x_{2}^{\prime} have the same terms, hence $x_{2}=x_{2}^{\prime}$. The sum x_{1} differs from
x_{2} by the terms satisfying $\left|a_{n}\right|_{p}<\epsilon$, and the sum x_{1}^{\prime} differs from x_{2}^{\prime} by the terms satisfying $\left|a_{n}^{\prime}\right|_{p}<\epsilon$. Therefore,

$$
\left|x_{1}-x_{2}\right|_{p}<\epsilon \text { and }\left|x_{1}^{\prime}-x_{2}^{\prime}\right|_{p}<\epsilon,
$$

which implies that

$$
\left|x_{1}-x_{1}^{\prime}\right|_{p}<\epsilon
$$

Combining this with

$$
\left|\sum_{n=0}^{\infty} a_{n}-\sum_{n=0}^{N} a_{n}\right|_{p}<\epsilon
$$

we obtain

$$
\left|\sum_{n=0}^{\infty} a_{n}-\sum_{n=0}^{N} a_{n}^{\prime}\right|_{p}<\epsilon
$$

Since N can be arbitrary large, we see that the series $\sum_{n=0}^{\infty} a_{n}$ converges and

$$
\sum_{n=0}^{\infty} a_{n}=\sum_{n=0}^{\infty} a_{n}^{\prime}=x
$$

The other direction is obvious.

Theorem 7.14 Let $\sum_{n=0}^{\infty} a_{n}$ and $\sum_{n=0}^{\infty} b_{n}$ be two p-adic series. Suppose that there exist positive constant c and $N \in \mathbb{N}$ such that $\left|a_{n}\right|_{p} \leq c\left|b_{n}\right|_{p}$ for $n \geq N$. If $\sum_{n=0}^{\infty} b_{n}$ converges absolutely, then so is $\sum_{n=0}^{\infty} a_{n}$.

Proof. By the comparison test, $\sum_{n=0}^{\infty}\left|a_{n}\right|_{p}$ converges. Hence, $\sum_{n=0}^{\infty} a_{n}$ converges absolutely.

Theorem 7.15 Let $\sum_{n=0}^{\infty} a_{n}$ and $\sum_{n=0}^{\infty} b_{n}$ be two p-adic series, and suppose that $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=1$. Then $\sum_{n=0}^{\infty} a_{n}$ absolutely converges if, and only if, $\sum_{n=0}^{\infty} b_{n}$ absolutely converges.

Proof. There exists $N \in \mathbb{N}$ such that for all $n \geq N,\left|\frac{a_{n}}{b_{n}}-1\right|_{p}<\frac{1}{2}$. Therefore, for all $n \geq N$, we have

$$
\frac{1}{2}<\left|\frac{a_{n}}{b_{n}}\right|_{p}<\frac{3}{2}
$$

Thus, for all $n \geq N$,

$$
\frac{1}{2}\left|b_{n}\right|_{p}<\left|a_{n}\right|_{p}<\frac{3}{2}\left|b_{n}\right|_{p},
$$

and the theorem follows from Theorem 7.14.

Remark. Theorem 7.15 also holds if $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=c$, provided that $c \neq 0$. If $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=0$, we can only conclude that absolute convergence of $\sum_{n=0}^{\infty} b_{n}$ implies the absolute convergence of $\sum_{n=0}^{\infty} a_{n}$.

In real analysis, we have the Dirichlet's test and Abel's test for series. We can generalize these two tests as follows.

Corollary 7.16 Let $\sum_{n=0}^{\infty} a_{n}$ be a p-adic series whose partial sum form a bounded sequence and $\left\{b_{n}\right\}$ be a sequence in \mathbb{Q}_{p} which converges to 0 . Then $\sum_{n=1}^{\infty} a_{n} b_{n}$ converges to 0 .

Proof. Let $A_{n}=a_{1}+\cdots+a_{n}$ and assume that $\left|A_{n}\right|_{p} \leq M$ for all n. For all $n \in \mathbb{N}$,

$$
\begin{aligned}
\left|a_{n} b_{n}\right|_{p} & =\left|\left(A_{n}-A_{n-1}\right) b_{n}\right|_{p} \\
& \neq\left|A_{n}-A_{n-1}\right|_{p}\left|b_{n}\right|_{p} \\
& \leq M\left|b_{n}\right|_{p} .
\end{aligned}
$$

Hence, $\lim _{n \rightarrow \infty} b_{n}=0$ implies $\lim _{n \rightarrow \infty}\left(a_{n} b_{n}\right)=0$. By Theorem 7.1, $\sum_{n=0}^{\infty} a_{n} b_{n}$ converges.

Theorem 7.17 The series $\sum_{n=1}^{\infty} a_{n} b_{n}$ converges to 0 if $\sum_{n=0}^{\infty} a_{n}$ converges and if $\left\{b_{n}\right\}$ is a sequence in \mathbb{Q}_{p} which converges to 0.

Proof. Convergence of $\sum_{n=0}^{\infty} a_{n}$ implies $\left\{A_{n}\right\}$ is a bounded sequence, where $A_{n}=$ $a_{1}+\cdots+a_{n}$. Applying the preceding corollary, we complete the proof.

