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2 General Theory of Valuations

In this section, we will define valuations on a field and study its basic algebraic

and topological properties. Most of the materials can be found in [2,3,7,8,9]. Fur-

thermore, a general procedure to produce valuations will be introduced and some

important classes of examples will be given.

From now on, all rings in this thesis are commutative with identity 1.

Definition 2.1 Let k be a field. A valuation on k is a function | · | : k → R

satisfying the following conditions:

(i) For all x ∈ k,

|x | ≥ 0, and | x | = 0 if and only if x = 0.

(ii) For all x, y ∈ k, |xy | = | x | | y |.

(iii) | · | satisfies the triangle inequality: For all x, y ∈ k,

|x + y | ≤ | x |+ | y | .

In this case, the pair (k, | · |) (or simply k) is called a valuated field. If, in

addition, | · | satisfies the strong triangle inequality

|x + y | ≤ max{|x | , | y |}

for all x, y ∈ k, then | · | is called a non-Archimedean valuation on k and k is a

non-Archimedean valuated field. Otherwise, | · | is called an Archimedean valuation

and k is an Archimedean valuated field.

Note that the strong triangle inequality always implies the triangle inequality,

but not converse as we will see.
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Example 2.2 Let k be a field and | · |0 : k −→ R be defined by

|x |0 =





1 if x 6= 0

0 if x = 0

Then, obviously, | · |0 is a valuation on k, called the trivial valuation, which shows

that every field admits at least one valuation.

Example 2.3 Let | · |∞ be the ordinary absolute value on Q, R and C. Then | · |∞
is an Archimedean valuation on these fields, but not satisfies the strong triangle

inequality, since | 1 + 1 |∞ = 2 and max{| 1 |∞ , | 1 |∞} = 1.

The following simple properties about valuations on a field k can be easily

deduced from the definition.

Proposition 2.4 Let (k, | · |) be a valuated field. Then we have

(i) | 1 | = 1.

(ii) | −x | = |x | for all x ∈ k.

(iii) | x−1 | = |x |−1 for all x ∈ k and x 6= 0.

(iv) | | x | − | y | | ≤ | x− y | for all x, y ∈ k.

Let | · | be a valuation on a field k and k∗ = k−{0}. Denote the set {| x | | x ∈
k∗} by | k∗ |. Then, by definition of valuations, | · | : k∗ −→ R∗ is a multiplicative

group homomorphism, where R∗ = R − {0}. Therefore, the following proposition

is obvious.

Proposition 2.5 | k∗ | is a multiplicative subgroup of R∗.

Definition 2.6 | k∗ | is called the value group of | · |. Note that the image of | · | is

| k | = | k∗ | ∪ {0}.

3



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

For a non-Archimedean valuated field (k, | · |), we have some other important

properties which are different from the Archimedean case.

Proposition 2.7 Let (k, | · |) be a non-Archimedean valuated field. Then we have

(i) |n · 1 | ≤ 1 for all n ∈ Z.

(ii) Given x, y ∈ k, if | x | 6= | y |, then | x + y | = max{| x | , | y |}.

This is usually called the isosceles triangle property.

Proof . (i) follows from the strong triangle inequality of non-Archimedean valu-

ations and induction. Now, to prove (ii), given x, y ∈ k with |x | 6= | y |. We may

assume that |x | > | y |. Then

|x | = |x + y − y |
≤ max{| x + y | , | −y |}
= max{|x + y | , | y |} by (ii) of Proposition 2.4.

= |x + y | since | y | < | x | ,

which proves (ii). ❑

Note that (ii) and its proof say that every triangle in k is isosceles and the

length of base is less than or equal to the length of sides.

In order to derive some further properties of non-Archimedean field, we intro-

duce some notation.

Let (k, | · |) be a non-Archimedean valuated field. Define

V = {x ∈ k| | x | ≤ 1},

P = {x ∈ k| | x | < 1},

and

U = {x ∈ k| | x | = 1}.

4



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

Proposition 2.8 As above, we have

(i) V is a subring of k, called the valuation ring of k. In particular, V is itself

an integral domain.

(ii) P is the only maximal ideal in V . In particular, V is a local ring.

(iii) U is the group of units in V , called the group of units.

Proof .

(i) Given x, y ∈ V , we have

|x− y | ≤ max{| x | , | y |} ≤ 1,

|xy | = |x | | y | ≤ 1

and

| 1 | = 1,

which imply that V is a subring of k. Moreover, since V ⊆ k and k is a field,

V is an integral domain.

(ii) Given x, y ∈ P and a ∈ V , we have

|x− y | ≤ max{| x | , | y |} < 1

and

| ax | = | a | | x | < 1

which imply that P is an ideal in V . Furthermore, if x ∈ V and x 6∈ P , then

| x | = 1. Therefore, |x−1 | = |x |−1 = 1 and x−1 ∈ V which say that P is a

maximal ideal and V − P contains all units of V . In particular, P is the only

maximal ideal in V .

(iii) As in the proof of (ii), U is the group of units in V .
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❑

Now, given a valuation | · | on a field k, if | · | is non-Archimedean, then the set

{n · 1|n ∈ Z} is bounded by (i) of Proposition 2.7, that is, |n · 1 | ≤ 1 for all n ∈ Z,

and, for the ordinary absolute value | · |∞ on Q, R and C, the set {n · 1|n ∈ Z} is

unbounded. In fact, this property characterizes valuations on a field k.

In order to make it clear, we may identify the ring of integers Z as a subring

of k through the mapping, each n ∈ Z sends to n · 1 ∈ k. Note that if k is of

characteristic 0, then the mapping is injective and Z can be considered as a subring

of k; if k is of characteristic p, where p is a prime integer, then the mapping is not

injective and we may consider Fp, the residue class field modulo p, as a subring of

k.

Theorem 2.9 Let | · | be a valuation on a field k. Then | · | is non-Archimedean if

and only if Z is bounded with respect to | · |. Equivalently, | · | is Archimedean if and

only if Z is unbounded with respect to | · |.

Proof . Suppose that | · | is non-Archimedean. Then Z is bounded by (i) of Propo-

sition 2.7. To prove the converse, suppose that Z is bounded, say, |n | ≤ M for all

n ∈ Z. Given x, y ∈ k, for all n ∈ N,

|x + y |n = | (x + y)n |

=

∣∣∣∣∣
n∑

i=0

(
n

i

)
xnyn−i

∣∣∣∣∣

≤
n∑

i=0

∣∣∣∣
(

n

i

)∣∣∣∣ | x |n | y |n−i

≤ M

n∑
i=0

|x |n | y |n−i

≤ M

n∑
i=0

[max{| x | , | y |}]n

= M(n + 1)[max{| x | , | y |}]n,
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which implies that, for all n ∈ N,

|x + y | ≤ M
1
n (n + 1)

1
n max{|x | , | y |}.

Let n →∞ and use

lim
n→∞

M
1
n = 1 and lim

n→∞
(n + 1)

1
n = 1,

We get

|x + y | ≤ max{|x | , | y |}

which shows that | · | is non-Archimedean on k. ❑

Remark. From Theorem 2.9, if | · | is Archimedean on k, then, given a ∈ k∗ and

b ∈ k, there exist n ∈ Z such that |na | > | b |. Apply it to the ordinary absolute

value | · |∞ on Q or R. We have the usual Archimedean property in analysis, namely,

given two numbers a > 0 and b, there exists an integer n such that na > b.

Now, we develop a general procedure to produce non-Archimedean valuations

on some well-known fields, for example the rational number field Q and the rational

function field k(x) over a field k, and then give three classes of important valuations.

Definition 2.10 Let A be an integral domain. An order function on A is a function

ord : A− {0} −→ Z

satisfying:

(i) For all a, b ∈ A− {0}, ord(ab) = ord a + ord b.

(ii) For all a, b ∈ A− {0}, ord(a + b) ≥ min{ord a, ord b}.

In this case, ord(a) is called the order of a.

For convenience, we define ord 0 to be +∞ and cord 0 = 0 if 0 ≤ c < 1 which

will be used without mention. Note that under this convention, (i) and(ii), in the

definition, still hold.
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Let A be an integral domain and k = {a
b
|a, b ∈ A, b 6= 0} be its quotient field.

For example, Q is the quotient field of Z and k(x) is the quotient field of k[x]. The

following theorem says that every order function on A induces a valuation on k.

Theorem 2.11 Let ord be an order function in an integral domain A with quotient

field k. Then it extends to an order function on k, still denoted by ord, in the

following manner:

Given x ∈ k∗, ord x = ord a− ord b if x =
a

b
.

Proof . First, we show that the definition is well-defined. Suppose that x = a
b

and

x = c
d
. Then ad = bc. By definition,

ord a + ord d = ord b + ord c

which implies that

ord a− ord b = ord c− ord d.

Therefore, ord x is well-defined.

Clearly, it extends the original order function on A. Finally, to show that ord

is an order function on k. Given x = a
b

and y = c
d

in k∗, we have

ord(xy) = ord(
ac

bd
)

= ord(ac)− ord(bd)

= ord a + ord c− ord b− ord d

= ord a− ord b + ord c− ord d

= ord(
a

b
) + ord(

c

d
)

= ord x + ord y,
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and

ord(x + y) = ord(
a

b
+

c

d
)

= ord(
ad + bc

bd
)

= ord(ad + bc)− ord(bd)

≥ min{ord(ad), ord(bc)} − ord b− ord d

= min{ord a + ord d, ord b + ord c} − ord b− ord d

= min{ord a− ord b, ord c− ord d}
= min{ord(

a

b
), ord(

c

d
)}

= min{ord x, ord y}.

Therefore, by definition, ord is an order function on k. ❑

Again, we take the convention that ord 0 = +∞.

Theorem 2.12 As in Theorem 2.11, given c ≥ 1, the function

| · | : k −→ R

defined by

| x | =




c−ord x if x 6= 0

0 if x = 0

is a non-Archimedean valuation on k.

Proof . If c = 1, then | · | = | · |0 is the trivial valuation on k. Now, we assume

that c > 1. To show that | · | is a non-Archimedean valuation on k.

(i) Clearly, | x | ≥ 0 for all x ∈ k, and |x | = 0 if and only if x = 0.

9
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(ii) Given x, y ∈ k,

| xy | = c−ord(xy)

= c−ord x−ord y by Theorem 2.11

= c−ord x · c−ord y

= | x | | y | .

(iii) Given x, y ∈ k,

|x + y | = c−ord(x+y)

≤ c−min{ord x,ord y} by Theorem 2.11

= max{c−ord x, c−ord y}
= max{| x | , | y |}.

Hence, | · | is a non-Archimedean valuation on k. ❑

Note that if we emphasize the valuation in Theorem 2.12, then we will denote

it by | · |c.

Corollary 2.13 As in Theorem 2.12, if c > 1 and d > 1, then there exists λ > 0

such that, for all x ∈ k,

|x |c = |x |λd .

Proof . Given x ∈ k∗, we have

|x |c = c−ord x and |x |d = d−ord x,

so

log | x |c = −(ord x) log c

and

log |x |d = −(ord x) log d.

10



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

Therefore,
log |x |c

log c
=

log |x |d
log d

,

that is,

log |x |c = log |x |d ·
log c

log d
.

Set

λ =
log c

log d
.

Then λ > 0 and

log |x |c = log |x |λd .

Hence,

|x |c = |x |λd
which is true for all x ∈ k. ❑

Remark. The relation | · |c = | · |λd in Corollary 2.13 will be clear in section 4. In

fact, | · |c and | · |d are equivalent. Therefore, the choice of c > 1 is not important

and, usually, we will take c = e in most abstract cases.

Now, the question becomes the following: What kind of integral domain ad-

mitting an order function?

It is well-known in basic abstract algebra [4,5] that every Euclidean domain is

a principal ideal domain, and every principal ideal domain is a unique factorization

domain. Moreover, the ring of integers Z with absolute value and the polynomial

ring k[x] with degree function are known to be Euclidean domains.

Given a unique factorization domain A and fixed an irreducible element p ∈ A,

define

ordp : A− {0} −→ Z

in the following manner: Given x ∈ A− {0}, let n ∈ Z be the largest integer such

that pn|x, that is, x = pnx
′
, where p and x

′
are relatively prime in A. Then

ordp x = n.

11
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Equivalently, x = pordp x · x′ , (p, x
′
) = 1.

Theorem 2.14 Let A be a unique factorization domain. Then the function ordp

defined above is an order function on A.

Proof . Clearly, ordp : A− {0} −→ Z. Given x, y ∈ A− {0}, write

x = pordp x · x′ and y = pordp y · y′ ,

where (p, x
′
) = 1 and (p, y

′
) = 1. We have

xy = pordp x+ordp y · (x′y′)

and (p, x
′
y
′
) = 1. So

ordp(xy) = ordp x + ordp y.

Finally, we assume that ordp x ≤ ordp y. Then

x + y = pordp xx
′
+ pordp yy

′

= pordp x{x′ + pordp y−ordp xy
′}

which implies that

ordp(x + y) ≥ ordp x = min{ordp x, ordp y}.

Therefore, ordp is an order function on A. ❑

Corollary 2.15 Let A be a unique factorization domain with quotient field k. If

ordp is defined as above, then it extends to an order function on k.

Proof . It follows from Theorem 2.11. ❑

Corollary 2.16 As in Corollary 2.15, given c ≥ 1, the function

| · |p : k −→ R

12



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

defined by

|x |p =





c−ordpx if x 6= 0

0 if x = 0

defines a non-Archimedean valuation on k.

Proof . It follows from Theorem 2.12. ❑

Now, we can exhibit the main examples in the theory of valuations.

Example 2.17 Consider the ring of integer Z which is a unique factorization do-

main. Given a prime integer p, we have the order function ordp on Z which can be

extended to an order function on its quotient field Q to obtain a non-Archimedean

valuation | · |p on Q. By the remark to Corollary 2.13, we may take c = p in this

case. More precisely,

|x |p =





p−ordpx if x 6= 0

0 if x = 0,

which is a non-trivial non-Archimedean valuation on Q.

Definition 2.18 Given a prime integer p, | · |p is called the p-adic valuation on Q.

Example 2.19 The following table shows some p-adic values of rational number

with respect to different prime integers.

p\Q −1 2
3

4
5

6
7

10
11

15 66 77

2 1 2−1 2−2 2−1 2−1 1 2−1 1

3 1 31 1 3−1 1 3−1 3−1 1

5 1 1 51 1 5−1 5−1 1 1

7 1 1 1 71 1 1 1 7−1

11 1 1 1 1 111 1 11−1 11−1

13
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It follows from the definition, the valuation ring of | · |p on Q is

V = {x ∈ Q| x =
a

b
, a, b ∈ Z, b 6= 0, (a, b) = 1 and p - b}.

which contains Z. Also, the maximal ideal in Zp is

P = {x ∈ Zp| x =
a

b
, (a, b) = 1 and p|a},

which contains Z, the group of units in Zp is

U = {x ∈ Zp| x =
a

b
, (a, b) = 1 and p - ab},

and the value group is

|Q∗ |p = {pn| n ∈ Z}.

Example 2.20 Consider the polynomial ring k[x] over a field k which is a unique

factorization domain. Given an irreducible polynomial p(x) ∈ k[x], denote it by

p = p(x). We have the order function ordp on k[x] which can be extended to an

order function on its quotient field k(x), the field of rational functions over k, to

obtain a non-Archimedean valuation | · |p on k(x). In this case, we may take c = e.

More precisely,

| f(x) |p =





e−ordpf(x) if f(x) 6= 0

0 if f(x) = 0

which is a nontrivial non-Archimedean valuation on k(x).

Example 2.21 Consider the polynomial ring C[z] over the complex number field.

Since C is algebraically closed, every irreducible polynomial is nothing but a linear

polynomial. Therefore, given a ∈ C, we write orda for ord(z−a). For all f(z) ∈
C[z]− {0},

f(z) = (z − a)orda f(z) h(z),

where h(z) ∈ C[z] and (z − a) are relatively prime which means that h(a) 6= 0.

Hence, orda f(z) is just the multiplicity of the zero of f(z) at z = a. If f(z) ∈ C(z),

14



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

then orda f(z) is the multiplicity of the zero (respectively, pole) of f(z) at z = a if

orda f(z) > 0 (respectively, orda f(z) < 0 ).

Therefore, as the examples above, the function

| f(z) |a =





e−ordaf(z) if f(z) 6= 0

0 if f(z) = 0

defines a nontrivial non-Archimedean valuation on C(z).

For a = ∞, we define ord∞ on C[z]− {0} by

ord∞ f(z) = −deg f(z),

where deg f(z) is the degree of f(z). It is easy to see that it also defines an order

function on C[z], and then it extends to an order function on C(z). Therefore, the

function

| f(z) |∞ =





e−ord∞f(z) if f(z) 6= 0

0 if f(z) = 0

defines a nontrivial non-Archimedean valuation on C(z).

Remark. As in Example 2.19, we can also find the valuation ring, maximal ideal,

the group of units and the value group in Example 2.20 and 2.21.
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