
‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

3 Topology of Valuated Fields

From the definition of a valuation | · | on a field k, it is obvious that k with

| · | becomes a normal linear space over k itself. Therefore, all the facts of normed

topology can be applied to k. In this section, we will review some basic topological

facts of a valuated field which can be found in [8,9]. Also, we will discuss some new

phenomena, especially, in the non-Archimedean case.

Theorem 3.1 Let (k, | · |) be a valuated field. Then the function

d : k × k −→ R

defined by

d(x, y) = | x− y |

for all x, y ∈ k, is a metric (distance function) on k, that is, d satisfies:

(i) For all x, y ∈ k, d(x, y) ≥ 0, and d(x, y) = 0 if and only if x = y.

(ii) For all x, y ∈ k, d(x, y) = d(y, x).

(iii) For all x, y, z ∈ k, d(x, y) ≤ d(x, z) + d(z, y).

If, in addition, | · | is a non-Archimedean valuation on k, then d satisfies the

strong triangle inequality: For all x, y, z ∈ k,

d(x, y) ≤ max{d(x, z), d(z, y)}.

Moreover, if d(x, z) 6= d(z, y), then

d(x, y) = max{d(x, z), d(z, y)}.

Proof . It follows from the definition of valuation and Proposition 2.7. ❑

Now, a valuated field is automatically a metric space induced by its valuation.
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Example 3.2 1. The trivial valuation | · |0 on a field k induces the discrete metric

space on k.

2. The ordinary absolute value | · |∞ on R and C induces the Euclidean topology on

R and C, respectively.

3. The ordinary absolute value | · |∞ on Q induces the induced topology of Q in R.

4. The p-adic topology on Q is the topology induced by the p-adic valuation on Q.

Since every valuated field is a metric space, the following definitions are the

same as in the case of metric space.

Definition 3.3 Let (k, | · |) be a valuated field. Given a ∈ k and r > 0.

(i) The set B(a; r) = {x ∈ k| | x− a | < r} is called the open ball with center a

and radius r.

(ii) The set B(a; r) = {x ∈ k| | x− a | ≤ r} is called the closed ball with center a

and radius r.

(iii) A sequence {an} in k is said to converge if there exists a ∈ k such that

limn→∞ | an − a | = 0. Moreover, if a = 0, then {an} is called a null sequence.

(iv) A sequence {an} in k is said to be Cauchy if, for all ε > 0, there exists N ∈ N
such that, for all n, m ≥ N , | an − am | < ε.

(v) A sequence {an} in k is said to be bounded if there exists M > 0 such that

| an | ≤ M for all n ∈ N.

As in elementary analysis, if a sequence converges, then its limit is unique, and

is also a Cauchy sequence. Also, every Cauchy sequence is bounded. Obviously, a

Cauchy sequence may not be convergent. Furthermore, if {an} is a null sequence

and {bn} is a bounded sequence, then {anbn} is also a null sequence. Of course, the
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general operations of convergent sequences hold in this case. In the classical case, if

{an} is a Cauchy sequence in R, then limn→∞ | an+1 − an | = 0 and {an} converges.

However, if limn→∞ | an+1 − an | = 0, then {an} may not converges. For example,

let an =
√

n, n = 1, 2, . . .. Then

lim
n→∞

| an+1 − an | = lim
n→∞

∣∣∣
√

n + 1−√n
∣∣∣

= lim
n→∞

1√
n + 1 +

√
n

= 0.

Clearly, {an} diverges.

The above example shows that the sequence {an} in R satisfying limn→∞ | an+1 − an | =
0 is not a Cauchy sequence in R, hence it diverges. However, in the non-Archimedean

case, the situation is quite different, in fact, we have the following theorem.

Theorem 3.4 Let {an} be a sequence in a non-Archimedean valuated field k. Then

{an} is a Cauchy sequence if and only if limn→∞ | an+1 − an | = 0.

Proof . Suppose that {an} is a Cauchy sequence. Then, given ε > 0, there exists

N ∈ N such that, for all m,n ∈ N,

| am − an | < ε.

In particular, for all n ≥ N , | an+1 − an | < ε which implies that

lim
n→∞

| an+1 − an | = 0.

To prove the converse, suppose that limn→∞ | an+1 − an | = 0. Then, given ε > 0,

there exists N ∈ N such that, for all n ≥ N ,

| an+1 − an | < ε.
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Then, for all m > n ≥ N ,

| am − an | =
∣∣∣∣∣

m−1∑
i=1

(an+i − an+i−1)

∣∣∣∣∣

≤ max
1≤i≤m−1

| an+i − an+i−1 |

< ε.

So {an} is a Cauchy sequence in k. ❑

Example 3.5 Consider the p-adic valuation on Q.

1. {pn} is a null sequence in Q with respect to | · |p. In fact,

lim
n→∞

| pn − 0 |p = lim
n→∞

| pn |p
= lim

n→∞
p−n

= 0.

So limn→∞ pn = 0.

2. Let xn = a0 + a1p + · · · + anpn, n = 1, 2, . . ., where 0 ≤ ai ≤ p − 1 for all

0 ≤ i ≤ n. Then {xn} is a Cauchy sequence in Q with respect to | · |p. In fact,

lim
n→∞

|xn+1 − xn |p = limn→∞
∣∣ an+1p

n+1
∣∣
p

= limn→∞
∣∣ pn+1

∣∣
p

= limn→∞p−(n+1)

= 0.

By Theorem 3.4, {xn} is a Cauchy sequence. We will see in section 6 that it

converges in the p-adic number field Qp.

3. Let {pn} be the sequence of all prime integers, and define

an =
n∏

i=1

pn
i , n = 1, 2, . . .
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Then {an} is a null sequence in Q with respect to | · |p. In fact, let p = pn0 and

then pn|an for all n ≥ n0. So

lim
n→∞

| an − 0 |p = lim
n→∞

| an |p = lim
n→∞

p−n = 0

which implies that {an} is a null sequence in Q.

In the remaining of this section, we will concentrate on the metric topology of

the valuations defined in Example 2.17. Since their proofs are the same, we may

only consider the p-adic valuation on Q. The strange topological properties are due

to the fact that the value group |Q∗ |p = {pn|n ∈ Z} is discrete.

Theorem 3.6 Let {an} be a sequence in Q. Then we have

(i) If {an} is a Cauchy sequence with respect to | · |p, then either limn→∞ | an |p = 0

or there exists n0 ∈ N such that | an |p = | an0 | for all n ≥ n0.

(ii) If limn→∞ an = a with respect to | · |p, then either a = 0 or there exists n0 ∈ N
such that | an |p = | a |p for all n ≥ n0.

Proof . Suppose that {an}p is a Cauchy sequence with respect to | · |p. Then, by

(iv) of Proposition 2.4, {| an |p} is a Cauchy sequence in R, hence limn→∞ | an |p = c.

If c = 0, then we are done. Now, assume that c > 0. We have two cases:

Case 1. c ∈ {pn| n ∈ Z}
In this case, choose ε > 0 small enough such that

(c− ε, c + ε) ∩ {pn|n ∈ Z} = {c}.

Since limn→∞ | an |p = c, there exists n0 ∈ N such that | an |p ∈ (c− ε, c + ε) for all

n ≥ n0. Since | an |p ∈ {pn|n ∈ Z} for all n ∈ N, we conclude that | an |p = c for all

n ≥ n0.
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Case 2. c 6∈ {pn| n ∈ Z}
In this case, choose ε > 0 small enough such that

(c− ε, c + ε) ∩ {pn|n ∈ Z} = φ.

By limn→∞ | an |p = c, there exists n0 ∈ N such that | an |p ∈ (c − ε, c + ε) for all

n ≥ n0 which is impossible.

Therefore, (i) is proved, and (ii) follows from (i) and limn→∞ | an |p = | a |p by

(iv) of Proposition 2.4. ❑

Remark. The properties stated in Theorem 3.6 are different from the classical

case. For example, limn→∞ n
n+1

= 1, but
∣∣ n

n+1

∣∣
∞ 6= 1 for all n ∈ N.

Another strange properties say that all balls are both open and closed, and

every point of a ball is the center of the ball.

Theorem 3.7 In Q with the p-adic topology. We have

(i) Every open ball B(a; r) is also closed.

(ii) For all b ∈ B(a; r), B(b; r) = B(a; r).

(iii) Every closed ball B(a; r) is also open.

(iv) For all b ∈ B(a; r), B(b; r) = B(a; r).

(v) The boundary ∂B(a; r) = {x ∈ Q| | x− a |p = r} is both open and closed in Q.

Proof . Note that, in arbitrary metric space, open balls are open, and closed balls

are closed.

(i) If r = pm for some m ∈ Z, then choose ε > 0 small enough such that

s = pm − ε 6∈ {pn|n ∈ Z}
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and s > 0. We have

B(a; r) = B(a; s)

So B(a; r) is closed.

(ii) Given b ∈ B(a; r), for x ∈ B(a; r),

| x− b |p = | x− a + a− b |p
≤ max{| x− a |p , | a− b |p}
< r,

which implies that x ∈ B(b; r). Therefore,

B(a; r) ⊆ B(b; r).

Similarly, B(b; r) ⊆ B(a; r). Hence, B(a; r) = B(b; r).

(iii) and (iv) can be proved as in (i) and (ii), and (v) follows from ∂B(a; r) =

B(a; r)−B(a; r). ❑

Remark. In (v) of Theorem 3.7, ∂B(a; r) may be empty. In fact, if r 6∈ {pn| n ∈ Z},
then ∂B(a; r) = φ. Moreover, if r = pn for some n ∈ Z, then ∂B(a; pn) = {x ∈
Q| | x− a |p = pn}.

Corollary 3.8 Let B(a; r) and B(b; s) be two open balls in Q. Then either B(a; r)∩
B(b; s) = φ or one is contained in the other. similarly for closed balls.

Proof . Suppose that c ∈ B(a; r)∩B(b; s). Then, by (ii) of Theorem 3.7, B(c; r) =

B(a; r) and B(c; s) = B(b; s). If r < s, then

B(a; r) = B(c; r)

⊆ B(c; s)

= B(b; s).

Similarly, if r > s, then B(b; s) ⊆ B(a; r). ❑
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Corollary 3.9 Q can be expressed as countable disjoint union of open(closed) balls.

Proof . The collection B = {B(a; pn)| a ∈ Q, n ∈ Z} of open balls is countable.

According to Theorem 3.7, Q can be expressed as a union of a sub-collection of B
which consists of disjoint open balls. ❑

Theorem 3.10 The p-adic topology on Q is totally disconnected, i.e. every con-

nected component in Q is a singleton.

Proof . It suffices to show that if A ⊆ Q contains at least two points, then A is

disconnected.

Let x, y ∈ A and x 6= y. Then r = |x− y |p > 0, y 6∈ B(x; r). and

A = [B(a; r) ∩ A] ∪ [(Q−B(a; r)) ∩ A].

Since B(a; r) is also closed by (i) of Theorem 3.7, A can be expressed as two non-

empty disjoint open subsets of A. Therefore, A is disconnected. ❑
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