3 Topology of Valuated Fields

From the definition of a valuation $|\cdot|$ on a field k, it is obvious that k with $|\cdot|$ becomes a normal linear space over k itself. Therefore, all the facts of normed topology can be applied to k. In this section, we will review some basic topological facts of a valuated field which can be found in [8,9]. Also, we will discuss some new phenomena, especially, in the non-Archimedean case.

Theorem 3.1 Let $(k, |\cdot|)$ be a valuated field. Then the function

defined by

 $d: k \times k \longrightarrow \mathbb{R}$ d(x, y) = |x - y|

for all $x, y \in k$, is a metric (distance function) on k, that is, d satisfies:

(i) For all $x, y \in k$, $d(x, y) \ge 0$, and d(x, y) = 0 if and only if x = y. (ii) For all $x, y \in k$, $d(x, y) \ge 0$, and d(x, y) = 0 if and only if x = y.

(ii) For all
$$x, y \in k$$
, $d(x, y) = d(y, x)$.

(iii) For all $x, y, z \in k$, $d(x, y) \le d(x, z) + d(z, y)$.

If, in addition, $|\cdot|$ is a non-Archimedean valuation on k, then d satisfies the strong triangle inequality: For all $x, y, z \in k$,

$$d(x, y) \le \max\{d(x, z), d(z, y)\}.$$

Moreover, if $d(x, z) \neq d(z, y)$, then

$$d(x, y) = \max\{d(x, z), d(z, y)\}.$$

Proof. It follows from the definition of valuation and Proposition 2.7.

Now, a valuated field is automatically a metric space induced by its valuation.

- **Example 3.2** 1. The trivial valuation $|\cdot|_0$ on a field k induces the discrete metric space on k.
- 2. The ordinary absolute value $|\cdot|_{\infty}$ on $\mathbb R$ and $\mathbb C$ induces the Euclidean topology on \mathbb{R} and \mathbb{C} , respectively.
- 3. The ordinary absolute value $|\cdot|_{\infty}$ on \mathbb{Q} induces the induced topology of \mathbb{Q} in \mathbb{R} .
- 4. The p-adic topology on \mathbb{Q} is the topology induced by the p-adic valuation on \mathbb{Q} .

Since every valuated field is a metric space, the following definitions are the same as in the case of metric space.

Definition 3.3 Let $(k, |\cdot|)$ be a valuated field. Given $a \in k$ and r > 0.

- (i) The set $B(a;r) = \{x \in k | |x-a| < r\}$ is called the open ball with center a and radius r.
- (ii) The set B
 (a; r) = {x ∈ k | |x − a | ≤ r} is called the closed ball with center a and radius r.
- (iii) A sequence $\{a_n\}$ in k is said to converge if there exists $a \in k$ such that $\lim_{n\to\infty} |a_n - a| = 0$. Moreover, if a = 0, then $\{a_n\}$ is called a null sequence.
- (iv) A sequence $\{a_n\}$ in k is said to be Cauchy if, for all $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that, for all $n, m \ge N$, $|a_n - a_m| < \epsilon$.
- (v) A sequence $\{a_n\}$ in k is said to be bounded if there exists M > 0 such that $|a_n| \leq M$ for all $n \in \mathbb{N}$.

As in elementary analysis, if a sequence converges, then its limit is unique, and is also a Cauchy sequence. Also, every Cauchy sequence is bounded. Obviously, a Cauchy sequence may not be convergent. Furthermore, if $\{a_n\}$ is a null sequence and $\{b_n\}$ is a bounded sequence, then $\{a_nb_n\}$ is also a null sequence. Of course, the general operations of convergent sequences hold in this case. In the classical case, if $\{a_n\}$ is a Cauchy sequence in \mathbb{R} , then $\lim_{n\to\infty} |a_{n+1} - a_n| = 0$ and $\{a_n\}$ converges. However, if $\lim_{n\to\infty} |a_{n+1} - a_n| = 0$, then $\{a_n\}$ may not converges. For example, let $a_n = \sqrt{n}, n = 1, 2, \ldots$ Then

$$\lim_{n \to \infty} |a_{n+1} - a_n| = \lim_{n \to \infty} \left| \sqrt{n+1} - \sqrt{n} \right|$$
$$= \lim_{n \to \infty} \frac{1}{\sqrt{n+1} + \sqrt{n}}$$

Clearly, $\{a_n\}$ diverges.

The above example shows that the sequence $\{a_n\}$ in \mathbb{R} satisfying $\lim_{n\to\infty} |a_{n+1} - a_n| = 0$ is not a Cauchy sequence in \mathbb{R} , hence it diverges. However, in the non-Archimedean case, the situation is quite different, in fact, we have the following theorem.

Theorem 3.4 Let $\{a_n\}$ be a sequence in a non-Archimedean valuated field k. Then $\{a_n\}$ is a Cauchy sequence if and only if $\lim_{n\to\infty} |a_{n+1} - a_n| = 0$.

Proof. Suppose that $\{a_n\}$ is a Cauchy sequence. Then, given $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that, for all $m, n \in \mathbb{N}$,

 $|a_m - a_n| < \epsilon.$

In particular, for all $n \ge N$, $|a_{n+1} - a_n| < \epsilon$ which implies that

$$\lim_{n \to \infty} |a_{n+1} - a_n| = 0.$$

To prove the converse, suppose that $\lim_{n\to\infty} |a_{n+1} - a_n| = 0$. Then, given $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that, for all $n \ge N$,

$$|a_{n+1} - a_n| < \epsilon.$$

Then, for all $m > n \ge N$,

$$|a_m - a_n| = \left| \sum_{i=1}^{m-1} (a_{n+i} - a_{n+i-1}) \right|$$

 $\leq \max_{1 \leq i \leq m-1} |a_{n+i} - a_{n+i-1}|$
 $< \epsilon.$

So $\{a_n\}$ is a Cauchy sequence in k.

Example 3.5 Consider the p-adic valuation on \mathbb{Q} .

1. $\{p^n\}$ is a null sequence in \mathbb{Q} with respect to $|\cdot|_p$. In fact,

$$\lim_{n \to \infty} |p^n - 0|_p = \lim_{n \to \infty} |p^n|_p$$
$$= \lim_{n \to \infty} p^{-n}$$
$$= 0.$$

So $\lim_{n\to\infty} p^n = 0.$

2. Let $x_n = a_0 + a_1 p + \dots + a_n p^n$, $n = 1, 2, \dots$, where $0 \le a_i \le p - 1$ for all $0 \le i \le n$. Then $\{x_n\}$ is a Cauchy sequence in \mathbb{Q} with respect to $|\cdot|_p$. In fact,

$$\lim_{n \to \infty} |x_{n+1} - x_n|_p = \lim_{n \to \infty} |a_{n+1}p^{n+1}|_p$$
$$= \lim_{n \to \infty} |p^{n+1}|_p$$
$$= \lim_{n \to \infty} p^{-(n+1)}$$
$$= 0.$$

By Theorem 3.4, $\{x_n\}$ is a Cauchy sequence. We will see in section 6 that it converges in the p-adic number field \mathbb{Q}_p .

3. Let $\{p_n\}$ be the sequence of all prime integers, and define

$$a_n = \prod_{i=1}^n p_i^n, \ n = 1, 2, \dots$$

Then $\{a_n\}$ is a null sequence in \mathbb{Q} with respect to $|\cdot|_p$. In fact, let $p = p_{n_0}$ and then $p^n|a_n$ for all $n \ge n_0$. So

$$\lim_{n \to \infty} |a_n - 0|_p = \lim_{n \to \infty} |a_n|_p = \lim_{n \to \infty} p^{-n} = 0$$

which implies that $\{a_n\}$ is a null sequence in \mathbb{Q} .

In the remaining of this section, we will concentrate on the metric topology of the valuations defined in Example 2.17. Since their proofs are the same, we may only consider the *p*-adic valuation on \mathbb{Q} . The strange topological properties are due to the fact that the value group $|\mathbb{Q}^*|_p = \{p^n | n \in \mathbb{Z}\}$ is discrete.

Theorem 3.6 Let $\{a_n\}$ be a sequence in \mathbb{Q} . Then we have

- (i) If $\{a_n\}$ is a Cauchy sequence with respect to $|\cdot|_p$, then either $\lim_{n\to\infty} |a_n|_p = 0$ or there exists $n_0 \in \mathbb{N}$ such that $|a_n|_p = |a_{n_0}|$ for all $n \ge n_0$.
- (ii) If lim_{n→∞} a_n = a with respect to |·|_p, then either a = 0 or there exists n₀ ∈ N such that | a_n |_p = | a |_p for all n ≥ n₀.

Proof. Suppose that $\{a_n\}_p$ is a Cauchy sequence with respect to $|\cdot|_p$. Then, by (iv) of Proposition 2.4, $\{|a_n|_p\}$ is a Cauchy sequence in \mathbb{R} , hence $\lim_{n\to\infty} |a_n|_p = c$. If c = 0, then we are done. Now, assume that c > 0. We have two cases: **Case 1.** $c \in \{p^n | n \in \mathbb{Z}\}$

In this case, choose $\epsilon > 0$ small enough such that

$$(c - \epsilon, c + \epsilon) \cap \{p^n | n \in \mathbb{Z}\} = \{c\}.$$

Since $\lim_{n\to\infty} |a_n|_p = c$, there exists $n_0 \in \mathbb{N}$ such that $|a_n|_p \in (c - \epsilon, c + \epsilon)$ for all $n \ge n_0$. Since $|a_n|_p \in \{p^n | n \in \mathbb{Z}\}$ for all $n \in \mathbb{N}$, we conclude that $|a_n|_p = c$ for all $n \ge n_0$.

Case 2. $c \notin \{p^n | n \in \mathbb{Z}\}$

In this case, choose $\epsilon > 0$ small enough such that

$$(c - \epsilon, c + \epsilon) \cap \{p^n | n \in \mathbb{Z}\} = \phi.$$

By $\lim_{n\to\infty} |a_n|_p = c$, there exists $n_0 \in \mathbb{N}$ such that $|a_n|_p \in (c - \epsilon, c + \epsilon)$ for all $n \ge n_0$ which is impossible.

Therefore, (i) is proved, and (ii) follows from (i) and $\lim_{n\to\infty} |a_n|_p = |a|_p$ by (iv) of Proposition 2.4.

Remark. The properties stated in Theorem 3.6 are different from the classical case. For example, $\lim_{n\to\infty} \frac{n}{n+1} = 1$, but $\left|\frac{n}{n+1}\right|_{\infty} \neq 1$ for all $n \in \mathbb{N}$.

Another strange properties say that all balls are both open and closed, and every point of a ball is the center of the ball.

Theorem 3.7 In \mathbb{Q} with the p-adic topology. We have

- (i) Every open ball B(a;r) is also closed.
- (ii) For all $b \in B(a;r)$, $B(b;r) \equiv B(a;r)$.
- (iii) Every closed ball $\overline{B}(a;r)$ is also open.
- (iv) For all $b \in \overline{B}(a;r)$, $\overline{B}(b;r) = \overline{B}(a;r)$.
- (v) The boundary $\partial B(a;r) = \{x \in \mathbb{Q} | |x a|_p = r\}$ is both open and closed in \mathbb{Q} .

Universit

Proof. Note that, in arbitrary metric space, open balls are open, and closed balls are closed.

(i) If $r = p^m$ for some $m \in \mathbb{Z}$, then choose $\epsilon > 0$ small enough such that

$$s = p^m - \epsilon \notin \{p^n | n \in \mathbb{Z}\}$$

and s > 0. We have

$$B(a;r) = B(a;s)$$

So B(a; r) is closed.

(ii) Given $b \in B(a; r)$, for $x \in B(a; r)$,

$$|x - b|_p = |x - a + a - b|_p$$

 $\leq \max\{|x - a|_p, |a - b|_p\}$

< r,

which implies that $x \in B(b; r)$. Therefore,

$$B(a;r) \subseteq B(b;r).$$

Similarly, $B(b;r) \subseteq B(a;r)$. Hence, B(a;r) = B(b;r).

(iii) and (iv) can be proved as in (i) and (ii), and (v) follows from $\partial B(a;r) = \overline{B}(a;r) - B(a;r)$.

Remark. In (v) of Theorem 3.7, $\partial B(a; r)$ may be empty. In fact, if $r \notin \{p^n | n \in \mathbb{Z}\}$, then $\partial B(a; r) = \phi$. Moreover, if $r = p^n$ for some $n \in \mathbb{Z}$, then $\partial B(a; p^n) = \{x \in \mathbb{Q} | |x - a|_p = p^n\}$.

Corollary 3.8 Let B(a; r) and B(b; s) be two open balls in \mathbb{Q} . Then either $B(a; r) \cap B(b; s) = \phi$ or one is contained in the other. similarly for closed balls.

Proof. Suppose that $c \in B(a; r) \cap B(b; s)$. Then, by (ii) of Theorem 3.7, B(c; r) = B(a; r) and B(c; s) = B(b; s). If r < s, then

$$B(a;r) = B(c;r)$$
$$\subseteq B(c;s)$$
$$= B(b;s).$$

Similarly, if r > s, then $B(b; s) \subseteq B(a; r)$.

Corollary 3.9 \mathbb{Q} can be expressed as countable disjoint union of open(closed) balls.

Proof. The collection $\mathcal{B} = \{B(a; p^n) | a \in \mathbb{Q}, n \in \mathbb{Z}\}$ of open balls is countable. According to Theorem 3.7, \mathbb{Q} can be expressed as a union of a sub-collection of \mathcal{B} which consists of disjoint open balls.

Theorem 3.10 The p-adic topology on \mathbb{Q} is totally disconnected, i.e. every connected component in \mathbb{Q} is a singleton.

Proof. It suffices to show that if $A \subseteq \mathbb{Q}$ contains at least two points, then A is disconnected.

Let
$$x, y \in A$$
 and $x \neq y$. Then $r = |x - y|_p > 0, y \notin B(x; r)$. and

$$A = [B(a; r) \cap A] \cup [(\mathbb{Q} - B(a; r)) \cap A].$$

Since B(a;r) is also closed by (i) of Theorem 3.7, A can be expressed as two nonempty disjoint open subsets of A. Therefore, A is disconnected.