3 Topology of Valuated Fields

From the definition of a valuation $|\cdot|$ on a field k, it is obvious that k with $|\cdot|$ becomes a normal linear space over k itself. Therefore, all the facts of normed topology can be applied to k. In this section, we will review some basic topological facts of a valuated field which can be found in [8,9]. Also, we will discuss some new phenomena, especially, in the non-Archimedean case.

Theorem 3.1 Let $(k,|\cdot|)$ be a valuated field. Then the function
defined by

$$
d: k \times k \longrightarrow \mathbb{R}
$$

$$
d(x, y)=|x-y|
$$

for all $x, y \in k$, is a metric (distance function) on k, that is, d satisfies:
(i) For all $x, y \in k, d(x, y) \geq 0$, and $d(x, y)=0$ if and only if $x=y$.
(ii) For all $x, y \in k, d(x, y)=d(y, x)$.
(iii) For all $x, y, z \in k, d(x, y) \leq d(x, z)+d(z, y)$.

If, in addition, $|\cdot|$ is a non-Archimedean valuation on k, then d satisfies the strong triangle inequality: For all $x, y, z \in k$,

$$
d(x, y) \leq \max \{d(x, z), d(z, y)\}
$$

Moreover, if $d(x, z) \neq d(z, y)$, then

$$
d(x, y)=\max \{d(x, z), d(z, y)\}
$$

Proof. It follows from the definition of valuation and Proposition 2.7.
Now, a valuated field is automatically a metric space induced by its valuation.

Example 3.2 1. The trivial valuation $|\cdot|_{0}$ on a field k induces the discrete metric space on k.
2. The ordinary absolute value $|\cdot|_{\infty}$ on \mathbb{R} and \mathbb{C} induces the Euclidean topology on \mathbb{R} and \mathbb{C}, respectively.
3. The ordinary absolute value $|\cdot|_{\infty}$ on \mathbb{Q} induces the induced topology of \mathbb{Q} in \mathbb{R}.
4. The p-adic topology on \mathbb{Q} is the topology induced by the p-adic valuation on \mathbb{Q}.

Since every valuated field is a metric space, the following definitions are the same as in the case of metric space.

Definition 3.3 Let $(k,|\cdot|)$ be a valuated field. Given $a \in k$ and $r>0$.
(i) The set $B(a ; r)=\{x \in k| | x-a \mid<r\}$ is called the open ball with center a and radius r.
(ii) The set $\bar{B}(a ; r)=\{x \in k| | x-a \mid \leq r\}$ is called the closed ball with center a and radius r.
(iii) A sequence $\left\{a_{n}\right\}$ in k is said to converge if there exists $a \in k$ such that $\lim _{n \rightarrow \infty}\left|a_{n}-a\right|=0$. Moreover, if $a=0$, then $\left\{a_{n}\right\}$ is called a null sequence.
(iv) A sequence $\left\{a_{n}\right\}$ in k is said to be Cauchy if, for all $\epsilon>0$, there exists $N \in \mathbb{N}$ such that, for all $n, m \geq N,\left|a_{n}-a_{m}\right|<\epsilon$.
(v) A sequence $\left\{a_{n}\right\}$ in k is said to be bounded if there exists $M>0$ such that $\left|a_{n}\right| \leq M$ for all $n \in \mathbb{N}$.

As in elementary analysis, if a sequence converges, then its limit is unique, and is also a Cauchy sequence. Also, every Cauchy sequence is bounded. Obviously, a Cauchy sequence may not be convergent. Furthermore, if $\left\{a_{n}\right\}$ is a null sequence and $\left\{b_{n}\right\}$ is a bounded sequence, then $\left\{a_{n} b_{n}\right\}$ is also a null sequence. Of course, the
general operations of convergent sequences hold in this case. In the classical case, if $\left\{a_{n}\right\}$ is a Cauchy sequence in \mathbb{R}, then $\lim _{n \rightarrow \infty}\left|a_{n+1}-a_{n}\right|=0$ and $\left\{a_{n}\right\}$ converges. However, if $\lim _{n \rightarrow \infty}\left|a_{n+1}-a_{n}\right|=0$, then $\left\{a_{n}\right\}$ may not converges. For example, let $a_{n}=\sqrt{n}, n=1,2, \ldots$. Then

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|a_{n+1}-a_{n}\right| & =\lim _{n \rightarrow \infty}|\sqrt{n+1}-\sqrt{n}| \\
& =\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n+1}+\sqrt{n}} \\
& =0 .
\end{aligned}
$$

Clearly, $\left\{a_{n}\right\}$ diverges.

The above example shows that the sequence $\left\{a_{n}\right\}$ in \mathbb{R} satisfying $\lim _{n \rightarrow \infty}\left|a_{n+1}-a_{n}\right|=$ 0 is not a Cauchy sequence in \mathbb{R}, hence it diverges. However, in the non-Archimedean case, the situation is quite different, in fact, we have the following theorem.

Theorem 3.4 Let $\left\{a_{n}\right\}$ be a sequence in a non-Archimedean valuated field k. Then $\left\{a_{n}\right\}$ is a Cauchy sequence if and only if $\lim _{n \rightarrow \infty}\left|a_{n+1}-a_{n}\right|=0$.

Proof. Suppose that $\left\{a_{n}\right\}$ is/a Cauchy sequence. Then, given $\epsilon>0$, there exists $N \in \mathbb{N}$ such that, for all $m, n \in \mathbb{N}$,

In particular, for all $n \geq N,\left|a_{n+1}-a_{n}\right|<\epsilon$ which implies that

$$
\lim _{n \rightarrow \infty}\left|a_{n+1}-a_{n}\right|=0
$$

To prove the converse, suppose that $\lim _{n \rightarrow \infty}\left|a_{n+1}-a_{n}\right|=0$. Then, given $\epsilon>0$, there exists $N \in \mathbb{N}$ such that, for all $n \geq N$,

$$
\left|a_{n+1}-a_{n}\right|<\epsilon .
$$

Then, for all $m>n \geq N$,

$$
\begin{aligned}
\left|a_{m}-a_{n}\right| & =\left|\sum_{i=1}^{m-1}\left(a_{n+i}-a_{n+i-1}\right)\right| \\
& \leq \max _{1 \leq i \leq m-1}\left|a_{n+i}-a_{n+i-1}\right| \\
& <\epsilon
\end{aligned}
$$

So $\left\{a_{n}\right\}$ is a Cauchy sequence in k.

Example 3.5 Consider the p-adic valuation on \mathbb{Q}.

1. $\left\{p^{n}\right\}$ is a null sequence in \mathbb{Q} with respect to $|\cdot|_{p}$. In fact,

So $\lim _{n \rightarrow \infty} p^{n}=0$.
2. Let $x_{n}=a_{0}+a_{1} p+\cdots+a_{n} p^{n}, n=1,2, \ldots$, where $0 \leq a_{i} \leq p-1$ for all $0 \leq i \leq n$. Then $\left\{x_{n}\right\}$ is a Cauchy sequence in \mathbb{Q} with respect to $|\cdot|_{p}$. In fact,

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|x_{n+1}-x_{n}\right|_{p} & =\lim _{n \rightarrow \infty}\left|a_{n+1} p^{n+1}\right|_{p} \\
& =\lim _{n \rightarrow \infty}\left|p^{n+1}\right|_{p} \\
& =\lim _{n \rightarrow \infty} p^{-(n+1)} \\
& =0
\end{aligned}
$$

By Theorem 3.4, $\left\{x_{n}\right\}$ is a Cauchy sequence. We will see in section 6 that it converges in the p-adic number field \mathbb{Q}_{p}.
3. Let $\left\{p_{n}\right\}$ be the sequence of all prime integers, and define

$$
a_{n}=\prod_{i=1}^{n} p_{i}^{n}, n=1,2, \ldots
$$

Then $\left\{a_{n}\right\}$ is a null sequence in \mathbb{Q} with respect to $|\cdot|_{p}$. In fact, let $p=p_{n_{0}}$ and then $p^{n} \mid a_{n}$ for all $n \geq n_{0}$. So

$$
\lim _{n \rightarrow \infty}\left|a_{n}-0\right|_{p}=\lim _{n \rightarrow \infty}\left|a_{n}\right|_{p}=\lim _{n \rightarrow \infty} p^{-n}=0
$$

which implies that $\left\{a_{n}\right\}$ is a null sequence in \mathbb{Q}.

In the remaining of this section, we will concentrate on the metric topology of the valuations defined in Example 2.17. Since their proofs are the same, we may only consider the p-adic valuation on \mathbb{Q}. The strange topological properties are due to the fact that the value group $\left|\mathbb{Q}^{*}\right|_{p}=\left\{p^{n} \mid n \in \mathbb{Z}\right\}$ is discrete.

Theorem 3.6 Let $\left\{a_{n}\right\}$ be a sequence in \mathbb{Q}. Then we have
(i) If $\left\{a_{n}\right\}$ is a Cauchy sequence with respect to $|\cdot|_{p}$, then either $\lim _{n \rightarrow \infty}\left|a_{n}\right|_{p}=0$ or there exists $n_{0} \in \mathbb{N}$ such that $\left|a_{n}\right|_{p}=\left|a_{n_{0}}\right|$ for all $n \geq n_{0}$.
(ii) If $\lim _{n \rightarrow \infty} a_{n}=a$ with respect to $|\cdot|_{p}$, then either $a=0$ or there exists $n_{0} \in \mathbb{N}$ such that $\left|a_{n}\right|_{p}=|a|_{p}$ for all $n \geq n_{0}$.

Proof. Suppose that $\left\{a_{n}\right\}_{p}$ is a Cauchy sequence with respect to $|\cdot|_{p}$. Then, by (iv) of Proposition 2.4, $\left\{\left|a_{n}\right|_{p}\right\}$ is a Cauchy sequence in \mathbb{R}, hence $\lim _{n \rightarrow \infty}\left|a_{n}\right|_{p}=c$. If $c=0$, then we are done. Now, assume that $c>0$. We have two cases:
Case 1. $c \in\left\{p^{n} \mid n \in \mathbb{Z}\right\}$
In this case, choose $\epsilon>0$ small enough such that

$$
(c-\epsilon, c+\epsilon) \cap\left\{p^{n} \mid n \in \mathbb{Z}\right\}=\{c\} .
$$

Since $\lim _{n \rightarrow \infty}\left|a_{n}\right|_{p}=c$, there exists $n_{0} \in \mathbb{N}$ such that $\left|a_{n}\right|_{p} \in(c-\epsilon, c+\epsilon)$ for all $n \geq n_{0}$. Since $\left|a_{n}\right|_{p} \in\left\{p^{n} \mid n \in \mathbb{Z}\right\}$ for all $n \in \mathbb{N}$, we conclude that $\left|a_{n}\right|_{p}=c$ for all $n \geq n_{0}$.

Case 2. $c \notin\left\{p^{n} \mid n \in \mathbb{Z}\right\}$
In this case, choose $\epsilon>0$ small enough such that

$$
(c-\epsilon, c+\epsilon) \cap\left\{p^{n} \mid n \in \mathbb{Z}\right\}=\phi
$$

By $\lim _{n \rightarrow \infty}\left|a_{n}\right|_{p}=c$, there exists $n_{0} \in \mathbb{N}$ such that $\left|a_{n}\right|_{p} \in(c-\epsilon, c+\epsilon)$ for all $n \geq n_{0}$ which is impossible.

Therefore, (i) is proved, and (ii) follows from (i) and $\lim _{n \rightarrow \infty}\left|a_{n}\right|_{p}=|a|_{p}$ by (iv) of Proposition 2.4.

Remark. The properties stated in Theorem 3.6 are different from the classical case. For example, $\lim _{n \rightarrow \infty} \frac{n}{n+1}=1$, but $\left|\frac{n}{n+1}\right|_{\infty} \neq 1$ for all $n \in \mathbb{N}$.

Another strange properties say that all balls are both open and closed, and every point of a ball is the center of the ball.

Theorem 3.7 In \mathbb{Q} with the p-adic topology. We have
(i) Every open ball $B(a ; r)$ is also closed.
(ii) For all $b \in B(a ; r), B(b ; r) \ominus B(a ; r)$.
(iii) Every closed ball $\bar{B}(a ; r)$ is also open.
(iv) For all $b \in \bar{B}(a ; r), \bar{B}(b ; r)=\bar{B}(a ; r)$.
(v) The boundary $\partial B(a ; r)=\left\{x \in \mathbb{Q}| | x-\left.a\right|_{p}=r\right\}$ is both open and closed in \mathbb{Q}.

Proof. Note that, in arbitrary metric space, open balls are open, and closed balls are closed.
(i) If $r=p^{m}$ for some $m \in \mathbb{Z}$, then choose $\epsilon>0$ small enough such that

$$
s=p^{m}-\epsilon \notin\left\{p^{n} \mid n \in \mathbb{Z}\right\}
$$

and $s>0$. We have

$$
B(a ; r)=\bar{B}(a ; s)
$$

So $B(a ; r)$ is closed.
(ii) Given $b \in B(a ; r)$, for $x \in B(a ; r)$,

$$
\begin{aligned}
|x-b|_{p} & =|x-a+a-b|_{p} \\
& \leq \max \left\{|x-a|_{p},|a-b|_{p}\right\} \\
& <r,
\end{aligned}
$$

which implies that $x \in B(b ; r)$. Therefore,

$$
B(a ; r) \subseteq B(b ; r)
$$

Similarly, $B(b ; r) \subseteq B(a ; r)$. Hence, $B(a ; r)=B(b ; r)$.
(iii) and (iv) can be proved as in (i) and (ii), and (v) follows from $\partial B(a ; r)=$ $\bar{B}(a ; r)-B(a ; r)$.

Remark. In (v) of Theorem 3.7, $\partial B(a ; r)$ may be empty. In fact, if $r \notin\left\{p^{n} \mid n \in \mathbb{Z}\right\}$, then $\partial B(a ; r)=\phi$. Moreover, if $r=p^{n}$ for some $n \in \mathbb{Z}$, then $\partial B\left(a ; p^{n}\right)=\{x \in$ $\mathbb{Q}\left||x-a|_{p}=p^{n}\right\}$.

Corollary 3.8 Let $B(a ; r)$ and $B(b ; s)$ be two open balls in \mathbb{Q}. Then either $B(a ; r) \cap$ $B(b ; s)=\phi$ or one is contained in the other. similarly for closed balls.

Proof. Suppose that $c \in B(a ; r) \cap B(b ; s)$. Then, by (ii) of Theorem 3.7, $B(c ; r)=$ $B(a ; r)$ and $B(c ; s)=B(b ; s)$. If $r<s$, then

$$
\begin{aligned}
B(a ; r) & =B(c ; r) \\
& \subseteq B(c ; s) \\
& =B(b ; s) .
\end{aligned}
$$

Similarly, if $r>s$, then $B(b ; s) \subseteq B(a ; r)$.

Corollary $3.9 \mathbb{Q}$ can be expressed as countable disjoint union of open(closed) balls.

Proof. The collection $\mathcal{B}=\left\{B\left(a ; p^{n}\right) \mid a \in \mathbb{Q}, n \in \mathbb{Z}\right\}$ of open balls is countable. According to Theorem 3.7, \mathbb{Q} can be expressed as a union of a sub-collection of \mathcal{B} which consists of disjoint open balls.

Theorem 3.10 The p-adic topology on \mathbb{Q} is totally disconnected, i.e. every connected component in \mathbb{Q} is a singleton.

Proof. It suffices to show that if $A \subseteq \mathbb{Q}$ contains at least two points, then A is disconnected.

Let $x, y \in A$ and $x \neq y$. Then $r=|x-y|_{p}>0, y \notin B(x ; r)$. and

$$
A=[B(a ; r) \cap A] \cup[(\mathbb{Q}-B(a ; r)) \cap A] .
$$

Since $B(a ; r)$ is also closed by (i) of Theorem 3.7, A can be expressed as two nonempty disjoint open subsets of A. Therefore, A is disconnected.

