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Chapter 2  INTERVAL TIME SERIES 

ANALYSIS AND FORECASTING 

2.1  INTRODUCTION 

Researchers have been exploring the subject of how to forecast the trends from excessive 

information. The analysis and forecasting of time series are extensively utilized in a variety of 

applications. The traditional time series analysis selects the best suitable model from a priori 

models, such as ARIMA model, ARCH model or the threshold model etc [5]. Considering the 

uncertainty of the predicted points, interval data are used to estimate the prediction values. 

Montgomery and Johnson [22], Abraham and Ledolter [1], Chatfield [7] proposed the interval 

prediction methods by using a traditional time series to perform the prediction. Because of the 

diversity of research backgrounds and purposes, there are various methods of interval 

forecasting. Nevertheless, the collection of data typically is on the basic form of single 

numerical values. 

In a practical case, uncertain or incomplete factors might interfere with the data collection 

so that the observed single-valued (real number) samples cannot fully describe the true 

situations of the sample from the population. Consequently, this chapter attempts to utilize 

interval data to perform the interval forecasting. In the studies of time series forecasting and 

analysis, the data of interval form are paid more and more attention, such as daily temperature 

changes, the fluctuation of the exchange rates, the level prices of petroleum etc. However, it is 

quite difficult to calculate the traditional forecasting by interval operations. Nguyen and Wu 

[23] have indicated that intervals have the fuzzy characteristic due to their uncertainty. It is a 

challenging work to define a forecasting criterion from the concept of fuzzy numbers. For 

example, Kubo et al [18] proposed an integer ambiguity estimation and validation method in 
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carrier phase GPS positioning, and Wu and Tseng [33] applied the fuzzy regression models 

with application to business cycle analysis. 

This chapter applies fuzzy set theory (Zimmermann [37]) to perform the analysis and the 

forecasting of interval data. As the forecasting methods are being improved, it is noteworthy 

that bi-directional computing architecture has been applied to the time series forecasting 

(Wakuya [28]). We proposes three interval forecasting models all employing the bi-directional 

computation style. The proposed interval forecasting methods are the interval moving average 

(IMA) of order k, the weighted interval moving average (WIMA) of order k, and the ARIMA 

interval forecasting, respectively. The IMA approach uses the traditional method to forecast the 

interval data; the WIMA approach regards interval lengths as fuzzy weights so as to amend the 

IMA forecasting model to more coincide with actual situations; the ARIMA interval forecasting 

constructs an ARIMA model by interval variables, which is a breakthrough in the development 

of forecasting methods. 

The proposed interval time series is different from the fuzzy time series proposed by Wu 

and Hsu [32]. Since the fuzzy time series is a method combining linguistic variables with the 

analysis process which applies fuzzy logic into time series to solve the fuzziness of data, the 

predicted values are not real values but the linguistic numbers. On the other hand, the interval 

time series analyzes interval data by the concept of fuzzy number into the mean values, the 

right lengths, and the left lengths of intervals. Therefore, it constructs a multi-dimensional 

forecasting model and its forecast result is still in the form of interval. For example, the forecast 

results of the fuzzy time series in the stock market are merely outputting linguistic variables 

such as “plunge”, “drop”, “draw”, “soar” and “surge”. Nevertheless, the interval time series 

could tell us how much the stock would fluctuate. Consequently, the interval time series 

provides more precise and more objective forecast results than the traditional fuzzy time series 

does.  
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Since the forecasting methods are designed, it is necessary to analyze the validity of the 

forecasting methods by means of the estimated errors between the forecast data and the actual 

data. Chatfield [9] declared that the error made by an inappropriate interval prediction method 

is more severe than the error made by a simple point prediction. Therefore, in order to assess 

the efficiency of an interval forecasting, this chapter also defines several criteria, referring to 

two kinds of the fuzzy distances which were proposed by Yang and Ko [34], and Hébert et al 

[16] respectively, to evaluate the efficiency of forecasting. An integrated analysis of the 

forecasting efficiency is formulated by incorporating the position and length of the interval, 

which are the mean squared error of interval and the mean relative interval error respectively. 

In order to demonstrate the proposed forecasting methods, four sets of stable and unstable 

interval time series are simulated by the methods of AR(1) and ARCH(1) for the use of 

analyzing the efficiency of the proposed forecasting methods. Besides, the monthly highest and 

lowest prices of stocks are also used as a practical case study in the end of this chapter. 

Regardless of the simulated interval time series or the practical data, using ARIMA to achieve 

the interval forecasting is more appropriate than using traditional technologies. 

2.2  THE CHARACTERISTICS OF INTERVAL DATA  

2.2.1 Why Using Interval? 

The traditional social and economic studies have brought in various analyses of 

interactive relationships and models which are related to human. In the traditional model 

construction, it often confronts the uncertainty problem of data. For instance, should it count 

the number of yearly enrolled students at the beginning, the middle, or the end of a year? The 

obtained numbers are often different at different time points. Wu and Chen [31] have given an 

extensive review of literature on this issue. In the social science study or economic research, 

obviously the answer to these questions is not just true or false. There are lots of uncertain and 
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incomplete information or events so that we can not apply the conventional real number system 

to process it. Due to the influences of various factors in many practical cases, the observed data 

usually appear not only in the type of single numerical value but also in a “range” of numerical 

values. As well as a value of interval type is capable of representing dynamic incidents. By use 

of the continuity characteristic of interval value, it can make analysts capable of dealing with 

the uncertainty of factors. Consequently, an interval is indeed a better measure tallying with the 

actual situation in practical applications. 

2.2.2 An Interval as a Fuzzy Number 

Since the data of interval type are considered in this chapter, it must encounter various 

problems of interval operations as well as the realistic meanings. Besides, it is unable to give 

the standard rules of interval operations on computer hardware. Hayes [15] pointed out that the 

rules of interval operations seem simple, but there often appears a trap of miscalculation in the 

practical calculations. However, each interval can be explained as a set of possible values for 

the actual unknown number. This feature of interval coincides to the fuzzy theory. Hence, the 

viewpoint of fuzzy can be applied to describe intervals and thus a basic definition of a fuzzy 

number is described as follows [15]. 

Definition 2.1 Fuzzy numbers 

A fuzzy number M
~

 is a fuzzy subset M of real number  such that: 

(1) 1)(0 ~  x
M

 ; 

(2) The support  0)(: ~ xx
M

  of M
~

 is bounded; 

(3) The level set M of M are closed interval. 

where )(~ x
M

  is a membership function. 

Fuzzy numbers are special fuzzy quantities. An interval is a special case of fuzzy 

numbers. By given a membership function, an interval can be considered as a fuzzy number. 
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Then by using the fuzzy expression for interval data, appropriate operations of intervals could 

be defined in accordance with the fuzzy theorem. With the assistance of computer programs, 

even more complicated calculation can be easily solved. As a result, before constructing and 

forecasting a model of interval time series, several definitions relevant to interval are given 

first. In order to consider interval data as the LR-representation of fuzzy numbers, we use the 

definition of a fuzzy number given by Zimmermann [37] to define the LR-type interval data. 

Definition 2.2 LR-type interval data,  LRulm ,,X  

An interval data X with lower boundary a and upper boundary b which is denoted as 

],[ baX  is of LR-type if there exist two decreasing shape functions L:[0,][0,1] and 

R:[0,][0,1] with the membership function 
















 







 


mxfor

u

mx
R

mxfor
l

xm
L

x)(X  

where the real number m is the mean value of X, l = m  a, and u = b  m. Therefore, X is 

denoted by  LRulm ,, . 

Example 2.1 Let X = ( 2, 1, 4 )LR,  L(x) = 1  x, and R(x) = exp(x), then 
















 








.62
4

2
exp

.21
1

2
1

)(
xfor

x

xfor
x

xX   

is the membership function which is shown in Figure 2.1.   

 

Figure 2.1  LR-type interval X. 
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Definition 2.3 The length of interval, X  

Let X = ( m, l, u )LR  be an interval data, the length of interval X is ulX
Fuzzy

 , the 

right length of interval X is uX
R
 , and the left length of interval X is lX

L
 .  For 

simplification, the length of interval X is denoted as X  instead of 
Fuzzy

X . 

Definition 2.4  The operation of interval data 

Let  LRulmX 1111 ,,  and  LRulmX 2222 ,,  be interval data. The interval addition, 

scalar multiplication and interval subtraction are defined as follows: 

Interval addition: 

     LRLRLR uullmmulmulmXX 21212122211121 ,,,,,,  . 

Scalar multiplication: 

 
 
 







0,,

0,,
,,

kforlkukkm

kforkuklkm
ulmkk

LR

LR

LRX , where k is a scalar. 

Interval subtraction: 

     
 LR

LRLR

luulmm

lumulmXXXX

212121

2221112121

,,

,,,,




 

Because interval data have the behavior of fuzzy numbers, the operations of interval data 

are identical with the fuzzy procedures. Here it must be clarified that the subtraction of two 

interval data, 21 XX  , is totally different from the subtraction of two real data, 21 xx  . The 

subtraction of interval data is an interval which is merely the difference of two intervals, but 

the subtraction of real data can be viewed as the distance of two points. The following define 

the distance between two interval data. 

Definition 2.5  The distance between two interval, ),( 21 XXD  

Let  LRulm 1111 ,,X  and  LRulm 2222 ,,X  be two interval data, then the distance 

between 1X  and 2X  is defined as 

               212
2211

2
2211

2
2121, umumlmlmmmD XX . 
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Example 2.2  Let X1 = (2, 1, 1)LR, X1 = (3, 1, 3)LR, then 

       LRLRLRLR 4,2,531,11,323,1,31,1,221  XX , 

     LRLRLR 3,3,613,13,231,1,233 1 X , 

       LRLRLRLR 2,4,111,31,323,1,31,1,221 XX , 

        11632132, 222
21 XXD .  

Since the types of membership functions are various, appropriate membership functions are 

chosen to advance the accuracy of the distance between intervals. In the dissertation, we 

assume that interval data have the characteristics of fuzzy number and their membership 

functions perform almost flat. For the reason that the interval data adopt the uniform 

membership function. Then interval data X with lower boundary a and upper boundary b is a 

dynamic range which is denoted as X = [ a, b ] , we may collect data in real cases to get a and 

b. After that, l and u are obtained respectively. 

Definition 2.6 Interval time series 

An interval time series is a sequence of interval data,  LRtttttt ulmba ,,],[ X , 

,3,2,1t , denoted as     ,3,2,1,,],[  tulmba LRttttttt XX . 

2.2.3 The Forecasting Models of Interval Time Series 

The interval time series is an analytical method which applies intervals to the analysis of 

time series incorporating with the interval operations so as to solve the uncertainty of the data. 

A traditional time series is defined as  ,3,2,1,  txX tt , and the corresponding prediction 

 121 ,,,ˆ XXXXEX tttt   is a point prediction. The prediction model for a traditional time 

series is not capable of being applied directly to the forecasting of interval time series 

    ,3,2,1,,],[  tulmba LRttttttt XX . The following introduces some forecasting 

models of interval time series. 
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(1) Interval moving average of order k ( IMA ) 

Let 
k

mm
m ktt

t
 


...

ˆ 1 , 
k

ll
l ktt
t

 
 1ˆ , 

k

uu
u ktt

t
 

 1ˆ , t = k+1, k+2, k+3, …, 

then the forecasting of interval time series is    LRtttkttttt ulmE ˆ,ˆ,ˆ,,,ˆ
21   XXXXX  . 

(2) Weighted interval moving average of order k ( WIMA ) 

Let 





1

ˆ
t

kti
iit mpm , 






1

ˆ
t

kti
iLit lpl , and 






1

ˆ
t

kti
iRit upu , for t = k+1, k+2, k+3, … , where 






 1t

ktj
j

i
i

f

f
p , 

||||

||||

i
if X

Ω
 , 1

i L
Li t

j L
j t k

p 

 





X

X
, and 1

i R
Ri t

j R
j t k

p 

 





X

X
, for i = tk, tk+1, … , t1, 

and    





 j
tjkt

j
tjkt

ba
11

max,minΩ . Then the forecasting of interval time series is 

   LRtttkttttt ulmE ˆ,ˆ,ˆ,,,ˆ
21   XXXXX  . 

In fact, this method improves the IMA. Since the larger the interval is, the more 

information it will contain. So we will give li and ui in the estimators of ˆ
tl  and ˆtu  larger 

weights which are 
1t

Li i jL L
j t k

p


 

 X X  and  
1t

Ri i jR R
j t k

p


 

 X X  respectively. 

While from the scale point of view, too large length of an interval will reduce the importance 

of location of mean value. That is why we use |||||||| iif XΩ  to decrease its weight.  

(3) ARIMA interval forecasting (ARIMA) 

{mt}, {lt}, and {ut} are time series resulted from ARIMA(pm, dm, qm), ARIMA(pl, dl, ql), and 

ARIMA(pu, du, qu) models respectively by 

     tm

q

i

i
it

dp

i

i
i LmLL ,11

111   
  

     tl

q

i

i
it

dp

i

i
i LlLL ,11

111   
  

     tu

q

i

i
it

dp

i

i
i LuLL ,11

111   
  

where ),0(~ 2
, mtm WN  , ),0(~ 2

, ltl WN  , and ),0(~ 2
, utu WN  . The t–step advanced 
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forecasts can be obtained by 

 kttttt mmmmEm  ,,,ˆ 21   

              kttttt llllEl  ,,,ˆ
21   

              kttttt uuuuEu  ,,,ˆ 21   

Then the l–step advanced forecasting of interval time series is  LRtttt ulm ˆ,ˆ,ˆˆ X . 

Example 2.3 Let {Xt} = {[1, 2], [2, 4], [3, 4], [4, 6], [3, 7]} and l = u. To be precise, X1 = (1.5, 

0.5, 0.5)LR, X2 = (3, 1, 1)LR, X3 = (3.5, 0.5, 0.5)LR, X4 = (5, 1, 1)LR, and X5 = (5, 2, 2)LR. By the 

interval moving average of order 5, it can be obtained by 

     .6.4,6.216.3,16.31,1,6.3

5

215.015.0
,

5

215.015.0
,

5

555.335.1ˆ
6









 



LR

LR

X

 

Since  7,1Ω , the full length is 6Ω , and 
1

6
1 f , 

2

6
2 f , 

1

6
3 f , 

2

6
4 f , 

4

6
5 f , we have 31.0

4
6

2
6

1
6

2
6

1
6

1
6

1 


p , 15.02 p , 31.03 p , 15.04 p , 08.05 p . 

Then 6m̂ = 0.31 × 1.5 + 0.15 × 3 + 0.31 × 3.5 + 0.15 × 5 + 0.08 × 0.5 = 2.79. Because of l = u, 

pL1 = pR1 = 1.0)215.015.0(5.0  , pL2 = pR2 = 0.2, pL3 = pR3 =0.1, pL4 = pR4 = 0.2, 

and pL5 = pR5 = 0.4. Then 66 ˆˆ ul  = 0.1 ×0.5 + 0.2 × 1 + 0. 1 × 0.5 + 0.2 × 1 + 0.4 × 2 = 1.3. By 

the means of the weighted interval moving average of order 5, we have 

6X̂ = ( 2.79, 1.3, 1.3 )LR =[ 1.69, 4.09 ].  

2.3   THE EFFICIENCY ANALYSIS OF INTERVAL TIME SERIES 

FORECASTING 

The reliability of the forecast interval is the most concern of the analysts. In a traditional 

forecasting of time series, it is to compare the distance between the actual value and the 

predicted value to assess the reliability of forecasting. With regard to the interval forecasting, 
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not only the forecasting of interval lengths, l and u, we are also concerned with the position 

disparity, m, between the forecast interval and the actual interval. Therefore, the traditional 

methods for evaluating the forecasting efficiency of time series are insufficient to analyze the 

forecasting efficiency of interval time series. Therefore, the following defines the criteria for 

analyzing the efficiency of interval forecasting. 

2.3.1 The Mean Squared Error of Interval  

The conventional mean squared error is a statistic often used to measure the difference 

between an estimator and the true value of the quantity to be estimated. The following extends 

this traditional method to carry out the efficiency analysis of interval time series forecasting. 

Definition 2.7 Mean squared error of interval position (MSEP) 

Let   LRtttt ulm ,,X  be an interval time series and  LRtttt ulm ˆ,ˆ,ˆˆ X  be the forecast 

interval, then the mean squared error of interval position (MSEP) is defined by 




 
s

t
tntn mm

s
MSEP

1

2)ˆ(
1

 

where n denotes the current time, s is the number of the preceding intervals, and tm̂ , tl̂ , and 

tû  are the estimations of tm , tl , and tu  respectively. 

Definition 2.8 Mean squared error of interval (MSEI) 

Let   LRtttt ulm ,,X  be an interval time series and  LRtttt ulm ˆ,ˆ,ˆˆ X  be the forecast 

interval, the mean squared error of interval (MSEI) is defined by 

 

 













s

t
tntntntntntntntntntn

s

t
tntn

umumlmlmmm
s

D
s

MSEI

1

222

1

2

))ˆˆ()(())ˆˆ()(()ˆ(
1

ˆ,
1

XX

 

where n denotes the current time, s is the number of the preceding intervals, and tm̂ , tl̂ , and 

tû  are the estimations of tm , tl , and tu  respectively. 
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Remark 3.1 

When l = u in Definition 2.8, ul ˆˆ   . Then the mean squared error of interval can be 

simplified as follows: 

 


 
s

t
tntntntn llmm

s
MSEI

1

22 )ˆ(2)ˆ(3
1

 .               

Example 2.4 Suppose the interval time series are 1X = ( 5, 1, 1 )LR and 2X = ( 6, 1, 2 )LR , and 

the forecast intervals are 1X̂  = ( 3.5, 0.7, 1.9 )LR and 2X̂  = ( 6, 2, 1.6 )LR . Then the mean 

squared error of interval position and the mean squared error of interval are given by 

  125.1)66()5.35(
2

1 22 MSEP , 

.605.2

)))6.78()45()66(())4.56()8.24()5.35(((
2

1 222222



MSEI

  

2.3.2 The Mean Relative Interval Error 

While considering the efficiency of interval forecasting, the most important consideration 

is whether the forecast interval does cover the actual interval. Explicitly speaking, the forecast 

result is better if not only the mean value m̂  of the forecast interval X̂  is closer to the mean 

value m of the actual interval X but also their overlap is larger. For this reason, the following 

proposes a technique to evaluate forecasting performance for interval data.  

Suppose the actual interval data X = (m, l, u)LR and the forecast interval LRulm )ˆ,ˆ,ˆ(ˆ X  

with mm ˆ , then the minimum distance between X and X̂ can be defined by  

xxd
xx

ˆmin
ˆˆ,


 XX

. (1) 

This definition was introduced by Denœux and Masson [11]. The Eq. (1) can be expanded for 

the application of interval to derive the following equation: 

d = max(0, ( m̂  m)  (u + l̂ )). (2)  
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From Eq. (2), if 0)ˆ()ˆ(  lumm , it means X and X̂  are disjoint. On the other hand, 

if 0)ˆ()ˆ(  lumm , there is an overlap of X and X̂ . By combining the mean value of the 

interval and the distances between the mean value and the boundaries of the interval, there are 

three decision conditions: (1) when 1
ˆ
ˆ






lu

mm
, there is an overlap of the forecast interval and 

the actual interval, which means that the interval forecasting is good; (2) when 1
ˆ
ˆ






lu

mm
, it 

means that there is a larger overlap so that the interval forecasting is much better; (3) when 

1
ˆ
ˆ






lu

mm
, the forecast interval and the actual interval are completely separated so that the 

interval forecasting is undesirable. Certainly, when mm ˆ , 
lu

mm




ˆ

ˆ
 can be discussed with the 

same argument. 

Because ul
L

ˆˆ  XX  and ul
R

 ˆX̂X , 

L

mm

XX ˆ

ˆ




 and 

R

mm

XX ˆ

ˆ




 can be the 

criteria for evaluating the interval forecasting. Therefore, the following definition is proposed 

to be another criterion for analyzing the integrated efficiency of interval forecasting. 

Definition 2.9 Mean relative interval error (MRIE) 

Let   LRtttt ulm ,,X  be an interval time series and  LRtttt ulm ˆ,ˆ,ˆˆ X  be the forecast 

interval, the mean relative interval error (MRIE) is given by 

 


 








s

lt tntn

tntn mm

s
MRIE

*

ˆ

ˆ1

XX
 , 

where n represents the current time, s is the number of the preceding intervals, and tm̂  is the 

estimation of tm . 

(*) Note: When tt mm ˆ , 
    tt

L
tttt ul ˆˆˆ

*
 XXXX ; on the other hand, when tt mm ˆ , 

  tt
R

tttt lu ˆˆˆ
*

 XXXX . 
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Example 2.5 Suppose the interval time series are 1X = (4, 1, 1.5)LR and 2X = (3, 2, 1)LR , and 

their forecast intervals are 1X̂  = (3, 0.7, 1)LR  and 2X̂  = (4.2, 1.2, 0.8)LR , then the mean 

relative interval error is given by 52.0
2.11

2.43

11

34

2

1
















MRIE .  

2.4    SIMULATION ANALYSIS AND DISCUSSIONS 

2.4.1 Simulations of Interval Time Series 

In the analysis of traditional time series, the data of time series is sampled from the 

values present at discrete time points. Since time is a continuous variable, the data variation is 

not known during the time interval between two consecutive samples so that the forecasting 

by a set of discrete data may be too subjective and biased. Hence, the concept of interval time 

series is proposed to represent the data collected at any time point in the form of interval with 

the purpose of forecasting analysis. Taking stock market as an example, if it is desired to 

make a long-term prediction analysis for a certain stock, the traditional analysis is to take 

merely the daily closing prices into account for the analysis so that the predicted values will 

also be single numerical values. It seems to be formally accurate but lack of flexibility. If the 

daily highest and lowest prices of the stock are considered as the boundary values of an 

interval for analyzing the trend of the stock prices, the predicted values will be represented in 

the form of interval too. Therefore, the stock analysts can make comparatively objective 

decision according to the center position and length of the predicted value. 

In the past, there was no forecasting analysis for interval time series as the same for the 

general time series. In order to analyze the forecasting efficiency of interval time series, it 

must first generate some stationary interval time series and non-stationary interval time series 

by simulation. Therefore, four interval time series consisting of 450 samples are generated by 

the following equations respectively, 
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1501,8.0 1   tYY ttt   (2.1) 




















450t301     if       ,0.8Y 

300t151    if        ,0.5Y

150t1       if         Y

Y

t1-t

t1-t

tt

t





 ,2.0 1

 (2.2) 




















450t301     if   ,0.8Y1- 

300t151    if      ,0.8Y0

150t1       if       Y

Y

t1-t

t1-t

tt

t





 ,8.01 1

 (2.3) 





















450t301     if    ,0.6Y+10= ,

300t151    if      ,0.2Y+5= ,

150t1       if     Y  ,

Y

2
1-t

2
ttt

1-t
2
ttt

t
2
ttt

t







2

2
1 ,5.05

 (2.4) 

where )1,0(~ WNt . The model (2.1) is a model of AR(1); the model (2.2) and the model (2.3) 

are the threshold models which combine three models of AR(1) with different sets of 

coefficients; the model (2.4) is a model of ARCH(1) designed by three different variations. 

If the simulated data of each model are collected at 450 time points, the data are also 

merely 450 single values. Thus, the simulation is carried out by repeating 30 times at each time 

point. Assume  
45030ijY  be the point time series. Since the collected data of 30 samples at 

each of 450 time points are variable, the minimum and maximum at each time point can be 

considered as the boundary of the interval data at each time point. Let ij
i

t Ya
301

min


 , 

ij
i

t Yb
301

max


 , and 
30

30

1 i ij
t

Y
m  for t = 1, 2, …, 450, then lt = mt – at , ut = bt – mt for t = 1, 2, …, 

450, and   450,,3,2,1,,  tulm LRttttX  is an interval time series. Figure 2.2 (a)–(d) 

show the upper and lower bounds of the interval time series generated by the models (2.1), 

(2.2), (2.3) and (2.4) respectively. Obviously, the interval time series of the model (2.1) is 

stationary, while the interval time series of the models (2.2), (2.3) and (2.4) are not stationary. 
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Figure 2.2  The interval time series generated by the models. 

2.4.2 Model Construction of Interval Time Series  

In the model construction of interval time series, it must be cautious of two situations 

which will be described as follows separately. Firstly, since the collected data are in the form of 

interval, if the mean values mt of the intervals Xt for all t are unknown and the tendency of the 

interval time series is unable to be known effectively, it may take the middle value 
2

tt ba 
 to 

be the interval center ct for each Xt and thus get the radius of interval which is 

ttttt cbacr  . Then the interval moving average of order k is employed for finding the 

averages of the centers and radii of the interval time series respectively to perform the 

forecasting. If it concerns the range of the interval time series, it can apply the weighted 

average to the center and radius of every interval, that is, it can utilize the weighted interval 

moving average of order k to make the forecasting. 
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Secondly, if the patterns of the interval time series { mt }, { lt }, { ut }, and the tendencies 

of ACF and PACF are observed and compared with the theories of ACF and PACF, it can 

determine a few tentative models. According to the AIC criterion by Akaike [2], it can define a 

criterion for the decision of the best model. The criterion is given by 

 qpnAIC  2ˆln 2 , 

where n  denotes the size of samples or the degree of freedom, 2̂  denotes the residual 

variance, and p + q is the number of the parameters of the model. Therefore, the criterion for 

the best model is decided by the smallest value of AIC and the ARIMA process is applied to 

forecast. 

2.4.3 The Comparison and Analysis of the Forecast Results 

As soon as the most suitable model of interval time series is built, it can proceed to 

forecast based on this model. If Xn is the last observed interval in the interval time series {Xt}, 

   LRsnsnsnnsnsn ulmE   ˆ,ˆ,ˆ,,,ˆ
21 XXXXX   for s  1 are the forecast intervals of the 

 sn th actual intervals snX   respectively. According to the interval time series of 450 

samples generated in Section 2.4.1, the first 444 samples are assumed to be the observed 

intervals which are used to predict the last 6 data, i.e., 444n  and s = 1, 2, 3, 4, 5, 6. And 

MINITAB 14 is utilized to obtain the last 6 forecasting values. 

Table 2.12.4 list the six forecast intervals snX 
ˆ , s = 1, 2, 3, 4, 5, 6, respectively for the 

four simulation data of interval time series obtained by the proposed forecasting methods. 

Table 2.52.8 also list the efficiency analyses of interval time series forecasting for the four 

models respectively. 
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Table 2.1  The comparison of the forecast and simulated values for the last 6 intervals in Model (2.1). 

Model (2.1)  
 ttt ulm ,,  

IMA 

 ttt ulm ˆ,ˆ,ˆ  

WIMA  

 ttt ulm ˆ,ˆ,ˆ  

ARIMA of (m, l, u) 
((1,0,0),(1,0,0),(1,0,0)) 

 ttt ulm ˆ,ˆ,ˆ  

(-0.09,2.72,3.09) 

(-0.03,2.24,2.79) 

(0.31,3.68,2.94) 

(0.41,2.53,4.53) 

(0.31,2.54,4.59) 

(-0.29,2.21,3.48) 

(0.03,3.22,3.45) 

(0.03, 3.22,3.45) 

(0.03, 3.22,3.45) 

(0.03, 3.22,3.45) 

(0.03, 3.22,3.46) 

(0.03, 3.22,3.46) 

(0.03,3.34,3.62) 

(0.03,3.35, 3.63) 

(0.03, 3.35, 3.63) 

(0.03, 3.35, 3.63) 

(0.03, 3.35, 3.63) 

(0.04, 3.35, 3.63) 

(-0.17,3.23,2.91) 

(-0.13,3.22,3.18) 

(-0.10,3.22,3.32) 

(-0.07,3.22,3.38) 

(-0.05,3.22,3.41) 

(-0.04,3.22,3.43) 

Table 2.2  The comparison of the forecast and simulated values for the last 6 intervals in Model (2.2). 

Model (2.2)  
 ttt ulm ,,  

IMA 

 ttt ulm ˆ,ˆ,ˆ  

WIMA  

 ttt ulm ˆ,ˆ,ˆ  

ARIMA of (m, l, u) 
((1,0,0),(2,0,0),(1,1,0)) 

 ttt ulm ˆ,ˆ,ˆ  

(0.15,3.12,4.60) 

(0.34,3.81,4.80) 

(0.49,2.27,3.96) 

(0.38,3.78,3.14) 

(0.26,2.45,2.90) 

(0.23,3.42,3.11) 

(-0.01,2.59,2.56) 

(-0.01,2.60,2.56) 

(-0.01,2.59,2.56) 

(-0.00,2.60,2.56) 

(-0.00,2.60,2.56) 

(-0.00,2.60,2.57) 

(0.00,2.81,2.71) 

(0.00, 2.81,2.79) 

(0.00, 2.81,2.79) 

(-0.01, 2.81,2.79) 

(0.00, 2.81,2.80) 

(0.00, 2.81,2.80) 

(-0.06,3.11,3.60) 

(-0.04,3.04, 3.60) 

(-0.03,2.90, 3.60) 

(-0.02,2.82, 3.60) 

(-0.01,2.76, 3.60) 

(-0.01,2.71, 3.60) 

Table 2.3  The comparison of the forecast and simulated values for the last 6 intervals in Model (2.3). 

Model (2.3)  
 ttt ulm ,,  

IMA 

 ttt ulm ˆ,ˆ,ˆ  

WIMA  

 ttt ulm ˆ,ˆ,ˆ  

ARIMA of (m, l, u) 
((1,1,0),(1,0,0),(1,0,0)) 

 ttt ulm ˆ,ˆ,ˆ  

(-4.99,2.24,5.07) 

(-4.76,3.18,3.06) 

(-4.84,3.57,2.90) 

(-4.87,3.11,3.48) 

(-5.00,2.90,3.07) 

(-4.94,3.47,2.47) 

(0.05,3.47,3.50) 

(0.05,3.47,3.50) 

(0.05,3.48,3.50) 

(0.04,3.48,3.50) 

(0.04,3.48,3.51) 

(0.03,3.48,3.51) 

(0.05,3.66,3.72) 

(0.04,3.66,3.72) 

(0.04,3.66,3.72) 

(0.03,3.67,3.72) 

(0.02,3.67,3.72) 

(0.01,3.67,3.73) 

(-4.96,3.31,3.85) 

(-4.96,3.39,3.71) 

(-4.96,3.43,3.63) 

(-4.96,3.45,3.56) 

(-4.96,3.46,3.54) 

(-4.96,3.46,3.52) 
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Table 2.4  The comparison of the forecast and simulated values for the last 6 intervals in Model (2.4). 

Model (2.4) 
  ttt ulm ,,  

IMA 

 ttt ulm ˆ,ˆ,ˆ  

WIMA  

 ttt ulm ˆ,ˆ,ˆ  

ARIMA of (m, l, u)* 
((0,0,2),(2,1,0),(1,0,1)) 

 ttt ulm ˆ,ˆ,ˆ  

(0.50,4.56,6.20) 

(-0.01,7.74,10.96) 

(0.82,10.62,10.13) 

(1.30,14.59,21.91) 

(-0.62,9.43,11.31) 

(0.10,8.28,5.75) 

(0.04,7.45,7.59) 

(0.04,7.46,7.60) 

(0.04,7.46,7.60) 

(0.04,7.46,7.61) 

(0.04,7.46,7.61) 

(0.04,7.46,7.61) 

(0.04,9.38,9.58) 

(0.04,9.39,9.58) 

(0.04,9.39,9.59) 

(0.04,9.39,9.59) 

(0.04,9.40,9.60) 

(0.04,9.40,9.60) 

(0.12,9.90,11.78) 

(-0.03,9.87,11.11) 

(0.06,8.84,11.07) 

(0.06,9.32,11.07) 

(0.06,9.42,11.07) 

(0.06,923,11.07) 

*Note: The pattern of the interval time series of Model (2.4) shows the interval data presenting a significant 

change after the 300th sample. Because the trend of the time series { mt }, { lt }, and { ut } has the same 

tendency, the data before and after the 300th sample belong to two models of different types. Therefore, it only 

uses the last 144 samples to predict the last 6 forecasting. 

Table 2.5  The comparison of the efficiency of the forecasting methods for Model (2.1). 

Model (2.1) IMA WIMA 
ARIMA of (m, l, u) 

((1,0,0),(1,0,0),(1,0,0)) 

MSEP 0.07 0.07 0.10 

MSEI 1.50 1.65 1.73 

MRIE 0.04 0.04 0.05 

Table 2.6  The comparison of the efficiency of the forecasting methods for Model (2.2). 

Model (2.2) IMA WIMA 
ARIMA of (m, l, u) 

((1,0,0),(2,0,0),(0,1,1)) 

MSEP 0.11 0.11 0.12 

MSEI 3.40 2.74 1.35 

MRIE 0.06 0.05 0.05 
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Table 2.7  The comparison of the efficiency of the forecasting methods for Model (2.3). 

Model (2.3) IMA WIMA 
ARIMA of (m, l, u) 

((1,1,0),(1,0,0),(1,0,0)) 

MSEP 24.44 24.33 0.01 

MSEI 71.95 72.20 0.85 

MRIE 0.73 0.71 0.01 

Table 2.8  The comparison of the efficiency of the forecasting methods for Model (2.4). 

Model (2.4) IMA WIMA 
ARIMA of (m, l, u) 

((0,0,2),(2,1,0),(1,0,1)) 

MSEP 0.47 0.47 0.46 

MSEI 56.53 43.80 41.73 

MRIE 0.03 0.03 0.02 

 

With regard to the stationary interval time series, such as the model (2.1), all of the 

proposed methods achieve excellent forecast results, as Table 2.5 demonstrates. But for the 

non-stationary interval time series whose the expectation at each point is zero, i.e. E(Yt) = 0, for 

t = 1, 2, …, 450, such as the model (2.2), the three proposed methods of interval forecasting 

attain an excellent position forecasting, i.e. with small MSEP; but for MSEI, only ARIMA 

interval forecasting can make a better forecasting than the others, as Table 2.6 shows. 

For the model (2.3) that the interval time series is non-stationary and monotonically 

decreasing, ARIMA interval forecasting attains better MSEP and superior MSEI than the 

interval moving average and the weighted interval moving average can do, as indicated in 

Table 2.7. It means that ARIMA interval forecasting achieves a supreme interval forecasting 

than the other forecasting methods do. While considering the interval time series of the 

non-stationary model which was simulated by ARCH(1), such as the model (2.4), the interval 

moving average, the weighted interval moving average, and ARIMA interval forecasting all 
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attains poor MSEI. Although these forecasting methods cannot present satisfying forecast 

results, ARIMA interval forecasting is still better than the interval moving average and the 

weighted interval moving average. Furthermore, all of the forecasting methods achieve very 

similar position forecasting  tm̂  because they have very close MSEP values, as illustrated in 

Table 2.8. 

Calculating the mean relative interval error for every model, it can be found that the mean 

relative interval error is smaller as long as there is more overlap range of the forecast interval 

and the actual interval. Among the four models, only for the case of the model (2.3), the 

interval moving average and the weighted interval moving average performs a worse MRIE. 

That is because the overlap range of the forecast interval and the actual interval is little so that 

the mean relative interval error is larger. 

When we forecast the mean value of interval based on the four simulated interval time 

series, the MSEP values of the models (2.1), (2.2), and (2.3) exhibit that they all generate a 

very good forecast result. Since the process is same as the traditional point prediction did, we 

can say that this three proposed forecasting methods have the same forecasting efficiency as 

the traditional prediction methods. Furthermore, the interval forecasting also provides the 

length forecasting of interval, that is, we can tell how much the future variation is.  

In the model (2.1) which is a the stationary time series, the MSEP, MSEI, and MRIE 

values show that all the three forecasting methods result in an excellent forecast result. But in 

the threshold model (2.2), the MSEI value of IMA is larger than those of the other two 

methods. This means that IMA results in a worse forecasting of interval length than the other 

two methods. On the other hand, WIMA which is IMA with fuzzy weights could produce a 

better forecast result. In the threshold model (2.3), IMA and WIMA cannot provide a good 

position forecasting ( m̂ ). Since their MSEP values are much larger than ARIMA interval 

forecasting’s, their MSEI values are relatively larger. It explains that it is not a good interval 
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forecasting even though it produces a better length forecast because the overlap part of the 

forecast interval and the actual interval is small when m̂  is far deviated from m.  

In the forecasting of model (2.4), the MSEP values of the three forecasting methods are 

close, that is, they have almost the same efficiency of position forecasting. Nevertheless, the 

MSEI values exhibit that WIMA and ARIMA interval forecasting both have a better length 

forecasting. Therefore, in these simulated models, ARIMA interval forecasting can provide a 

better interval forecasting than the other two forecasting methods. 

2.5    TWO CASE ANALYSES 

In this section we use two practical cases to demonstrate the forecasting methods. One is 

the monthly trading values of China Steel stock. The other is the daily temperatures in Taipei. 

2.5.1 The Monthly Trading Value of the Stock 

The practical data comes from the report of monthly trading values of individual stock 

provided by Taiwan Stock Exchange Corporation [38]. The highest prices (bt), the lowest 

prices (at) and the weighted average prices (mt) of monthly trading values of China Steel stock 

from April 1999 to September 2006 are collected to form the interval time series. The chart of 

the interval time series is shown in Figure 2.3. The monthly prices from April 1999 to March 

2006 are used as the observed interval time series {Xt, t = 1, 2, …, 84}. Then the proposed 

methods are applied to perform the interval forecasting for the last 6 intervals (from April 2006 

to September 2006). After performing the forecasting on the interval time series {Xt}, Table 

2.9 lists the actual monthly trading values of China Steel stock from April 2006 to September 

2006 and the forecast intervals by the proposed interval forecasting methods. Furthermore, 

Table 2.10 illustrates the comparison of the efficiency of the interval forecasting methods. 
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Figure 2.3  The chart of the monthly trading values of China Steel stock from 4/1999 to 9/2006. 

Table 2.9  The monthly trading values of China Steel stock and their forecasts by the proposed interval 

forecasting methods for the latter 6 periods from 4/2006 to 9/2006. 

Actual Trading Values
 ttt ulm ,,  

IMA  

 ttt ulm ˆ,ˆ,ˆ  

WIMA  

 ttt ulm ˆ,ˆ,ˆ  

ARIMA of (m, l, u) 
((1,0,1),(1,0,0), (0,1,1))

 ttt ulm ˆ,ˆ,ˆ  

(31.67,1.22,1.33) 

(31.37,1.37,1.03) 

(30.77,0.97,1.63) 

(29.39,3.29,3.16) 

(26.39,0.39,0.96) 

(27.63,1.08,1.37) 

(23.99,1.60,1.39) 

(23.97,1.58,1.38) 

(23.95,1.54,1.37) 

(23.95,1.52,1.37) 

(23.95,1.51,1.36) 

(23.95,1.48,1.36) 

(23.38,2.09,1.62) 

(23.37,2.05,1.60) 

(23.36,1.95,1.58) 

(23.35,1.93,1.58) 

(23.35,1.90,1.58) 

(23.34,1.87,1.87) 

(29.41,1.29,1.39) 

(29.24,1.49,1.39) 

(29.08,1.56,1.39) 

(28.93,1.59,1.39) 

(28.79,1.60,1.39) 

(28.64,1.60,1.39) 

Table 2.10  The comparison of efficiency of the proposed interval forecasting methods for the interval 

time series of monthly trading values of China Steel stock. 

Criteria IMA WIMA 
ARIMA of ( m, l, u ) 

((1,0,1),(1,0,0), (0,1,1)) 

MSEP 34.89 42.00 3.25 

MSEI 109.59 133.93 10.67 

MRIE 2.10 2.13 0.62 
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From the above analyses, the forecast results of this interval time series are extremely 

similar with that of the model (2.3). It explains that the interval time series is non-stationary but 

steadily increasing or decreasing. As shown in Table 2.9, the interval moving average and the 

weighted interval moving average underestimate the forecast interval. Thus, they cannot 

provide a good forecast result. In contrast, the ARIMA interval forecasting can attain a better 

forecast interval since the MSEP and MSEI values by ARIMA are smaller than the MSEP and 

MSEI values obtained by the interval moving average and the weighted interval moving 

average, as shown in Table 2.10. In addition, the mean relative interval error by ARIMA is 

fairly small, which means the overlap ranges of the forecast intervals and the actual intervals 

are larger. Therefore, it can conclude that ARIMA interval forecasting is a superior forecasting 

method. On the other hand, the mean relative interval errors of the interval moving average and 

the weighted interval moving average are relatively large, which demonstrates few overlap part 

of the forecast intervals and the actual intervals. Hence, these two forecasting methods are not 

suitable for this case. 

2.5.2 The Daily Temperatures in Taipei 

The interval data used in this section are the daily temperatures provided by the Central 

Weather Bureau in Taiwan. The interval time series are composed of the highest temperature 

( tb ), the lowest temperature ( ta ) and the daily average temperature ( tm ) from April 1, 2008 to 

April 30, 2008 in Taipei. The boundaries of the interval time series is shown in Figure 2.4. 

Especially, we use the interval center ct =
2

tt ba 
 and the radius of interval rt = lt = ut which is 

mentioned in Section 2.4.2 to carry on forecasting. The proposed methods are applied to 

perform the interval forecasting for the last 6 intervals (from April 25, 2008 to April 30, 2008) 

and the corresponding forecast results with the actual data are listed in Table 2.11 and Table 

2.12. The comparisons of the efficiency of the interval forecasting methods are shown in Table 

2.13 and Table 2.14. 
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Figure 2.4  The chart of the daily temperatures in Taipei from 4/1/2008 to 4/30/2008. 

Table 2.11  The daily temperature in Taipei and their forecasts by the proposed interval forecasting 

methods for the latter 6 periods from 4/25/2008 to 4/30/2008. ( X = (m, l, u)LR ) 

Actual Temperatures 
 ttt ulm ,,  

IMA  

 ttt ulm ˆ,ˆ,ˆ  

WIMA  

 ttt ulm ˆ,ˆ,ˆ  
ARIMA of (m, l, u) 

 ttt ulm ˆ,ˆ,ˆ  

(20.73,4.43,4.47) 

(23.47,5.27,6.23) 

(24.88,3.18,5.12) 

(22.35,1.85,2.05) 

(22.31,1.81,1.69) 

(24.64,2.04,3.36) 

(22.37,2.48,3.63) 

(22.64,2.50,3.71) 

(22.83,2.50,3.73) 

(23.12,2.54,3.80) 

(23.25,2.56,3.82) 

(23.24,2.47,3.68) 

(21.44,3.03,4.54) 

(21.74,3.07,4.59) 

(21.88,3.10,4.64) 

(22.24,3.13,4.70) 

(22.33,3.16,4.74) 

(22.31,3.05,4.57) 

(20.20,1.84,3.40) 

(22.09,2.09,3.59) 

(22.09,2.24,3.59) 

(22.09,2.31,3.59) 

(22.09,2.36,3.59) 

(22.09,2.38,3.59) 

Table 2.12  The daily temperature in Taipei and their forecasts by the proposed interval forecasting 

methods for the latter 6 periods from 4/25/2008 to 4/30/2008. ( X = (c, r, r)LR ) 

Actual Temperatures 
 ttt rrc ,,  

IMA 
 ttt rrc ˆ,ˆ,ˆ  

WIMA 
 ttt rrc ˆ,ˆ,ˆ  

ARIMA of ( c, r, r) 
 ttt rrc ˆ,ˆ,ˆ  

(20.75,4.45,4.45) 

(23.95,5.75,5.75) 

(25.85,4.15,4.15) 

(22.45,1.95,1.95) 

(22.25,1.75,1.75) 

(25.30,2.70,2.70) 

(22.95,3.06,3.06) 

(23.24,3.10,3.10) 

(23.44,3.12,3.12) 

(23.75,3.17,3.17) 

(23.88,3.19,3.19) 

(23.84,3.07,3.07) 

(21.88,3.75,3.75) 

(22.20,3.79,3.79) 

(22.35,3.83,3.83) 

(22.72,3.88,3.88) 

(22.81,3.91,3.91) 

(22.77,3.77,3.77) 

(20.52,1.84,1.84) 

(22.60,2.17,2.17) 

(22.60,2.40,2.40) 

(22.60,2.55,2.55) 

(22.60,2.65,2.65) 

(22.60,2.71,2.71) 
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Table 2.13  The comparison of efficiency of the proposed interval forecasting methods for the interval 

time series of daily temperature in Taipei. ( X = (m, l, u)LR ) 

Criteria 

( m, l, u ) 
IMA WIMA ARIMA  

MSEP 1.84 2.99 2.76 

MSEI 12.26 14.56 14.03 

MRIE 0.21 0.17 0.20 

Table 2.14  The comparison of efficiency of the proposed interval forecasting methods for the interval 

time series of daily temperature in Taipei. ( X = (c, r, r)LR ) 

Criteria 

( c, r, r) 
IMA WIMA ARIMA  

MSEP 2.94 3.90 3.13 

MSEI 13.39 16.34 17.89 

MRIE 0.26 0.22 0.22 

 

Since the mean of the daily average temperatures ( tm ) is about 23C and the fluctuation 

of temperatures is around 23C in Figure 2.4, the interval moving average and the ARIMA of 

(m, l, u) have better forecast results. Then the MSEP values of the interval moving average 

and the ARIMA of (m, l, u) are lesser than the others. Besides, the MSEI value of the interval 

moving average is the smallest value. So by analyzing their MSEIs, the interval moving 

average is the better forecast method than the others. Additionally, we found that these four 

forecasting methods differ little in the mean relative interval error (MRIE). From Table 2.13 

and Table 2.14, the ARIMA of (m, l, u) offers a better forecast result than the ARIMA of (c, r, 

r). By mean of evaluating MSEI and MRIE, the ARIMA of (m, l, u) and the interval moving 

average can present a good forecast result. 
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2.6  CONCLUSIONS 

This chapter discusses the establishment of forecast model and the forecasting of interval 

time series by means of the interval operations. From the research results, it is found that the 

forecasting of ARIMA interval time series achieves more accurate forecast, no matter in the 

comparisons of the mean squared error of interval or the mean relative interval error, than the 

traditional forecasting methods such as the moving average and the weighted moving average, 

etc. Especially for the threshold time series, the forecast results achieve much better forecast. 

In fact, using interval data to establish model and forecast interval, we can find that the 

forecasting in each step is carried out by means of intervals so as to increase the objectiveness 

of the forecasting results. In the general aspect, the "intervalization" seems to be a very 

reasonable phenomenon too. But on the contrary, if the concept of dealing with numerical data 

does not change and the forecasting method does not make a breakthrough, it often frustrates 

the objectivity of measurements and the possibility of long-term forecasting. If we measure 

interval time series by means of the centers and the lengths of intervals, it demonstrates clearly 

that interval time series has better forecasting ability than the traditional ARIMA method does. 

However, according to the interval operations and the ARIMA method, it is noteworthy that if 

we can establish a good model construction, we can make a superior interval forecasting for the 

interval time series of stock trading values. For investors, it not only provides a new forecasting 

method but also offers a more flexible forecast result. Therefore, investors can make more 

objective judgments under correct information. 

Although the approaches proposed in this chapter effectively perform interval forecasting, 

some problems are remained to be solved and some improvement could be done for further 

research, described respectively as follows. 

(1) There are so many unpredictable factors on the monthly trading values of stocks, such as 
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trading volumes, exchange rates, interest rates and even the influence of the government 

policy etc. Consequently, in respect to interval time series proposed in this chapter, it 

only considers the monthly highest prices and the monthly lowest prices as the range of 

the monthly trading prices caused by all factors. If it needs to make the result more 

accurate, it must find out the key factors of influencing the interval range. 

(2)  In order to achieve a more accurate result of interval time series forecasting, it needs to 

make the collected data stationary for further analysis. But, how to judge if an interval 

time series is stationary? It could find another approach to judge the stationariness of 

interval time series by other interval operations. 

(3) Because the research of interval data forecasting is rare in the past, the practical interval 

data are few too. Interval time series data should be generated by simulation. But the 

simulation method will influence the objectiveness of the forecasting methods. 

Therefore, we can consider other simulation approaches, such as Bootstrap, Bayesian, 

etc, to generate simulated interval time series for further analysis. The variety of the 

simulation methods should contribute to the improvement of the forecasting methods. 

(4) In the analysis and forecasting of interval time series, how to estimate the forecasting 

accuracy of interval data is an important issue. There are found four forecasting 

situations, which are the forecast interval is too wide, the forecast interval is too narrow, 

the forecast interval inclines to the right, and the forecast interval inclines to the left 

respectively. From the overlap parts and the non-overlap parts of the actual intervals and 

the forecast intervals, it should be defined a criterion which is more sufficient to show 

the efficiency of interval forecasting. 


