國立政治大學應用數學系

碩士學位論文

The Tolerance Representations of Maximal Bipartite Outerplanar Graphs最大，二分，外平面圖之容忍表示法

碩士班學生：賴昱儒 撰
指導教授：張宜武 博士中華民國九十九年六月二十九日

Contents

Abstract ii
中文摘要 iii
1 Introduction 1
1．1 History of Tolerance Graphs 1
1．2 The Structure of Tolerance Graphs 3
2 Tolerance Graphs 4
2．1 Definition and Theorem of Tolerance Graph 4
2．2 Bounded Tolerance Representations for Trees and Bipartite Graphs 6
2．3 A Tolerance Representation of C_{4} 7
2．4 A Tolerance Representation of Concatenation of Two 4－cycles 10
2．5 A Tolerance Representation of Concatenation of Three 4－cycles 12
3 Some Results on Maximal Outerplanar Graphs 20
3.1 A 2－connected Graph Which Is Maximal Outerplanar Graph and Bipartite Is Not Necessarily a Tolerance Graph． 20
4 Open Problems and Further Directions of Studies 30
References 31

Abstract

In this thesis, we prove a 2 -connected graph G which is maximal outerplanar and bipartite is a tolerance graph if and only if there is no induced subgraphs H_{1}, H_{2}, H_{3} and H_{4} of G.
keywords: Tolerance Graphs; Maximal Outerplanar Graphs; Bipartite graphs.

中文摘要

在這篇論文中，我們針對2－連通的最大外平面圖而且是二分圖的圖形，討論其容忍表示法，並找到它的所有禁止子圖 $H_{1}, ~ H_{2}, ~ H_{3}, ~ H_{4}$ 。關鍵詞：最大外平面圖；二分圖；容忍表示法。

1 Introduction

1.1 History of Tolerance Graphs

In graph theory, interval graphs were introduced to study such problems of intersecting intervals on the real line. Each vertex v in an interval graph $G=(V, E)$ is associated with an interval I_{v}. If two vertices are connected by an edge in G, then the intersection of their associated intervals is nonempty. Those intervals could represent the durations of a set of events on a time line or sectors of consecutive elements of a linearly ordered set. When two intervals intersect, we could explain as their having something important in common.

Tolerance graphs which are a generalization of interval graph were introduced by Golumbic and Monma [1]. In a tolerance graph, each vertex can be represented by an interval and a tolerance. If the size of the intersection of two intervals is not at least as large as the tolerance associated with one of the vertices, then no edge is added between their vertices in the graph. Golumbic and Trenk [3] mention that their original motivation was the need to solve scheduling problems in which resources such as vehicles, support personnel, rooms, etc. may be needed on an exclusive basis, but where a measure of flexibility or tolerance would allow for sharing or relinquishing the resource if a solution is not otherwise possible. We can think of the tolerance graph as a model of conflicts for events occurring in a block of time, in which intervals represent a set of events on a time line and their associated tolerances are flexibility of the event.

Golumbic and Trenk [3] say that it is not even known how to get a tolerance representation when the graph is known to be a tolerance graphs. Similarly, the recognition problem for bounded tolerance graph is open when the graph is known to be a bounded tolerance graph. In spite of difficulty, we can also test whether it is not a bounded tolerance graph by some theorems. The complication of recognition
problem for the class of tolerance graphs is not solved. Hayward and Shamir [4] show that recognition of tolerance graphs is NP.

In our article, we discuss a 2 -connected maximal outerplanar and bipartite graph G that is a tolerance graph and find all forbidden subgraphs of G.

At first, in Chapter 1, we introduce a interval graph and a tolerance graph which is generalization of interval graph. In Chapter 2, we introduce the definitions, theorems, and propositions of tolerance graphs and discuss some special tolerance graphs and their tolerance representations. In Chapter 3, we show a tolerance representation of a 2-connected maximal outerplanar and bipartite graph and we find all forbidden subgraphs to test whether if 2-connected maximal outerplanar and bipartite graphs are tolerance graphs. The graph in Figure 1, appeared in Golumbic and Trenk [3], shows the structure of tolerance graphs. It assist us to understand tolerance graph clearly. Finally, we bring up some open problems and further directions of research.

1.2 The Structure of Tolerance Graphs

Figure 1: Structure of the tolerance graph, appeared in Golumbic and Trenk, 2004.

2 Tolerance Graphs

2.1 Definition and Theorem of Tolerance Graph

Definition 2.1. A graph $G=(V, E)$ is a tolerance graph if each vertex $x \in V$ can be assigned a closed interval I_{x} and a tolerance $t_{x}>0$ and $t_{x} \in R$ so that $x y \in E$ if and only if $\left|I_{x} \cap I_{y}\right| \geq \min \left\{t_{x}, t_{y}\right\}$. Such a collection of intervals and tolerances is called a tolerance representation.

Definition 2.2. A graph $G=(V, E)$ is a bounded tolerance graph if G has a tolerance representation with $t_{v} \leq I_{v} \mid$, for all $v \in V$.

Example 2.3. Consider the graph in Figure 2 with tolerances $t_{a}=1, t_{b}=6, t_{c}=1, t_{d}=6$. Since

$$
\begin{aligned}
& a b \in E \quad \Longleftrightarrow 5=\left|I_{a} \cap I_{b}\right|>\min \left\{t_{a}, t_{b}\right\}=1 \\
& =b c \in E \Longleftrightarrow 1=\left|I_{b} \cap I_{c}\right| \geq \min \left\{t_{b}, t_{c}\right\}=1 \\
& c d \in E \Longleftrightarrow 4=\left|I_{c} \cap I_{d}\right|>\min \left\{t_{c}, t_{d}\right\}=1 \\
& a d \in E \Longleftrightarrow 1=\left|I_{a} \cap I_{d}\right| \geq \min \left\{t_{a}, t_{d}\right\}=1 \\
& a c \notin E \Longleftrightarrow 0=\left|I_{a} \cap I_{c}\right|<\min \left\{t_{a}, t_{c}\right\}=1 \\
& b d \notin E \Longleftrightarrow 3=\left|I_{b} \cap I_{d}\right|<\min \left\{t_{b}, t_{d}\right\}=6,
\end{aligned}
$$

G is a tolerance graph with tolerances $t_{a}=1, t_{b}=6, t_{c}=1, t_{d}=6$.

Figure 2: an example of tolerance graph and its tolerance representation

Definition 2.4. A transitive orientation F of graph $G=(V, E)$ is an assignment of a direction to each edge in E such that if $\overrightarrow{x y} \in F$ and $\overrightarrow{y z} \in F$ then $\overrightarrow{x z} \in F$.

Definition 2.5. A graph G is called a comparability graph if it has a transitive orientation.

Example 2.6. C_{4} is a comparability graph but C_{5} is not a comparability graph by the following graphs.

Let $G_{1}=\left(V_{1}, E_{1}\right)$ where $V_{1}=\{a, b, c, d\}, E_{1}=\{a b, b c, c d, a d\}$ and $G_{2}=\left(V_{2}, E_{2}\right)$ where $V_{2}=\{a, b, c, d, e\}, E_{2}=\{a b, b c, c d, a d, e a\}$. In any F_{1} be an orientation to each edge of $G_{1}=\left(V_{1}, E_{1}\right)$. We let $\overrightarrow{a b} \in F_{1}, \overrightarrow{c b} \in F_{1}, \overrightarrow{c d} \in F_{1}$ and $\overrightarrow{a d} \in F_{1}$. Hence, we can easily check F_{1} is a transitive orientation of G_{1}.

Let F_{2} be any transitive orientation of $G_{2}=\left(V_{2}, E_{2}\right)$. Without loss of generality, we let $\overrightarrow{e a} \in F_{2}$. If $\overrightarrow{a b} \in F_{2}$, then $e b \in E_{2}$, but $e b \notin E_{2}$. Hence, if $\overrightarrow{e a} \in F_{2}$, then $\overrightarrow{b a} \in F_{2}$. Similarly, we know that $\overrightarrow{b c} \in F_{2}, \overrightarrow{d c} \in F_{2}, \overrightarrow{d e} \in F_{2}$, and $\overrightarrow{a e} \in F_{2}$. We reach a contradiction to $\overrightarrow{e a} \in F_{2}$. Hence, G_{2} has no transitive orientation.

-n

Figure 3: Graphs show that C_{4} has a transitive orientation and C_{5} has no transitive orientation.

Definition 2.7. A cocomparability graph is a graph whose complement is a comparability graph.

Definition 2.8. Three vertices $v_{1}, v_{2}, v_{3} \in V(G)$ form an asteroidal triple(AT) of G if there is a path from v_{i} to v_{j}, for all $i, j \in\{1,2,3\}$ which avoids using any vertex in the closed neighborhood $N\left[v_{k}\right]=\left\{v_{k}\right\} \cup N\left(v_{k}\right)$.

Figure 4: The vertices a, b, c form an asteroidal triple(AT) in both graphs.

Definition 2.9. A graph G is called asteroidal triple free (AT-free) if it contains no asteroidal triple(AT).

Lemma 2.10. [2] All cocomparability graphs are AT-free.

Theorem 2.11. [3] If G is a bounded tolerance graph, then G is a cocomparability graph.

Corollary 2.12. If G is a bounded tolerance graph, G is $A T$-free.

2.2 Bounded Tolerance Representations for Trees and Bipartite Graphs

Theorem 2.13. [3] If T is a tree, the following are equivalent.
(i) T is a bounded tolerance graph.
(ii) T has no subtree isomorphic to the graph T_{2}.
(iii) T is a caterpillar.
(iv) T is an interval graph.
(v) T is a permutation graph.
(vi) T is a cocomparability graph.
(vii) T has no asteroidal triple(AT).

Theorem 2.14. [3] Let $G=(X, Y, E)$ be a bipartite graph. The following conditions are equivalent.
(i) G is a bounded tolerance graph.
(ii) G is a trapezoid graph.
(iii) G is a cocomparability graph.
(iv) G is AT-free.
(v) G is a permutation graph.

2.3 A Tolerance Representation of C_{4}

Figure 5: The graph G_{1} and its tolerance representation.

Let $G_{1}=\left(V_{1}, E_{1}\right)$, where $V_{1}=\{a, b, c, d\}, E_{1}=\{a b, b c, c d, a d\},<I, t>$ be a tolerance representation of G_{1} where $I=\left\{I_{x} \mid x \in V_{1}\right\}, t=\left\{t_{x} \mid x \in V_{1}\right\}$, $k_{x y}=\left|I_{x} \cap I_{y}\right| x, y \in V_{1}$ and $I_{x}=\left(l_{x}, r_{x}\right)$.

Lemma 2.15. If $x y \in E_{1}$ then $k_{x y}>k_{p q}$ for some $p q \notin E_{1}$.

Proof. Because $a b \in E_{1}$, we have $k_{a b}=\left|I_{a} \cap I_{b}\right| \geq \min \left\{t_{a}, t_{b}\right\}$. If $t_{a} \geq t_{b}$, then $k_{a b}=\left|I_{a} \cap I_{b}\right| \geq t_{b}>\left|I_{b} \cap I_{d}\right|=k_{b d}$. If $t_{a}<t_{b}$, then $k_{a b}=\left|I_{a} \cap I_{b}\right| \geq$ $t_{a}>\left|I_{a} \cap I_{c}\right|=k_{a c}$. Therefore, $k_{a b}>k_{b d}$ or $k_{a b}>k_{a c}$. Similarly, $k_{x y}>k_{b d}$ or $k_{x y}>k_{a c}$, for all $x, y \in E_{1}$ and we can know that if $x y \in E_{1}$ then $k_{x y}>k_{p q}$, for some $p q \notin E_{1}$.

By Lemma 2.15, we have the following lemma.
Lemma 2.16. One of $k_{a c}, k_{b d}$ is the smallest value in $k_{x y}$, for all $x, y \in V_{1}$.

Without loss of generality, we assume that $k_{a c}$ is the smallest value of $k_{x y}$, for all $x, y \in V_{1}$.

Proposition 2.17. We have the following properties about $G_{1}=\left(V_{1}, E_{1}\right)$ in Figure 5.
(i) $t_{a} \leq k_{a b}$ and $t_{c} \leq k_{b c}$;
(ii) $t_{a} \leq k_{a d}$ and $t_{c} \leq k_{c d}$;
(iii) If $r_{b}>r_{d}$ then $t_{b}>k_{c d}$;
(iv) If $r_{d}>r_{b}$ then $t_{d}>k_{b c}$.

Proof. (i) At first, we discuss the position of I_{a} and I_{c}. If $I_{a} \subseteq I_{c}$, then $k_{a c}=$ $\left|I_{a} \cap I_{c}\right|=\left|I_{a}\right|$. Because $a b \in E$, we have $k_{a b}>k_{a c}=\left|I_{a}\right|$. We reach a contradiction to $k_{a b} \leq\left|I_{a}\right|$. Hence, $I_{a} \nsubseteq I_{c}$. Similarly, $I_{c} \nsubseteq I_{a}$. Without loss of generality, we let $l_{a}<l_{c}$ and $r_{a}<r_{c}$. Next, we know that $k_{a b}>k_{a c}$ and $k_{b c}>k_{a c}$. Therefore, $l_{b}<l_{c}$ and $r_{b}>r_{a}$. The tolerance representation of G_{1} is shown in Figure 6. Hence, we have the following four cases about t_{a} and t_{c}.

Figure 6: The tolerance representation of the vertices a, b and c.
case1: Suppose that the tolerance $t_{a}>k_{a b}$ and the tolerance $t_{c}>k_{b c}$.
Since $a b \in E_{1}$ and $b c \in E_{1}$, we have the result $t_{b} \leq k_{a b}$ and $t_{b} \leq k_{b c}$. Because $k_{a d}>k_{a c}$ and $k_{c d}>k_{a c}, l_{d}<l_{c}$ and $r_{d}>r_{a}$. Suppose that $l_{d}<l_{b}$. We obtain that $k_{a b} \leq k_{b d}$, but $k_{b d}=\left|I_{b} \cap I_{d}\right|<\min \left\{t_{b}, t_{d}\right\} \leq$ $t_{b} \leq k_{a b}$ which reaches a contradiction (see Figure 7). Hence, we know that $l_{d} \geq l_{b}$. The graph is shown in Figure 8. Because $a d \in E_{1}, k_{a d}=$ $\left|I_{a} \cap I_{d}\right| \geq \min \left\{t_{a}, t_{d}\right\}$. We know that $t_{a}>k_{a b} \geq k_{a d}$ (see Figure 8). Therefore, we obtain that $t_{d} \leq k_{a d}$. Hence, $\left|I_{b} \cap I_{d}\right|=k_{b d} \geq k_{a d} \geq t_{d}$, it implies that $b d \in E_{1}$, again, we reach a contradiction.

Figure 7: The tolerance representation of G_{1} with $l_{d}<l_{b}$.

Figure 8: The tolerance representation of G_{1} with $\rangle_{d} \geq l_{b}$.
case2: Suppose that the tolerance $t_{a}>k_{a b}$ and the tolerance $t_{c} \leq k_{b c}$.
Since $a b \in E_{1}$, we get that $t_{b} \leq k_{a b}$. Because $k_{a d}>k_{a c}$ and $k_{c d}>$ $k_{a c}, l_{d}<l_{c}$ and $r_{d}>r_{a}$. Suppose that $l_{d}<l_{b}$. We obtain that $k_{a b} \leq k_{b d}$, but $k_{b d}=\left|I_{b} \cap I_{d}\right|<\min \left\{t_{b}, t_{d}\right\} \leq t_{b} \leq k_{a b}$ which reaches a contradiction (see Figure 7). Hence, we know that $l_{d} \geq l_{b}$. The graph is shown in Figure 8. Because $a d \in E_{1}, k_{a d}=\left|I_{a} \cap I_{d}\right| \geq \min \left\{t_{a}, t_{d}\right\}$. We know that $t_{a}>k_{a b} \geq k_{a d}$ (see Figure 8). Therefore, we obtain that $t_{d} \leq k_{a d}$. Hence, $\left|I_{b} \cap I_{d}\right|=k_{b d} \geq k_{a d} \geq t_{d}$, it implies that $b d \in E_{1}$, again, we reach a contradiction.
case3: Suppose that the tolerance $t_{a} \leq k_{a b}$ and $t_{c}>k_{b c}$.
Since $b c \in E_{1}$, we obtain that $t_{b} \leq k_{b c}$. Similarly, we also reach a contra-
diction.

Therefore, we have $t_{a} \leq k_{a b}$ and $t_{c} \leq k_{b c}$.
(ii) We can exchange two points b and d and use the result of (i) to get that $t_{a} \leq k_{a d}$ and $t_{c} \leq k_{c d}$.
(iii) If $r_{b}>r_{d}$, we can easily obtain that $t_{b}>k_{b d}=\left|I_{b} \cap I_{d}\right| \geq\left|I_{c} \cap I_{d}\right|=k_{c d}$ from Figure 9.
(iv) If $r_{b}<r_{d}$, we can easily obtain that $t_{d}>k_{b d}=\left|I_{b} \cap I_{d}\right| \geq\left|I_{b} \cap I_{c}\right|=k_{b c}$ from

Figure 10.

Figure 9: The tolerance representa-
Figure 10: The tolerance representation of G_{1} with $r_{b}>r_{d}$. tion of G_{1} with $r_{b}<r_{d}$.

2.4 A Tolerance Representation of Concatenation of Two 4-cycles

Let G_{2} be the concatenation of two 4-cycles (see Figure 11).
Because G_{2} is AT-free and by Theorem 2.14, it is a bounded tolerance graph. Hence it has a tolerance representation. Let $G_{2}=\left(V_{2}, E_{2}\right), V_{2}=\{a, b, c, d, e, f\}, E_{2}=$ $\{a b, b c, c d, a d, b e, e f, c f\}$ and $\langle I, t\rangle$ be a tolerance representation of G_{2} where $I=\left\{I_{x} \mid x \in V_{2}\right\}, t=\left\{t_{x} \mid x \in V_{2}\right\}, k_{x y}=\left|I_{x} \cap I_{y}\right|$, for all $x, y \in V_{2}$ and $I_{x}=\left(l_{x}, r_{x}\right)$.

Figure 11: The graph G_{2}.

Proposition 2.18. If $k_{a c}$ is the smallest value in all of $k_{x y}$, for all $x, y \in\{a, b, c, d\}$, then $k_{c e}$ is the smallest value in all of $k_{i j}$, for all $i, j \in\{b, c, e, f\}$.

Proof. Let $k_{a c}$ is the smallest value in all of $k_{x y} s$, for all $x, y \in\{a, b, c, d\}$. Because the subgraph $G_{\{b, e, f, c\}}$ of G_{2} is also a C_{4}, one of $k_{c e}$ and $k_{b f}$ is the smallest value in all of $k_{i j}, i, j \in\{b, c, e, f\}$ by Lemma 2.16. If $k_{b f}$ is the smallest value in all of $k_{i j}, i, j \in\{b, c, e, f\}$. Because the subgraph $G_{\{a, b, c, d\}}$ of G_{2} is a C_{4}, we can draw a tolerance representation of a subgraph G_{1} of G_{2}, where $G_{1}=\left(V_{1}, E_{1}\right), V_{1}=$ $\{a, b, c, d\}, E_{1}=\{a b, b c, c d, a d\}$. The tolerance representation is shown in Figure 12. Next, we discuss the right endpoints of the interval I_{b} and I_{d}. If $r_{b} \leq r_{d}$, we get that $k_{b d} \geq k_{b c} \geq t_{b}$ (see Figure 13). Therefore, we obtain that $b d \in E_{2}$. It contradicts to the fact that $b d \notin E_{2}$. If $r_{b}>r_{d}$, by Proposition 2.17 (ii) and (iii), we have $t_{b}>k_{c d}$ and $t_{c} \leq k_{c d}$. Therefore, $t_{b}>k_{c d} \geq t_{c}$. Now, we discuss the left endpoints of I_{c} and I_{e}. If $l_{c} \geq l_{e}$, we get that $k_{c e} \geq k_{c d} \geq t_{c}$ (see Figure 14). Therefore, we obtain $c e \in E_{2}$, but ce $\notin E_{2}$. We get a contradiction. If $l_{c}<l_{e}$, we can easily see that $k_{c e} \geq k_{b e} \geq t_{b}>t_{c}$ (see Figure 15). Hence, we also get a contradiction. Thus, $k_{c e}$ is the smallest value in all $k_{i j}, i, j \in\{b, c, e, f\}$.

Figure 12: A tolerance representation of a subgraph G_{1} of G_{2}.

Figure 13: A tolerance representation of G_{2} with $r_{b} \leq r_{d}$.

Figure 14: A tolerance representation Figure 15: A tolerance representation of G_{2} with $r_{b}>r_{d}$ and $l_{c} \geq l_{e}$. of G_{2} with $r_{b}>r_{d}$ and $l_{c}<l_{e}$.

2.5 A Tolerance Representation of Concatenation of Three 4-cycles

There are two types of the concatenation of three 4 -cycles. The first type is shown in Figure 16 which will be mentioned later. Now, we discuss the second type, say G_{3} (see Figure 17).

Figure 16: The first type of graph G_{3}.

By Figure 17, we know that G_{3} is a tolerance graph. Hence, it has a tolerance representation. Let $G_{3}=\left(V_{3}, E_{3}\right), V_{3}=\{a, b, c, d, e, f, g, h\}, E_{3}=\{a b, b c, c d, a d, b e, e f$,
$c f, c h, f g, g h\},<I, t>$ be a tolerance representation of G_{3}, where $I=\left\{I_{x} \mid x \in\right.$ $\left.V_{3}\right\}, t=\left\{t_{x} \mid x \in V_{3}\right\}, k_{x y}=\left|I_{x} \cap I_{y}\right| x, y \in V_{3}$ and $I_{x}=\left(l_{x}, r_{x}\right)$. By Proposition 2.18, we know that if $k_{a c}$ is the smallest value in all $k_{x y}$, for all $x, y \in\{a, b, c, d\}$, then $k_{c e}$ is the smallest value in all $k_{i j}$, for all $i, j \in\{b, c, e, f\}$. We can use Proposition 2.18 again to get that $k_{c g}$ is the smallest value in all $k_{p q}$, for all $p, q \in\{c, f, g, h\}$.

Now, we want to prove that it is impossible that $k_{a c}$ is the smallest value of $k_{x y}$, for all $x, y \in\{a, b, c, d\}$ of G_{3}.

Figure 17: The second type of graph G_{3} and its tolerance representation.

Proposition 2.19. If $<I, t>$ is a tolerance representation of G_{3} and $k_{x y}$ is defined by above, then $k_{a c}$ is not the smallest value of $k_{x y}$, for all $x, y \in\{a, b, c, d\}$ in G_{3}.

Proof. For a contradiction, suppose that $k_{a c}$ is the smallest value of $k_{x y}$, for all $x, y \in\{a, b, c, d\}$. By Proposition 2.18, we obtain that $k_{c e}$ is the smallest value of $k_{i j}$, for all $i, j \in\{b, c, e, f\}$ and $k_{c g}$ is the smallest value of $k_{p q}$, for all $p, q \in\{c, f, g, h\}$. Therefore, we can draw a tolerance representation of subgraph G_{2} of G_{3}, where $G_{2}=\left(V_{2}, E_{2}\right), V_{2}=\{a, b, c, d, e, f\}, E_{2}=\{a b, b c, c d, a d, b e, e f, c f\}$. The tolerance representation of subgraph G_{2} of G_{3} is shown in Figure 18.

Now, consider the interval I_{g}, it has two conditions in the tolerance representation of G_{3}. One is that $I_{g} \subseteq I_{c}$ and the other is that $I_{g} \nsubseteq I_{c}$. At first, let $I_{g} \subseteq I_{c}$, it implies that $k_{c g}=\left|I_{c} \cap I_{g}\right|=\left|I_{g}\right| \geq\left|I_{f} \cap I_{g}\right|=k_{f g}$. We get a contraction to the fact that $k_{c g}$ is the smallest value of $k_{p q}$, for all $p, q \in\{c, f, g, h\}$. So we obtain

Figure 18: The tolerance representation of subgraph G_{2} of G_{3}.
that $I_{g} \nsubseteq I_{c}$. Because $f g \in E_{3}$, that is, $I_{f} \cap I_{g}$ is not empty. Next, we continue to consider the size of $k_{c g}$ and $k_{c e}$.

If $k_{c g} \geq k_{c e}$, then $l_{g} \leq l_{e}$. We can add an interval I_{g} in Figure 18 and is shown in the following figures. From Figure 19, we get that if $r_{g} \leq r_{b}$ then $\left|I_{g} \cap I_{b}\right|=$ $\left|I_{g}\right| \geq\left|I_{g} \cap I_{f}\right| \geq t_{g}$. It implies that $g b \in E_{3}$, but $g b \notin E_{3}$. Therefore, $r_{g}>r_{b}$. Similarly, $r_{g}<r_{e}$ and $r_{b} \leq r_{e}$. Hence, we can get that $r_{b} \leq r_{g} \leq r_{e}$. Next, consider the interval I_{f}, then we have some cases in the right endpoints of I_{b}, I_{e}, I_{f} and I_{g}. We use figures to explain the contradictions of the following cases.

Figure 19: The tolerance representation of G_{3} with $r_{g} \leq r_{b}$.

Figure 20: The tolerance representation of G_{3} with $r_{g} \geq r_{e}$.

Case1: Suppose that $r_{f} \leq r_{b} \leq r_{g} \leq r_{e}$ or $r_{b} \leq r_{f} \leq r_{g} \leq r_{e}$.
From the following figures, we can easily get that $\left|I_{g} \cap I_{e}\right| \geq\left|I_{e} \cap I_{f}\right| \geq t_{e}$. Hence, we obtain that $g e \in E_{3}$. But, it contradicts to the fact that $g e \notin E_{3}$.

Case2: Suppose that $r_{b} \leq r_{g} \leq r_{f} \leq r_{e}$ or $r_{b} \leq r_{g} \leq r_{e} \leq r_{f}$.
From the following figures, we can easily get that $\left|I_{g} \cap I_{e}\right| \geq\left|I_{e} \cap I_{b}\right| \geq t_{e}$.
Hence, we obtain that $g e \in E_{3}$. But, it contradicts to the fact that $g e \notin E_{3}$.

Figure 21: The tolerance representation of G_{3} with $r_{f} \leq r_{b} \leq r_{g} \leq r_{e}$.

Figure 22: The tolerance representation of G_{3} with $r_{b} \leq r_{f} \leq r_{g} \leq r_{e}$.

Figure 23: The tolerance representation of G_{3} with $r_{b} \leq r_{g} \leq r_{f} \leq r_{e}$.

Figure 24: The tolerance representation of G_{3} with $r_{b} \leq r_{g} \leq r_{e} \leq r_{f}$.

If $k_{c g}<k_{c e}$, then $l_{g}>l_{e}$. We add an interval I_{g} in Figure 18 and is shown in the following figures. In the Figure 25, we can prove that $r_{g}>r_{b}$ and $r_{g}>r_{e}$ by similar way in the case $k_{c g} \geq k_{c e}$. Next, we also discuss the condition of the right endpoints of I_{b}, I_{e}, I_{f} and I_{g}.

Figure 25: The tolerance representation of G_{3} with $r_{g} \leq r_{b}$ and $r_{g} \leq r_{e}$.

Case1: Suppose that $r_{f} \leq r_{b} \leq r_{e}<r_{g}, r_{f} \leq r_{e}<r_{b}<r_{g}$ or $r_{b} \leq r_{f} \leq r_{e}<$ r_{g}.

From Figure 26, Figure 27 and Figure 28, we see that $\left|I_{g} \cap I_{e}\right|>\left|I_{f} \cap I_{g}\right| \geq$ t_{g}. Therefore, we get that $g e \in E_{3}$, but in fact $g e \notin E_{3}$. Hence, we obtain a contradiction.

Case2: Suppose that $r_{b} \leq r_{e} \leq r_{f}<r_{g}$.
We can draw a graph shown in Figure 29 and in the same figure the interval I_{f} will not cause any contradiction. Next, we continue to discuss left endpoint and right endpoint of the interval I_{h}. If $l_{e}<l_{h}$, then $\left|I_{c} \cap I_{h}\right|<\left|I_{c} \cap I_{e}\right|<t_{c}$ from Figure 29. This contradicts to the fact that $t_{c} \leq\left|I_{c} \cap I_{h}\right|$.Therefore, we get that $l_{e} \geq l_{h}$. There are three cases about the position of the right endpoint r_{h} of the interval I_{h}.

Figure 26: The tolerance representa-
Figure 27: The tolerance representation of G_{3} with $r_{f} \leq r_{b} \leq r_{e}<r_{g}$. tion of G_{3} with $r_{f} \leq r_{e}<r_{b}<r_{g}$.

Figure 28: The tolerance representation of G_{3} with $r_{b} \leq r_{f} \leq r_{e}<r_{g}$.
(i) If $r_{h} \geq r_{e}$, we can easily get that $\left|I_{h} \cap I_{e}\right|=\left|I_{e}\right| \geq\left|I_{e} \cap I_{f}\right| \geq t_{e}$ from the following figure. It implies that $h e \in E_{3}$, but $h e \notin E_{3}$. We obtain a contradiction.
(ii) If $r_{b}<r_{h}<r_{e}$, we can easily see that $\left|I_{h} \cap I_{e}\right| \geq\left|I_{b} \cap I_{e}\right| \geq t_{e}$ from

Figure 29: The tolerance representation of G_{3} with $r_{b} \leq r_{e} \leq r_{f}<r_{g}$ and $l_{e}<l_{h}$.

Figure 30: The tolerance representation of G_{3} with $r_{h} \geq r_{e}$.
the following figure. It implies that $h e \in E_{3}$, but $h e \notin E_{3}$. We reach a contradiction.

Figure 31: The tolerance representation of G_{3} with $r_{b}<r_{h}<r_{e}$.
(iii) If $r_{h} \leq r_{b}$, we can easily see that $\left|I_{g} \cap I_{e}\right| \geq\left|I_{h} \cap I_{g}\right| \geq t_{g}$ from the following figure. It implies that $g e \in E_{3}$, but $g e \notin E_{3}$. We obtain a contradiction.

Case3: Suppose that $r_{b} \leq r_{e}<r_{g} \leq r_{f}$.
A contradiction of this case is the same as Case2.

Case4: Suppose that $r_{e} \leq r_{f}<r_{b}<r_{g}$.
From Figure 33, we get that $\left|I_{g} \cap I_{b}\right| \geq\left|I_{g} \cap I_{f}\right| \geq t_{g}$. Therefore, we get that

Figure 32: The tolerance representation of G_{3} with $r_{h} \leq r_{b}$.
$g b \in E_{3}$, but in fact $g b \notin E_{3}$. We reach a contradiction.

Figure 33: The tolerance representation of G_{3} with $r_{e} \leq r_{f}<r_{b}<r_{g}$.

Case5: Suppose that $r_{e}<r_{b} \leq r_{f}<r_{g}$.
This case and Case 2 are the same. We also discuss the left endpoint and the right endpoint of the interval I_{h}. If $l_{e}<l_{h}$, then we get that $\left|I_{c} \cap I_{h}\right|<$ $k_{c e}=\left|I_{c} \cap I_{e}\right|<t_{c}$ from the Figure 34. This contradicts to the fact that $t_{c} \leq\left|I_{c} \cap I_{h}\right|$. Therefore, we know that $l_{h} \leq l_{e}$. Next, consider the right endpoint of I_{h}. There are two cases in the right endpoint r_{h} of the interval I_{h}.

Figure 34: The tolerance representation of G_{3} with $l_{e}<l_{h}$.
(i) If $r_{h} \geq r_{e}$, we can easily get that $\left|I_{h} \cap I_{e}\right|=\left|I_{e}\right| \geq\left|I_{e} \cap I_{f}\right| \geq t_{e}$ from the following figure. It implies that $h e \in E_{3}$, but $h e \notin E_{3}$. We obtain a contradiction.

Figure 35: The tolerance representation of G_{3} with $r_{h} \geq r_{e}$.
(ii) If $r_{b}<r_{h}<r_{e}$, we can easily get that $\left|I_{h} \cap I_{e}\right| \geq\left|I_{b} \cap I_{e}\right| \geq t_{e}$ from the following figure. It implies that $h e \in E_{3}$, but $h e \notin E_{3}$. We reach a contradiction.

Figure 36: The tolerance representation of G_{3} with $r_{h}<r_{e}$.

Case6: Suppose that $r_{e}<r_{b}<r_{g} \leq r_{f}$.
A contradiction of this case is the same as Case5.

3 Some Results on Maximal Outerplanar Graphs

3.1 A 2-connected Graph Which Is Maximal Outerplanar Graph and Bipartite Is Not Necessarily a Tolerance Graph.

Definition 3.1. A graph G is an outerplanar graph if it has an embedding in the plane with every vertex on the boundary of the unbounded face. A maximal outerplanar graph is a simple outplanar graph that is not a spanning subgraph of a large simple outplanar graph.

Figure 37: The left is an example of outerplanar graph and the right is an example of nonouterplanar graph.

In this article, we discuss a graph that is maximal outerplanar and bipartite. Furthermore, we want to know that whether this graph is a tolerance graph or not. We adopt that every maximal outerplanar graph in this article is 2-connected.

Figure 38: Some graphs are maximal outerplanar and bipartite.

Figure 39: The graph H_{1}.

Figure 40: The graph H_{2}.

Figure 41: The graph H_{3}.
Figure 42: The graph H_{4}.

Theorem 3.2. Let G be a maximal outerplanar and bipartite graph with vertices number $n(G) \geq 4$. G is a tolerance graph if and only if G has no induced subgraphs H_{1}, H_{2}, H_{3} and H_{4}.

Proof. Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a graph that is maximal outerplanar and bipartite. Then we have the following cases of the degree of v where $v \in V$.

Case1: Suppose that the degree of v is not more than 3 for all $v \in V$.
In this case, it is easy to know that G is AT-free. Therefore, by Theorem 2.14, we obtain that G is a bounded tolerance graph. The graph G is shown in Figure 43 .

Figure 43: The graph is maximal outerplanar and bipartite with $\operatorname{deg}(\mathrm{v}) \leq 3$ for all $v \in V$.

Case2: Suppose that there is the only one vertex $u \in V$ whose degree is greater than 3.

Let u be the common neighbor of $v_{1}, v_{2}, \ldots \ldots . . v_{k}$. Let $t_{1}, t_{2}, \ldots \ldots, t_{k-1}$ be vertices between v_{i} and $v_{i+1}, i=1,2, \ldots \ldots, k-1$, respectively. The graph G is shown in Figure 44. We have a tolerance representation of G that is shown in Figure 45. Hence, G is a tolerance graph with tolerances $t_{u}=\infty, t_{v_{i}}=1$, for all $i=1,2, \ldots \ldots, k$ and $t_{t_{j}}=\infty$, for all $j=1,2, \ldots \ldots, k-1$.

Figure 44: The graph is maximal outerplanar and bipartite with $\operatorname{deg}(u) \geq 4$. for the only vertex $u \in V$.

Figure 45: The tolerance representation of G

Case3: Suppose that there are more than two vertices whose degree are greater than 3.

Let u_{1} and u_{2} be two vertices of G with $\operatorname{deg}\left(u_{1}\right) \geq 4$ and $\operatorname{deg}\left(u_{2}\right) \geq 4$. We have the following relation in u_{1} and u_{2}.
(i) If the edge $u_{1} u_{2} \in E$ and $u_{1} u_{2}$ on the boundary of the unbounded face. Let u_{1} be the common neighbor of $v_{1}, v_{2}, \ldots, v_{k}$, and u_{2} be the common neighbor of $s_{1}, s_{2}, \ldots, s_{i}$. Let $t_{1}, t_{2}, \ldots, t_{k-1}$ be vertices between v_{i} and $v_{i+1}, i=1,2, \ldots, k-1$, respectively and $r_{1}, r_{2}, \ldots, r_{i-1}$ be vertices between s_{j} and $s_{j+1}, j=1,2, \ldots, i-1$, respectively. The graph G is shown in Figure 46.

Figure 46: The graph G.

For a contradiction, suppose that G is a tolerance graph. Therefore, G has a tolerance representation $\langle I, t\rangle$, where $I=\left\{I_{x} \mid x \in V\right\}, t=$ $\left\{t_{x} \mid x \in V\right\}, k_{x y}=\left|I_{x} \cap I_{y}\right|, x, y \in V$. We consider the subgraph H_{1} of G that is shown in Figure 47 and Figure 48. Because G is a tolerance graph, the subgraph H_{1} of G also has a tolerance representation. By Lemma 2.16, we know that one of $k_{t_{2} u_{1}}$ and $k_{v_{2} v_{3}}$ is the smallest value of $k_{x y} s$, for all $x, y \in\left\{u_{1}, v_{2}, t_{2}, v_{3}\right\}$ in G. By Proposition 2.19, we know that $k_{t_{2} u_{1}}$ is not the smallest value of $k_{x y}$, for all $x, y \in\left\{u_{1}, v_{2}, t_{2}, v_{3}\right\}$ in G. Hence, we get that $k_{v_{2} v_{3}}$ is the smallest value of $k_{x y} s$, for all $x, y \in\left\{u_{1}, v_{2}, t_{2}, v_{3}\right\}$ in G. By Proposition 2.18, we can obtain that $k_{v_{1} u_{2}}$
is the smallest value of $k_{x y} s$, for all $x, y \in\left\{u_{1}, v_{1}, s_{1}, u_{2}\right\}$ in G. Since $k_{v_{1} u_{2}}$ is the smallest value of $k_{x y} s$, for all $x, y \in\left\{u_{1}, v_{1}, s_{1}, u_{2}\right\}$ in G , but $k_{v_{1} u_{2}}$ is not the smallest value of $k_{x y} s$, for all $x, y \in\left\{u_{1}, v_{1}, s_{1}, u_{2}\right\}$ in G by Proposition 2.19. We reach a contradiction. Therefore, G is not a tolerance graph.

Figure 47: The subgraph H_{1} of G that $k_{t_{2} u_{1}}$ is the smallest value of $k_{x y} s$, for all $x, y \in\left\{u_{1}, v_{2}, t_{2}, v_{3}\right\}$ in G.
(ii) If the edge $u_{1} u_{2} \in E$ and $u_{1} u_{2}$ is not on the boundary of the unbounded face.

Let u_{1} be the common neighbor of $v_{1}, v_{2}, \ldots, v_{k}$, and u_{2} be the common neighbor of $s_{1}, s_{2}, \ldots, s_{i}$. Let $t_{1}, t_{2}, \ldots, t_{k}$ be vertices between v_{i-1} and $v_{i}, i=1,2, \ldots, k$, respectively and $r_{1}, r_{2}, \ldots, r_{i}$ be vertices between s_{j-1} and $s_{j}, j=1,2, \ldots, i$, respectively. The graph G is shown in Figure 49.

Figure 49: The graph G.

Similarly, we consider the subgraph H_{2} of G that is shown in the following figures. By Proposition 2.18 and Proposition 2.19, we also prove that G is not a tolerance graph.

Figure 50: The subgraph H_{2} of G that $k_{t_{2} u_{1}}$ is the smallest value of $k_{x y}$, for all $x, y \in\left\{u_{1}, v_{1}, t_{2}, v_{2}\right\}$ in G .

Figure 51: The subgraph H_{2} of G that $k_{v_{1} v_{2}}$ is the smallest value of $k_{x y}$, for all $x, y \in\left\{u_{1}, v_{1}, t_{2}, v_{2}\right\}$ in G.
(iii) If the edge $u_{1} u_{2} \notin E$ and the shortest path from u_{1} to u_{2} with odd length is on the boundary of the unbounded face.

Let u_{1} be the common neighbor of $v_{1}, v_{2}, \ldots, v_{k}$, and u_{2} be the common neighbor of $s_{1}, s_{2}, \ldots, s_{i}$. Let $t_{1}, t_{2}, \ldots, t_{k-1}$ be vertices between v_{i-1} and $v_{i}, i=1,2, \ldots, k$, respectively and $r_{1}, r_{2}, \ldots, r_{i-1}$ be vertices between s_{j-1} and $s_{j}, j=1,2, \ldots, i$, respectively. Let $p_{1}, p_{2}, \ldots, p_{2 n}$ be vertices of the shortest path from u_{1} to u_{2} and $q_{1}, q_{2}, \ldots, q_{2 n}$ be vertices of the shortest path from v_{1} to s_{1} where $p_{j} q_{j} \in E$, for all $j=1, \ldots, 2 n$. The graph G is shown in Figure 52.

Figure 52: The graph G.

Similarly, we consider the subgraph H_{3} of G that is shown in the following figures. By Proposition 2.18 and Proposition 2.19, we also prove that G is not a tolerance graph.

Figure 53: The subgraph H_{3} of G that $k_{t_{2} u_{1}}$ is the smallest value of $k_{x y} s$, for all $x, y \in\left\{u_{1}, v_{2}, t_{2}, v_{3}\right\}$ in G .

Figure 54: The subgraph H_{3} of G that $k_{v_{2} v_{3}}$ is the smallest value of $k_{x y} s$, for all $x, y \in\left\{u_{1}, v_{2}, t_{2}, v_{3}\right\}$ in G .
(iv) If the edge $u_{1} u_{2} \notin E$ and the shortest path from u_{1} to u_{2} with even length is on the boundary of the unbounded face.

Let u_{1} be the common neighbor of $v_{1}, v_{2}, \ldots . . ., v_{k}$, and u_{2} be the common neighbor of $s_{1}, s_{2}, \ldots, s_{i}$. Let $t_{1}, t_{2}, \ldots, t_{k-1}$ be vertices between v_{i-1} and $v_{i}, i=1,2, \ldots, k$, respectively and $r_{1}, r_{2}, \ldots, r_{i-1}$ be vertices between s_{j-1} and $s_{j}, j=1,2, \ldots, i$, respectively. Let $p_{1}, p_{2}, \ldots, p_{2 n+1}$ be vertices of the shortest path from u_{1} to u_{2} and $q_{1}, q_{2}, \ldots, q_{2 n+1}$ be vertices of the shortest path from v_{1} to s_{1} where $p_{j} q_{j} \in E$, for all $j=1, \ldots, 2 n+1$. The graph G is shown in Figure 55.

Figure 55: The graph G.

We have a tolerance representation of G that is shown in Figure 56.
Hence, G is a tolerance graph with tolerances $t_{u_{1}}=\infty, t_{u_{2}}=\infty$,
$t_{v_{j}}=1$, for all $j=1,2, \ldots, k, t_{s_{j}}=1$, for all $j=1,2, \ldots, i$,
$t_{t_{j}}=\infty$, for all $j=1,2, \ldots, k-1, t_{r_{j}}=\infty$, for all $j=1,2, \ldots, i-1$,
$t_{p_{j}}=1$, for all $j=1,3, \ldots, 2 n+1, t_{p_{j}}=\infty$, for all $j=2,4, \ldots, 2 n$,
$t_{q_{j}}=1$, for all $j=2,4, \ldots, 2 n$ and $t_{p_{j}}=\infty$, for all $j=1,3, \ldots, 2 n+1$.

Figure 56: The tolerance representation of graph G.
(v) If the edge $u_{1} u_{2} \notin E$ and the shortest path from u_{1} to u_{2} with odd length is not on the boundary of the unbounded face.

Let u_{1} be the common neighbor of $v_{1}, v_{2}, \ldots, v_{k}$, and u_{2} be the common neighbor of $s_{1}, s_{2}, \ldots, s_{i}$. Let $t_{1}, t_{2}, \ldots, t_{k-1}$ be vertices between v_{i-1} and $v_{i}, i=1,2, \ldots, k$, respectively and $r_{1}, r_{2}, \ldots, r_{i-1}$ be vertices between s_{j-1} and $s_{j}, j=1,2, \ldots, i$, respectively. Let $p_{1}, p_{2}, \ldots, p_{2 n+1}$ be vertices of the shortest path from u_{1} to s_{1} and $q_{1}, q_{2}, \ldots, q_{2 n+1}$ be vertices of the shortest path from v_{1} to u_{2} where $p_{j} q_{j} \in E$, for all $j=1, \ldots, 2 n+1$. The graph G is shown in Figure 57.

Figure 57: The graph G.

Similarly, we consider the subgraph H_{4} of G that is shown in the following figures. By Proposition 2.18 and Proposition 2.19, we also prove that G is not a tolerance graph.

Figure 58: The subgraph H_{4} of G that $k_{t_{2} u_{1}}$ is the smallest value of $k_{x y} s$, for all $x, y \in\left\{u_{1}, v_{2}, t_{2}, v_{3}\right\}$ in G .

Figure 59: The subgraph H_{4} of G that $k_{v_{2} v_{3}}$ is the smallest value of $k_{x y} s$, for all $x, y \in\left\{u_{1}, v_{2}, t_{2}, v_{3}\right\}$ in G.
(vi) If the edge $u_{1} u_{2} \notin E$ and the shortest path from u_{1} to u_{2} with even length is not on the boundary of the unbounded face.

Let u_{1} be the common neighbor of $v_{1}, v_{2}, \ldots, v_{k}$ and u_{2} be the common neighbor of $s_{1}, s_{2}, \ldots \ldots ., s_{i}$. Let $t_{1}, t_{2}, \ldots . ., t_{k-1}$ be vertices between v_{i-1} and $v_{i}, i=1,2, \ldots, k$, respectively and $r_{1}, r_{2}, \ldots, r_{i-1}$ be vertices between s_{j-1} and $s_{j}, j=1,2, \ldots, i$, respectively. Let $p_{1}, p_{2}, \ldots, p_{2 n}$ be vertices of the shortest path from u_{1} to s_{1} and $q_{1}, q_{2}, \ldots, q_{2 n}$ be vertices of the shortest path from v_{1} to u_{2} where $p_{j} q_{j} \in E$, for all $j=1, \ldots, 2 n$. The graph G is shown in Figure 60.

Figure 60: The graph G.

We have a tolerance representation of G as Figure 61 shown. Hence, G is a tolerance graph with tolerances $t_{u_{1}}=\infty, t_{u_{2}}=\infty$,
$t_{v_{j}}=1$, for all $i=1,2, \ldots, k, t_{s_{j}}=1$, for all $j=1,2, \ldots, i-1$,
$t_{t_{j}}=\infty$, for all $j=1,2, \ldots, k-1, t_{r_{j}}=\infty$, for all $j=1,2, \ldots, i-1$,

$$
\begin{aligned}
& t_{p_{j}}=1, \text { for all } j=1,3, \ldots, 2 n-1, t_{p_{j}}=\infty, \text { for all } j=2,4, \ldots, 2 n, \\
& t_{q_{j}}=1, \text { for all } j=2,4, \ldots, 2 n \text { and } t_{p_{j}}=\infty, \text { for all } j=1,3, \ldots, 2 n-1 .
\end{aligned}
$$

Figure 61: The tolerance representation of graph G.

4 Open Problems and Further Directions of Studies

In this article, we have presented the tolerance representations and all forbidden subgraphs of 2-connected graphs which are maximal outerplanar graphs and bipartite. There are still some open problems for future studies.

1. In Figure 1, we have known a hierarchy of classes of tolerance graph. Furthermore,
a. We would like to characterize the graphs which are both tolerance and cocomparability.
b. We would like to characterize the graphs which are both tolerance and trapezoid.
2. The general question of characterizing bipartite bounded tolerance is proved by the following theorem. [3]

Let $G=(X, Y, E)$ be a bipartite graph. The following conditions are equivalent.
(i) G is a bounded tolerance graph.
(ii) G is a trapezoid graph.
(iii) G is a cocomparability graph.
(iv) G is AT-free.
(v) G is a permutation graph.

Furthermore, we would like to prove the theorem for tolerance graph instead of bounded tolerance graph.

References

[1] M. Golumbic and C. Monma, A generalization of interval graphs with tolerances, Congressus Numerantium, 35 (1982), pp. 321-331.
[2] M. Golumbic, D. Rotem, and J. Urrutia, Comparability graphs and intersection graphs, Discrete Math., 43 (1983), pp. 37-46.
[3] M. Golumbic and A. Trenk, Tolerance graphs, Cambridge Univ Pr, 2004.
[4] R. Hayward and R. Shamir, A note on tolerance graph recognition, Discrete Applied Mathematics, 143 (2004), pp. 307-311.

