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Abstract. Financial markets are complex systems, all the information scattered
around the market is fairly and dynamically reflected in the current prices. However,
it is difficult to understand the dynamics of markets merely by traditional analyzing
methods. We here propose a new concept inspired by complex networks to study the
trading behavior and the dynamics of markets. A web-based platform for prediction
market which trades the political futures contracts is built to monitor the trading
behavior among the human players. Two experiments were conducted on this plat-
form in parallel for 30 days. From the accumulated transaction data, we reconstruct
the so-called cash-flow networks. By examining the degree distributions of these net-
works, we observe that the network structure is scale-free with a power-law exponent
of 1.15±0.07, which means that there must be a non-trivial mechanism governing
the network growth in our markets. Through carrying out a post-simulation mod-
elling by a continuous double auction market with ”zero-intelligence” traders, we
demonstrate that such a simple model is capable of generating scale-free networks.
We thus suggest that the scale-free nature of the cash-flow networks should rely on
the institutional design and the structure of markets rather than on the traders’
strategies.

1 Introduction

Complex networks, exhibit several non-trivial topological features (including
a fat-tail in the degree distribution, a high clustering coefficient, community
structure at many scales, and a hierarchical structure), emerge in many com-
plex systems such as biological[1], social[2] and technological[3] systems. Al-
though these systems have been modeled as random graphs in the past, more
and more evidence suggests that the topology and evolution of these networks
are governed by robust organizing principles[4]. We can say that the network
topology evolves to fulfill system requirements. Studying network systems thus
help us to have better insight into the complex systems.

In economics, financial markets are complex systems as well. The prices
and individual wealth in the market are driven up and down by the so-called
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”invisible hand” coined by Adam Smith. Although we know that these fluctu-
ations are resulting from the interactions among traders within the market,
it is difficult for us to make any accurate prediction about the markets. In
a naive thinking, since the network can be applied to explain the relations
or interactions among each element, we shall be able to map the interactions
among traders into networks and study them. Therefore, we conduct exper-
iments for gathering the real information about the trading behavior in the
market and introduce a new method to map the trading behavior into the
networks[5].

In this contribution, we first introduce our system for markets with human
traders and show the results of two experiments performed on this system. The
trading behavior in these two experiments is mapped into a so-called cash-flow
network and we then present the observation of these networks. Finally, a post-
simulation, which is designed to reproduce the resulting network topology,
will be mentioned. The simulation is modeled as a continuous double-auction
(CDA) market with zero-intelligence traders.

2 Market with Human Traders

Markets are open systems where intelligent traders interact with each other
with some simple trading rules. For an orderly market, the price reflects the
underlying value of the market instruments. But when bubbles develop, the
orderly behavior breaks down and markets become complex systems. In the
bottom-up scheme, if we want to study a complex system, we need to learn
how individual elements interact with each other in our system. Following
this concept, we build a virtual market for human traders which allows us to
monitor their trading behaviors in real-time. We believe that the transactions
among traders represent the strength of the interactions (or relations) between
them. Therefore, we might have deeper insight into the market with these
transaction data.

2.1 A Web-based Futures Exchange System

Prediction market[6, 7] is a market designed to run for the primary purpose of
mining and aggregating information scattered among traders. The aggregation
of the information will therefore be reflected in the form of market prices
so as to make predictions about specific future events. From the concept of
prediction market, we design a system which allows the registers to trade the
political futures contracts on web and enable us to monitor the transactions
among the traders[8, 9, 10]. Although we use the virtual money for the trading,
the principles and operation of our system follow those of major financial
exchanges in the real world. Our system works as a web-based server which
runs for 24 hours a day until we shut it down on the day of liquidation.
Any web browser can participate in the trading by on line registration. An
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account with the user-provided login name is created for the participant after
registration. An initial amount of (virtual) money is deposited by the server to
the newly created account. The initial wealth for each participant is the same.
The demographics about all the registers to date is also updated. The process
takes place on the server automatically and a trader can start trading almost
immediately after successful registration. The demography, price fluctuation
and accumulated volumes plots are open to any Web surfer irrespective of her
registration or not. However, only registered users can trade upon login.

Once the user login onto the server, he can buy bundles of contracts from
the server for a guaranteed price per bundle or buy the futures contracts
from the market directly. In our system, a given political futures contract
is associated with the liquidation price which equals the percentage of votes
that a candidate gets on the day of election. A bundle, by design, consists of
futures contracts for each candidate in the race as well as for all the invalid
casts. After the election, all the futures contracts in the account should be
liquidated. The bundle price of 100 is fair since neither the user nor our
server loses. Transactions are free in our system and no further service fees
will be charged. Users can place market or limit orders to buy or sell futures
contracts. Our system then stores and sorts the submitted bid (ask) orders
in a bid (ask) queue and matches counterpart orders which are compatible
with each other’s price limits. If no matches are met, limit orders stay in the
queue and wait for further matches with new orders. These limit orders would
either expire or be canceled by users before the matches. Market orders do not
stay if no matches are found. Order matching is via the process of continuous
double auction (CDA) which realizes price formation by the law of supply
and demand while maximizing transaction volumes. In brief, it materializes
the concept that excessive buying/selling drives up/down prices. It is the price
discovery system widely used by exchange markets in the world, including New
York Stock Exchange, Tokyo Stock Exchange, SBF - Bourse de Paris, and the
Stock Exchange of Hong Kong.

The server records user’s trading activities and results. After a transac-
tion, the account assets, including cashes and futures contracts, is balanced
immediately. The price of the contract is decided by the current market price.
Therefore, even if a user dose not transact anymore, as long as he owns the
contracts, his assets would vary depending on current market prices of the
contracts, The account in our server earns no interest. When a limit order is
placed but the execution is not complete, the system will block further order
submissions by this user. This rule is meant to prevent the server from reckless
submissions since there are no transaction fees and the money is virtual.

2.2 Experimental Design

In this analysis, we take the data from the experiment on Taipei mayoral
election in Taiwan on December 9, 2006. The system issued six futures con-
tracts which consisted of five candidates ran for Taipei mayor and one for
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any invalid ballots cast on the election day. The sum of the prices of these
six contracts are set to 100 at the beginning. Afterward, the sum should re-
main 100 if the traders are rational or if the market is efficient. The virtual
money of amount 30,000 is deposited by the system for each account to begin
with. Two servers ran in parallel for the experiment at that time. One is AI-
ECON futures exchange (AI-ECON FX 4) and the other is Taiwan Political
Exchange (TAIPEX 5). AI-ECON FX and TAIPEX are almost identical in
design except for the traders of the former one can chose a preliminary soft-
ware agent for the trading. Both servers started to run 30 days before the day
of liquidation. At the end of the experiment, any contracts in the accounts
were liquidated using the official result of votes from the government. Money
prizes were then awarded to the top ten winners determined by the ultimate
wealth in the players’ accounts.

By analyzing the change of trading volumes in minutes, we observe that
the market was active about 11% of the time in AI-ECON FX and 12%
in TAIPEX. The number of registered players increased monotonically with
time in both servers. Before the end of the experiments, AI-ECON FX and
TAIPEX have accumulated 532 and 628 registrants respectively. The number
of successful transactions totaled 7,440 in AI-ECON FX and 8,573 in TAIPEX.
We further analyzed the transaction data to distinguish the active players from
those who never traded with others throughout the whole experiment. After
filtering, we found that there are 366 (427) active players left in AI-ECON
FX (TAIPEX), which implies that only about 68% of registrants were active
in both servers.

2.3 The Cash-flow Network

In a previous analysis[10], we showed that such a market, which accumu-
lated typically 400 participants, exhibited power-law distributions of price
fluctuation, net wealth and inter-transaction times that are characteristic of
real world markets. Furthermore, predictions of the market have so far been
consistent with election outcomes. In this contribution, being inspired by the
recent development of complex networks, we introduce a new concept to study
the trading behavior in a financial market. Our concept is detailed as follows.

If we treat each trader in the market as a node, and subsequently the
transactions among them could be referred to as the edges. Therefore, we
can reconstruct a network with traders and transactions. In our experiments,
players trade futures contracts. When a transaction was made between traders
i and j with volume v and price p, an amount of cash p × v flowed from i
to j. Because the flow is directional and accompanied with certain amount
of cash, the resulting cash-flow networks should be directed, weighted and
contains no self-loops. In order to scale down the complexity of our problem

4 http : //futures.nccu.edu.tw/exchange/exchange eng.html
5 http : //socioecono.phys.sinica.edu.tw/exchange/exchange eng.html
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and to extract the essence from the trading behavior, we simplify our cash-flow
network into an undirected and unweighted network throughout this analysis.
The preliminary results for cash-flow networks with directed and weighted
edges are discussed in Ref. [5]. We also assume that non-active players, who
never trade during the whole experiment, would scarcely affect our results.
We therefore neglect all the isolated nodes in our following analysis. During
the experiment, both servers output the accumulated cash flow among traders
in every 12 hours, from which we reconstructed 60 networks for each server.
To understand the growth rate of the edges in these networks, we plot the
value of 〈k〉, the average number of edges per node, in time series. In Fig. 1,
one can see that the value of 〈k〉 grew with time, topping at 15.94 (18.26) in
AI-ECON FX (TAIPEX) on day 30. We observe that the growth rate in our
experiment keeps almost a constant (about 0.2 per day) after the first 15 days
of the running.

Fig. 1. The growth of 〈k〉 with time in AI-ECON FX (dot) and TAIPEX (square).

Fig. 2 shows the network on day 3 in AI-ECON FX. One can easily iden-
tifies hubs in networks like the one here, which usually accompany with the
small world properties. To figure out whether the cash-flow networks are scale-
free or not, we calculate the degree distribution of our networks. The degree
distribution, p(k), describes the number of nodes to have k edges. In Fig.
3, we show the resulting p(k) of the cash-flow networks on day 15 and day
30 in logarithmic scale with the linear fits. The distributions p(k) plot here
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Fig. 2. The structure of the cash-flow network developed in AI-ECON FX on day
3. The number on the vertex corresponds to the ID for different traders assigned in
the last day.

have been divided by the number of nodes for comparison. We found that the
degree distributions of these networks can be well explained by a power-law
decay, which has the following form:

p(k) ∼ k−γ (1)

We have γ = 1.13± 0.08 and γ = 1.17± 0.06 for AI-ECON FX and TAIPEX
on day 30 respectively consistent with each other. We also found that these
exponents almost remain the same during the last 15 days. This result might
have something to do with the fact that the growth of 〈k〉 also remains roughly
the same rate from day 15 to the end of experiment. A power-law decay
of p(k) with k suggests excessive presence of hubs in our network. In other
words, the networks reconstructed from the transactions among traders in our
markets are scale-free. Since the traders in our markets are not supposed to
communicate with each other, it is hard to imagine that why the transactions
among them could develop into such a scale-free structure. One explanation
is that the aggressive traders transact many times in order to make profits
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from others. But why are the distributions of these aggressive traders (i.e.,
hubs in our networks) almost the same in both servers is not that clear? To
further explain the observed phenomenon, we conduct a simulation to figure
out whether the scale-free behavior in our cash-flow networks is due to the
interactions among traders or due to the institutional design of our market.

Fig. 3. The degree distribution of the cash-flow networks on day 15 (left) and day
30 (right) for AI-ECON FX (dot) and TAIPEX (square). On day 15, the p(k) in
both servers could be well fitted by a power law decay with γ ∼ 1.18. While on day
30, the best fit is γ = 1.13±0.08 and γ = 1.17±0.06 for AI-ECON FX and TAIPEX
respectively.

3 Markets with Zero-Intelligence Traders

Inspired by the approach of agent-based modeling, in the first attempt, we
model our simulation as a continuous double-auction (CDA) market with
zero-intelligence traders (ZI traders). The ZI traders, by definition, are agent
traders without any intelligence. In the markets, they will submit random bids
and offers, therefore the resulting price never converges toward any specific
level. We here adopt the definition by D. K. Gode and S. Sunder[11], which
demonstrate that in a symmetrically structured market, by imposing a simple
budget constraint (i.e., the ZI-C traders who must profit from the transaction),
the allocative efficiency of these transactions could be raised close to 100%.
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Hence, the trader in our simulation is the ZI trader with a simple budget
constraint.

There are many variations of CDA markets, we made two choices to sim-
plify our simulation. Firstly, each bid, offer and transaction is valid for a
single item. Secondly, there is no transaction cost and the items are durable.
Thirdly, in each duration, every trader could make only one successful trans-
action (i.e., the buyer could only have one item and the seller only has one
item to sell in each duration). The implementation of our simulation is as
follows: For the structure of markets, the supply and demand functions are
generated from Smith’s value mechanism[13] at the beginning for each run
and will not change through the end of simulation. The price for the item
is ranging from 1 to 100 in units of virtual dollars. Because the ZI traders
could only perform well in a symmetrically structured market[12], we choose
the markets of this type in our simulation. In these markets, the intersec-
tion of supply and demand curves determines the equilibrium price. For the
traders, initially, there is a fixed number of ZI traders in our simulation. Half
of them are classified as buyers and the remaining half of the traders are
sellers. At each step, one buyer and one seller are chosen for the matching.
Due to the budget constraint, the buyer must bid with the price lower than
its redemption value given by the demand function and the seller must of-
fer the commodity at the price higher than the cost generated by the supply
function. Once the bidding price exceeds the offering price, the transaction
between this buyer and seller is made. No transaction will be made otherwise.
Whether there exists a successful transaction or not, the system will move
forward to the next step and choose another pair of traders. The simulation
lasts for p periods of a specific duration d and terminates after p × d steps.
One transaction represents one edge in the network, but since our network is
unweighted, repeated transactions between the same pair of traders will only
be counted once. Each simulation runs for 100 times and the resulting degree
distribution is an average over these 100 runs.

One should keep in mind that, although the number of traders is fixed
at first, not all of them will make a successful transaction with others. The
final number of nodes connecting to the whole network (i.e., traders with
successful transactions) and 〈k〉 will also depend on the input value of period
and duration. In comparison with the experimental result we have in the
market with human traders, we require the resulting cash-flow network to
have 400 nodes on average with the value of 〈k〉 around 16. The value of input
parameters must satisfied with the above condition. Fig. 4 shows the average
degree distributions of the cash-flow networks from the simulations with two
different sets of input parameters. We observe that the distribution follows a
perfect power law decay with an exponent γ ∼ 0.59 ± 0.04. The sudden drop
of the distribution curve at k ∼ 30 might be due to the finite size effects.

To further justify this observation, we change the value of the input pa-
rameters for obtaining a network with larger network size. One can see that
the decay behavior of p(k) remains unchanged even for n = 3500 in Fig. 5.
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Fig. 4. The degree distributions of the cash-flow networks resulting from the simu-
lations with the network size n = 400 and 〈k〉 ∼ 16 . The solid line is the power law
fitting with the exponent γ ∼ 0.59.

Fig. 5. The comparison of the degree distributions of the cash-flow networks with
different network size. n = 400 for the circles and n = 3500 for the squares. The
exponents for the power-law decay are γ ∼ 0.59 (solid) and γ ∼ 0.62 (dashed)
respectively.
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The decay exponent for this large network is γ ∼ 0.62± 0.02 which is roughly
the same as the exponent in networks with n = 400. From the above result,
it suggests that the nature of power-law decay of p(k) depends on neither the
network size nor the value of input parameters. Although the power-law ex-
ponent resulting from the simulation could not explain the observed exponent
in the markets with human traders, we might still come up with a conclusion
that the scale-free nature of the cash-flow networks dose not rely on the intel-
ligence of the traders. Therefore, we believe that the scale-free nature comes
from the institutional design and the structure of markets (i.e., the supply
and demand in the markets).

4 Conclusion

In this work, we introduce a new concept to analysis the trading behavior in
a financial market. In order to realize this approach, we design a web-based
futures exchange system in order to gather enough information about the
transactions among traders in a market. Two experiments were conducted
with our system on different servers (AI-ECON FX and TAIPEX) for 30
days. 7,440 (8,573) entries of transactions were accumulated and recorded in
AI-ECON FX (TAIPEX). We reconstructed the cash-flow networks with these
transaction data and found that these networks exhibited scale-free properties
with a power-law exponent around 1.15. To further comprehend the underly-
ing mechanism of the observed phenomena, we carry out a simple simulation
involving a CDA market with zero-intelligence traders. We demonstrate that
such a simple market is capable of forming a scale-free network structure. Al-
though the power-law exponent resulting from this toy model, which is only
around 0.6, could not explain the observed exponent in the markets with
human traders. But the most important finding in this analysis is that the
scale-free topology in the cash-flow networks might rely on the institutional
design and the structure of markets rather than on the traders’ strategies. In
our simulation, all the agents are equiped with the same strategies. Therefore,
it is the supply and demand function that determines which trader should play
as the hub in the network. In addition, we also believe that the scale-free na-
ture of the resulting networks might relate to the efficient market hypothesis
(EMH)[14] and this relation should be revealed by future studies.
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