
Eur. Phys. J. B 62, 105–111 (2008)
DOI: 10.1140/epjb/e2008-00119-8 THE EUROPEAN

PHYSICAL JOURNAL B

Network topology of an experimental futures exchange

S.C. Wang1,2,a, J.J. Tseng3, C.C. Tai3, K.H. Lai3, W.S. Wu3, S.H. Chen3, and S.P. Li4

1 Institute of Systems Biology and Bioinformatics, National Central University, Chungli 320 Taiwan
2 Neuroscience Research Department, Centre for Addiction and Mental Health, Toronto Ontario M5T 1R8 Canada
3 AI-Econ Research Center and Department of Economics, National Chengchi University, Taipei 116 Taiwan
4 Institute of Physics, Academia Sinica, Taipei 115 Taiwan

Received 27 May 2007 / Received in final form 31 December 2007
Published online 21 March 2008 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2008

Abstract. Many systems of different nature exhibit scale free behaviors. Economic systems with power
law distribution in the wealth are one of the examples. To better understand the working behind the
complexity, we undertook an experiment recording the interactions between market participants. A Web
server was setup to administer the exchange of futures contracts whose liquidation prices were coupled
to event outcomes. After free registration, participants started trading to compete for the money prizes
upon maturity of the futures contracts at the end of the experiment. The evolving ‘cash’ flow network was
reconstructed from the transactions between players. We show that the network topology is hierarchical,
disassortative and small-world with a power law exponent of 1.02 ± 0.09 in the degree distribution after
an exponential decay correction. The small-world property emerged early in the experiment while the
number of participants was still small. We also show power law-like distributions of the net incomes and
inter-transaction time intervals. Big winners and losers are associated with high degree, high betweenness
centrality, low clustering coefficient and low degree-correlation. We identify communities in the network as
groups of the like-minded. The distribution of the community sizes is shown to be power-law distributed
with an exponent of 1.19 ± 0.16.

PACS. 89.65.Gh Economics; econophysics, financial markets, business and management – 89.75.Da Sys-
tems obeying scaling laws

1 Introduction

Many complex systems exhibit distributions of observ-
ables that are not characterized by a single scale. Ex-
amples include net wealth, earthquake magnitudes and
gene expression [1]. Heterogeneity in system constituents
and/or in the interactions among them might underlie
the complexity. Continuing advances in information tech-
nology have facilitated acquisition and analysis of sheer
amounts of data, unraveling the interacting networks of
different kinds ranging from the transportation network
of airlines in technology [2], collaboration networks of sci-
entists in sociology [3] and binding networks of proteins
in biology [4]. Network topologies evolve to fulfill system
requirements. Studies of networked systems thus help bet-
ter understand complex systems. Among the encouraging
examples are the jamlessness of scale-free communication
networks [5], short separation of small-world acquaintance
networks [6] and robustness against random mutations
of scale-free biological networks [7]. Further applications
of network analysis involve demarcation between social
and nonsocial networks by an attribute that measures the
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correlation between the degrees of interacting nodes [8].
The finding of hierarchical structures in metabolic net-
works also has implications for functional categorization
of metabolites [9].

Financial markets, consisting of such heterogeneous
agents as investors, hedgers and arbitragers, show styl-
ized distributions of returns and wealth [10,11]. In-
trigued by the universal behavior, physicists have applied
the methodologies of nonequilibrium statistical mechan-
ics to elucidating the mechanisms underlying the com-
plexity [12]. Examples include critical phenomenon [13]
and self-organized criticality [14] modeling of economic
systems.

In line with the network approach to technological,
social and biological complex systems, we designed an ex-
perimental market, recording every transaction between
pairs of participants during the experiment. Transactions
(edges) hold information on the flow of assets from sell-
ers to buyers (nodes). Characterization of the evolving
topology of the resulting network helps shed light on the
emergence of complexity in financial markets. The unique
feature of our experiment is that no parallel can be easily
undertaken in real markets. We describe the experimental
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settings and market rules in Section 2, followed by char-
acterization of the network by mean shortest path lengths
and degree distributions in Section 3. Further analysis in
Section 4 unravels subtle network structures including hi-
erarchy, dissortativity and community. We argue that an
integrated model of financial markets should accommo-
date the results of our empirical study.

2 Experiment

A 24 h exchange market was established on the Web, ac-
cepting bid and ask orders from registered players via the
Internet [15–17]. Upon registration, which was anonymous
and free, an account with 30 000 units of fictitious money
was allocated to the player on the exchange server. The
futures contracts that our market issued were tied to the
candidates running for the Taipei mayoral election which
took place on December 9, 20061. The liquidation price of
each futures contract was determined by the percentage
of votes the candidate received on the election day. Such
an experiment was run continuously for 30 days, ending
on the election day. After the experiment, any contracts
in the players’ accounts were liquidated using the offi-
cial counts released by the government. Futures markets
in which contract payoffs depend on election outcomes
were pioneered by the Iowa Electronic Markets using real
money [18]. As incentives in our experiment, money prizes
were awarded to the top ten winners determined by the
accumulated wealth in the players’ accounts. In a previ-
ous publication [17], we demonstrated that such a market,
which drew typically 400 participants, exhibited power-
law-like distributions of price changes, net wealth and
inter-transaction times that are characteristic of real world
markets. Furthermore, predictions of the market have so
far been consistent with election outcomes. In this paper,
we examine the evolving network of ‘cash’ flow recorded
along the experiment.

Five candidates ran for Taipei mayor. We included a
sixth futures contract to account for invalid ballots. The
sum of the six prices should be 100 if the players were
rational or the market was efficient. Figure 1 plots this
price and volume time series covering the experiment. To
convert from irregular to regular temporal spacing time-
series in Figure 1, we averaged (summed) the transaction
prices (trading volume) within a window of one minute.
In the case of missing price data in a time window, the
averaged price from the previous window is used. The av-
eraging was to reduce the pricing errors since our mar-
ket imposed no constraints on the range of price changes
between successive transactions. The one-minute window
size was chosen as a compromise between error reduction
and temporal resolution. The intermittence of price spikes
may be attributable to a multiplicative process with addi-
tive noise which is known to yield power law distributions
in the fluctuations [19,20]. From the number of time points

1 Contract specifications and trading rules were an-
nounced at http://socioecono.phys.sinica.edu.tw/

exchange/announce

0 10000 20000 30000 40000

50
10

0
15

0
20

0

time in minutes

pr
ic

e
0 10000 20000 30000 40000

0
50

15
0

25
0

time in minutes

vo
lu

m
e

Fig. 1. Price and volume time-series. The time resolution is
one minute. Prices (volumes) from multiple transactions within
one minute are averaged (summed).

where the trading volumes are nonzero, we determine that
the market was active 12.7% of the time. We advertised
the experiment by constant posts to the electronic bul-
letin boards of the colleges throughout Taiwan during the
experiment. The number of registrants increased roughly
monotonically with time, topping at 628 in the end of
the experiment. Trading orders submitted by players were
stored in the orderbooks on the server with the continuous
double auction mechanism for order matching and price
finding. The number of successful transactions in the ex-
periment totaled 8 563. Information on each of the transac-
tions, including price, volume, contract, buyer, seller and
time, was recorded.

3 Results and analysis

3.1 Small world cash flow networks

When the bid order of player i was matched with the ask
order of player j at a price p and specified volume v of a
futures contract, an amount of cash p×v flew from player i
to j. Every day, the server output the cumulative cash flow
between any pair of players, from which we reconstructed
30 networks of cash flow, one for each day. On average,
23 ± 2% of the nodes in the networks were isolated, cor-
responding to those who registered but had never traded
with others. Figure 2 shows the network on day 3. The
day 1 network consists only of three isolated nodes. The
day 2 network has 11 nodes with 8 connected as shown in
Figure 10. We exclude the isolated nodes in the following
analysis. The average number of (undirected) edges per
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Fig. 2. The trading network on day 3 consisting of 40 inter-
connected nodes. 15 isolated nodes are not shown.

node 〈k〉 in the network increased with day to about 6
within the first 10 days and saturated at around 8 in the
final days. Inspection of the networks such as Figure 2 by
eyes identifies hubs through which nodes are linked to one
another with only few edges. The short separation between
two nodes manifests one of the small world properties. To
confirm the property, we calculate the characteristic path
length of a network which is the average of the small-
est numbers of edges between pairs of nodes. The short
characteristic path lengths in Figure 3, together with the
high clustering coefficients (also shown in Fig. 3 but to be
elaborated later), demonstrates the small-worldness of the
cash flow networks. As a transaction mediates an exchange
of opinions, a small-world market indicates that opinions
are efficiently aggregated. In particular, the emergence of
the small world properties at early onset of the experiment
suggests a low quorum for such a market to be efficient in
terms of opinion exchange.

3.2 Degree distribution

The degree distribution p(k) of a network gives the proba-
bility of a randomly chosen node to have k edges. A power-
law decay of p(k) with k indicates excessive presence of
hubs in the network in comparison to random networks.
To get the density distribution, we employ bin sizes that
are even in the logarithmic scale, with a binsize ratio of 2.
Figure 4 shows the distributions of in-degrees, out-degrees
and undirected degrees of the cash flow network in the end
of the experiment. We found that the degree distributions
are well described by a power-law with exponential cut-off,

p(k) ∼ k−γe−k/kc . (1)

We fitted the data points in Figure 4 to log(p) = a −
b log(k) − ck by least squares, obtaining γ = b and kc =
1/c. The exponents for the in-, out- and undirected degree
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Fig. 3. (Color online) Characteristic path length and cluster-
ing coefficient as a function of network size.

are found to be γin = 1.10 ± 0.15, γout = 0.66 ± 0.13 and
γ = 1.02 ± 0.09, respectively. The power-law-like distri-
butions in Figure 4 suggest that the cash flow network
from our experiment appears scale free. Note however
that the small values of the exponents are in contrast to
those of other real world networks found typically in the
range 2 < γ < 3 [21]. Hubs play a pivotal role in opin-
ion/information collection and dissemination. If consen-
sus is to be reached independent of the network size, we
would expect a wide range of node degrees (correspond-
ing to small γ’s) [22]. As we found that, despite transient
spikes, the prices of individual contracts were stationary
as new players joined throughout the experiment2, this
property may explain the small exponents. In future runs,
we plan to test the robustness of the exponent by altering
market rules by, e.g., limiting order cancellation or charg-
ing transaction fees. Our experiment ended as the futures
contracts matured on the election day. The exponential
cut-off could be due to such finite size effects as the finite
time horizon and low trade activity of the experiment. In
the future, we also plan to prolong the tournaments in an
effort to studying the origins of the exponential correction.

3.3 Weighted networks and wealth distribution

Flow of cash between players accumulated as time went
on. We assign the cumulative flow of cash to the edge. The
networks are therefore weighted. The frequency distribu-
tions of the weights in Figure 5 show that the weighted
cash flows are power-law-like distributed with an expo-
nent of 0.69 ± 0.11. Furthermore, the power-law weights
behavior emerged in early stages of the experiment as seen

2 Time-series plots of the individual contract prices
are available at http://socioecono.phys.sinica.edu.tw/

exchange/D/TWMayors06/tw taipei06-p.jpg
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Fig. 4. (Color online) Degree distribution of the cash flow
network on the last day. Black dots are from undirected edges.
Solid lines are least-squared fits to the data.
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Fig. 5. (Color online) Probability densities of the cumulative
cash flow on the edges of the networks on days 3, 5 and 30.
Solid line is fit to the day-30 dataset.

from the distributions accumulated up to days 3 and 5 in
Figure 5.

We sum the weights on the directed edges pointing to
(leaving from) a node to obtain the income (spending) of
the node. The incomes (and spending) of the nodes having
the same degree are then averaged. A plot of the averaged
income versus degree is interesting in that it tells if high
in-degree players tend to have high incomes. We found
that the income and spending increase with the in- and
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Fig. 6. (Color online) Probability density distributions of the
players’ incomes, spending and net incomes on the last day.
Solid line is fit to the earnings data.

out-degree in a power law fashion,

〈incomes〉 ∼ k1.26±0.05
in

〈spending〉 ∼ k1.02±0.07
out . (2)

The relations indicate that those who managed to get
more buyers (sellers) cashed in (spent) more. We found
no simple functional form relating the in- and out-degrees
of the 496 active players up to the last day of the ex-
periment because of the divergence in the scatter plot.
However the nonparametric Spearman’s rank correlation
coefficient between the kin and kout is as high as 0.73.
The correlation indicates that those who cashed in more
tended to spend more. The same conclusion is reached if
we symmetrize the cash flow matrix. That is we replace
wij = A and wji = B with wij = wji = A + B where
wij = A means an amount of A had flown from player i
to player j since the experiment began. A + B is then the
traded amount between the two players. Using the sym-
metrized, weighted cash flow matrix, we found a power
law similar to equation (2): 〈traded〉 ∼ k1.15±0.04 where k
is undirected degree.

To get the distribution of net incomes, we subtract
the spending from the income of each player. The prob-
ability densities in Figure 6 show power law behavior of
the incomes, spending, earnings (positive net incomes) and
losses (negative net incomes). The exponent of the earn-
ings is 0.99 ± 0.04.

4 Discussion

We have reconstructed the evolving network of ‘cash’ flow
between the players who participated in the trading ex-
periment to compete for real money prizes. We showed
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Fig. 7. (Color online) Decrease in the clustering coefficient
with degree. The clustering coefficients are calculated from the
cash flow network on day 30.

that the cash flow network resembled scale free networks
with small world properties that emerged very early in the
experiment. The distributions of the weights (incomes and
spending) also resemble power-law decaying.

4.1 Hierarchical structure

To further characterize the cash flow network, we calculate
the clustering coefficient of a player ci which measures the
propensity that her trading partners had traded with one
another. We use symmetrized adjacency aij and cash flow
wij matrices in the calculation of the weighted clustering
coefficient [23] which takes into account the frequency or
amount of trades between the players,

ci =
1

si(ki − 1)

∑

j,h

wij + wih

2
aijaihajh (3)

where

si =
∑

j

wijaij . (4)

The clustering coefficients of the players having the same
degrees are averaged to get c(k). The results in Figure 7
show a power law decay of the average clustering coef-
ficients c(k) with increasing degree, suggesting a hier-
archical architecture in the cash flow network [24]. We
also calculated the average clustering coefficient 〈C〉 =
(1/N)

∑
i ci for each of the 30 networks and found that

the values stay rather constant independent of the net-
work size N (cf. Fig. 3), the averages being 0.46±0.02 and
0.52±0.03 for the unweighted (Fig. 3) and weighted ver-
sions of the coefficient.
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Fig. 8. (Color online) Decrease in assortative mixing with
degree. The assortative mixings are calculated from the cash
flow network on the last day of the experiment.

4.2 Disassortative mixing, betweenness and rank

We also calculate the assortative mixing knni
which mea-

sures the similarity between player i and her trading part-
ners in terms of their degrees [23],

knni
=

1
ki

∑

j

aijwijkj . (5)

An analysis parallel to Figure 7 shows a decaying degree-
correlation with increasing degree, indicating that the
cash flow network is disassortative. The dissortativity may
reflect the competitive nature of the market although
the dissortativity becomes insignificant considering the
weights on the edges (Fig. 8).

Another quantity in network analysis is the between-
ness centrality of node i defined as the number of shortest
paths between two other nodes passing through i weighted
by the inverse of the number of redundancies [25]. We
found the mean betweenness centrality b(k) is related to
degree by b(k) ∼ k2.35±0.08.

Most of the properties of the node, such as clustering
coefficient and betweenness centrality, can be referred to
its degree. We rank the players according to their net in-
comes and plot the degree against rank in Figure 9. The
plot shows that high degree players reaped either victory
or debacle. The high degree players tend to have low clus-
tering coefficients as in Figure 7. A low clustering coeffi-
cient translates that, instead of trading within a clique of
partners, the player keeps searching for new investment
opportunities across cliques over the network. Whether
she wins or loses would then depend on her adaptability
to changing opinions.
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4.3 Power-law distribution of community sizes

In the context of our experiment, when the price of a fu-
tures contract was considered too high (low), a sell (buy)
order was placed. An edge between two nodes in the cash
flow network therefore indicates that the two players dis-
agreed to the pricing of the futures contract. In other
words, players with no edges linking them were those who
thought alike. An algorithm to find communities in the
players is thus to partition the cash flow network so that
the densities of edges within communities are lower and
those between communities are higher than average. An
example of such divisions of the network is shown in Fig-
ure 10 where it is clear that the within-community edges
are minimized while the between-community edges are
maximized. We applied the eigenvector-based partition-
ing algorithm of [26] to the 30 networks and found that
the number of communities grew with the number of ac-
tive players N logarithmically: −17 + 7 log(N). Further-
more, the distribution of community sizes, shown in Fig-
ure 11, is found power-law distributed with an exponent
of 1.19 ± 0.16. The figure shows three distributions from
three cash flow networks on day 19, 25 and 30. The day
19 and 25 networks have, respectively, 20 and 33 com-
munities, corresponding to two extreme deviates (−5 and
+7) from the logarithmic prediction. Despite of this, the
power-law behavior in Figure 11 looks robust. Moreover,
the largest communities encompass ∼61% of the players.

4.4 Distribution of inter-transaction time intervals

From the volume time-series of Figure 1, we find the time
intervals between the points of non-zero trading volumes.
The distribution of the inter-transaction times shown in
Figure 12 exhibits a truncated power law distribution with
exponent 1.28 ± 0.17, consistent with our previous find-
ing [17]. This power law behavior, together with that in
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the early-day cash flows of Figure 5, may suggest a contri-
bution of human factors [27] to the origins of power laws.

4.5 Effect of bookmaker

Our market includes a built-in bookmaker, referred to as
bookie (cf. Fig. 2), which only sells contract portfolios at
the fair price of 100 per portfolio [15–17]. Its function is
two folds, the first being to allow the few early players,
who join right after the experiment starts, to get con-
tracts from the server and initiate selling. The second is
for arbitragers to buy portfolios from the server and sell
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them to others at a price greater than 100 per portfolio. As
seen in Figure 2, bookie is a hub. We examined the effect
of bookie by analyzing the bookie-excluded cash flow net-
works. The conclusions about small-worldness and power-
law-likeness remain as there are so many hubs in the net-
works. However, the weighted clustering coefficients and
weighted assortative mixings as a function of degree of the
bookie-excluded network converge to the unweighted dis-
tributions of Figures 7 and 8 which include bookie. The
result indicates again that the cash flow network is hier-
archical and disassortative.

In summary, in an effort to study financial markets
through network approach, we performed an online exper-
iment in the form of tournament. We recorded the flow of
fictitious cash between the 496 registered, active partic-
ipants throughout the 30-day course of the experiment.
The topology of the resulting cash flow networks is found
nonrandom with a power-law-like distribution in the con-
nectivity. The heterogeneity in the connectivity as well as
weights emerged early in the experiment. The distribution
of net incomes in the end of the experiment is also power-
law-like distributed. Network analysis indicates that the
cash flow network is hierarchical and disassortative. Com-
munities in the network are defined and identified. The
distribution of community sizes is power-law distributed,
so is the distribution of inter-transaction time intervals.
Our experimental platform offers a unique chance of anat-
omizing such complex systems as financial markets. A bet-
ter understanding of the complexity calls for models that
account for the major findings in the present study.
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