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Abstract

In this paper, we propose a new architec-
ture to study artificial stock markets. This
architecture rests on a mechanism called
“school” which is a procedure to map the
phenotype to the genotype or, in plain En-
glish, to uncover the secret of success. We
propose an agent-based model of “school”,
and consider school as an evolving popula-
tion driven by single-population GP (SGP).
The architecture also takes into consider-
ation traders’ search behavior. By simu-
lated annealing, traders’ search density can
be connected to psychological factors, such
as peer pressure or economic factors such
as the standard of living. This market ar-
chitecture was then implemented in a stan-
dard artificial stock market. Our economet-
ric study of the resultant artificial time series
evidences that the return series is indepen-
dently and identically distributed (iid), and
hence supports the efficient market hypoth-
esis (EMH). What is interesting though is
that this iid series was generated by traders,
who do not believe in the EMH at all. In
fact, our study indicates that many of our
traders were able to find useful signals quite
often from business school, even though
these signals were short-lived.

Key Words: Agent-Based Computational
Economics, Social Learning, Genetic Pro-
gramming, Business School, Artificial Stock

Markets, Simulated Annealing, Peer Pres-
sure.

1 Background and Motivation

Over the past few years, genetic algorithms (GAs) as
well as genetic programming have gradually become
a major tool in agent-based computational economics
(ABCE). According to Holland and Miller (1991),
there are two styles of GAs or GP in ABCE, namely,
single-population GAs/GP (SGA/SGP) and multi-
population GAs (GP) (MGA/MGP). SGA/SGP rep-
resents each agent as a chromosome or a tree, and
the whole population of chromosomes and trees are
treated as a society of market participants or game
players. The evolution of this society can then be
implemented by running canonical GAs/GP. Ari-
fovic (1995, 1996), Miller (1996), Vila (1997), Ari-
fovic, Bullard and Duffy (1997), Bullard and Duffy
(1998a, 1998b, 1999), Staudinger (1998) are exam-
ples of SGA, while Andrews and Prager (1994), Chen
and Yeh (1996, 1997, 1998), and Chen, Duffy and
Yeh (1996) are examples of SGP. MGA/MGP, in
contrast, represents each agent as a society of minds
(Minsky, 1987). Therefore, GAs or GP is actually
run inside each agent. Since, in most applications,
direct conversations (imitations) among agents do
not exist, this version of applications should not
be mistaken as the applications of parallel and dis-
tributed GAs/GP, where communications among “is-
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lands” do exist. Examples of MGA can be found
in Palmer et al. (1994), Tayler (1995), Arthur et
al. (1997), Price (1997), Heymann, Pearzzo and
Schuschny (1998).

While these two styles of GAs/GP may not be
much different in engineering applications, they do
answer differently for the fundamental issue: “who
learns what from whom? ” (Herreiner, 1998).
First, agents in the SGA/SGP architecture usu-
ally learn from other agents’ experiences, whereas
agents in the MGA/MGP architecture only learn
from their own experience. Second, agents’ in-
teractions in the SGA/SGP architecture are direct
and through imitation, while agents’ interactions in
the MGA/MGP architecture are indirect and are
mainly through meditation. It is due to this dif-
ference that SGA/SGP is also called social learning
and MGA/MGP individual learning (Vriend, 1998).
At the current state, the SGA/SGP architecture is
much more popular than the MGA/MGP architec-
ture in ABCE.

In addition to its easy implementation, the rea-
son for the dominance of SGA/SGP in ABCE is
that economists would like to see their genetic op-
erators (reproduction, crossover, and mutation) im-
plemented within a framework of social learning so
that the population dynamics delivered by these ge-
netic operators can be directly interpreted as mar-
ket dynamics. In particular, some interesting pro-
cesses, such as imitation, “following the herd”, ru-
mors dissemination, can be more effectively encap-
sulated into the SGA/SGP architecture.

However, it has been recently questioned by
many economists whether SGA/SGP can represent
a sensible learning process at all. One of the main
criticisms is given by Harrald (1998), who pointed
out the traditional distinction between the pheno-
type and genotype in biology and doubted whether
the adaptation can be directly operated on the geno-
type via the phenotype in social processes. Back to
Herreiner’s issue, if we assume that agents only im-
itate others’ actions (phenotype) without adopting
their strategies (genotype), then SGA/SGP may be
immune from Harrald’s criticism. However, imitat-
ing other agents’ actions are a very minor part of
agents’ interactions. In many situations, such as fi-
nancial markets and prisoners’ dilemma games, it
would be hopeless to evolve any interesting agents if
they are assumed to be able to learn only to “buy
and hold” or “cooperate and defect”. More impor-
tantly, what concerns us is how they learn the strate-
gies behind these actions. But, unless we also assume
that strategies are observable, it would be difficult to

expect that they are imitable. Unfortunately, in re-
ality, strategies are in general not observable. For
instance, it is very difficult to know the forecasting
models used by traders in financial markets. To some
extent, they are secrets. What is observable is, in-
stead, only a sequence of trading actions. Therefore,
Harrald’s criticism is in effect challenging all serious
applications of SGA/SGP in ABCE.

Although Harrald’s criticism is well acknowl-
edged, we have seen no solution proposed to tackle
this issue yet. At this stage, the only alternative of-
fered is MGA/MGP. In fact, it is interesting to note
that many applications which heavily rely on evolu-
tion operated on the genotype (strategies) tend to
use MGA/MGP. Modeling financial agents is a case
in point. What is ironic is that this type of applica-
tion is in essence dealing with human interaction and
thus requires an explicit modeling of imitation, spec-
ulation and herd behavior. As a result, MGA/MGP
is not really a satisfactory response to Harrald’s crit-
icism.

In this paper, we plan to propose a new architec-
ture and hence a solution to Harrald’s criticism. This
architecture rests on a missing mechanism, which we
think is a key to Harrald’s criticism. The missing
mechanism is what we call “school”. Why “school”?
To answer Harrald’s criticism, one must resolve the
issue “how can unobservable strategies be actually
imitable”? The point is how. Therefore, by the
question, what is missing in SGA/SGP is a func-
tion to show how, and that function is what we call
“school”. Here, “school” is treated as a procedure,
a procedure to map the phenotype to the genotype,
or in plain English, to uncover the secret of success.
This notion of “school” goes well with what school
usually means in our mind. However, it covers more.
It can be mass media, national library, information
suppliers, and so on. Warren Buffett may not be
generous enough to share his secrets of acquiring
wealth, but there are hundreds of books and con-
sultants that would be more than happy to do this
for us. All these kinds of activities are called “school-
ing”. Therefore, if we supplement SGA/SGP with a
function “school”, then Harrald’s criticism can, in
principle, be solved.

Nevertheless, to add “school” to an evolving pop-
ulation is not that obvious. Based on our earlier de-
scription, “school” is expected to be a collection of
most updated studies about the evolving population
(evolving market participants). So, to achieve this
goal, “school” itself has to evolve. The question is
how? In this paper, we propose an agent-based model
of “school”. More precisely, we consider school as an
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evolving population driven by single-population GP
(SGP). In other words, “school” mainly consists of
faculty members (agents) who are competing with
each other to survive (get tenure or research grants),
and hence the survival-of-the-fittest principle is em-
ployed to drive the evolution of faculty the way it
drives the evolution of market participants. To sur-
vive well, a faculty member must do her best to an-
swer what is the key to success in the evolving mar-
ket. Of course, as the market evolves, the answer
also needs to be revised and updated.

Once “school” is constructed with the agent-
based market, the SGP used to evolve the market is
now also run in the context of school. The advantage
of this setup is that, while the SGP used to evolve
the market suffers from Harrald’s criticism, the SGP
used to evolve “school” does not. The reason is sim-
ple. To be a successful member, one must publish as
much as she knows and cannot keep anything secret.
In this case, observability and imitability (replicata-
bility) is not an assumption but a rule. In other
words, there is no distinction between the genotype
and phenotype in “school”. Hence, Harrald’s criti-
cism does not apply and SGP can be “safely” used
to evolve “school”.

Now, what happens to the original SGP used to
evolve the market? This brings up the second advan-
tage of our approach. Since the function of school
is to keep track of strategies (genotypes) of market
participants and to continuously generate new and
promising ones, any agent who has pressure to imi-
tate other agents’ strategies or to look for even bet-
ter strategies can now just consult “school” and see
whether she has any good luck to have a rewarding
search. So, the original operation of SGP in the mar-
ket can now be replaced by SGP in “school” and a
search procedure driven by the survival pressure of
agents. Agents can still have interaction on the phe-
notype in the market, but their interaction on the
genotype is now indirectly operated in “school”.

An interesting aspect of this approach is to ex-
plicitly model the interaction between “school” and
the market by introducing a co-evolution model. To
survive, school must adapt to market dynamics.
On the other hand, market dynamics generate stu-
dents for “school” who, in turn, bring the knowledge
learned from “school” back to the market, and that
knowledge may have further impact on market dy-
namics. While agent-based modeling is a bottom-
up approach, one may use a system of two nonlin-
ear difference equations, governing the dynamics of
“school” and the market, as a top-down “summary”.

The difference between our proposed architecture

and SGA/SGP and MGA/MGP is also illustrated in
Figures 1 to 3. Figure 1 depicts the market archi-
tecture represented by SGA/SGP. The top of Figure
1 is the market as a single object, and the bottom
is a population of directly interacting heterogeneous
agents. The direct interaction is characterized by the
symbol “↔” among them. By this architecture, the
information (knowledge) about the market is openly
distributed among all agents. Nothing is kept se-
cret. In between is a symbol “=” (equivalent to),
which means that market dynamics is equivalent to
the evolution of this population of directly interact-
ing agents.

Figure 2 gives the market architecture repre-
sented by multi-population GP. The market remains
at the top, but there are two essential differences as
opposed to the previous figure. First, the single sym-
bol = is replaced by a series of ⇐⇒s. Under these
⇐⇒s is a population of indirectly interacting agents.
By “indirectly”, we mean that these agents are inter-
acting only through a bulletin board. Imagine that
each agent sits in her office and watches the world
from the web. They have no direct contact with
one other, physically, and in some sense, mentally as
well. The information (knowledge) about the mar-
ket is now privately distributed among agents. Each
agent has her own world and keeps her own secrets.

The point here is that other agents’ minds are not
directly observable, and hence not imitable. Within
each agent’s mind, there is a society of minds. The
evolution of this society is driven by GP. Within
this architecture, agents basically learn from her own
experience, and not from other agents’ experiences.
Thus, it is a typical model of individual learning.

Figure 3 represents the architecture of our pro-
posed modification. Again, the market is placed at
the top. At the bottom to the right, it is something
between Figure 1 and Figure 2. In the phenotype,
agents’ interaction is direct and identical to what
Figure 1 shows, whereas in the genotype, it looks
something like Figure 2, where there is no direct in-
teraction. The original connection between markets
and agents is now replaced by the connection be-
tween agents and school shown at the bottom to the
left. Inside school, there is again a population of
direct interacting agents (faculty), which is pretty
much like Figure 1.

The key elements of our proposed architecture
entitled “MS-GP” (standing for GP implemented
with “School” in the Market) are the procedures
“school” and the search. We shall concretize these
procedures with an application to the artificial stock
market. The artificial stock market is a new but
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Figure 1 : The Market Architecture
Represented by Single-Population
GAs/GP (SGA/SGP)

  Market

Figure 2 : The Market Architecture Represented by
Multi-Population GAs/GP (MGA/MGP)

  Market

 School

Figure 3 : The Market Architecture Represented by Single-
Population GAs/GP with "School"

growing field. Some wonders and missions of this re-
search area have been well documented by LeBaron
(1998). In his article, LeBaron distinguishes the re-
cent models of complex heterogeneity from those of
simple heterogeneity.

The use of heterogeneous agents is cer-
tainly not new to finance, and there
is a long history to building heteroge-
neous agent rational expectations mod-
els. What is attempted in this set of com-
putational frameworks is to attack the
problem of very complex heterogeneity
which leaves the boundary of what can be
handled analytically. Traders are made
up from a very diverse set of types and
behaviors. To make the situation more
complex the population of agent types, or
the individual behaviors themselves, are
allowed to change over time in response
to past performance. (p.1)

One of the missions of these agent-based compu-
tational models is to replicate time series features of
real markets. While it will continue to be pursued,
the focus of this paper will be much more fundamen-
tal. As calibration techniques advance, we may ex-
pect that sooner or later agent-based financial mod-
els will be so powerful that replicating time series
features of real markets will not be that daunting.
In fact, LeBaron himself has made the following ob-
servation:

Validation remains a critical issue if arti-
ficial financial markets are going to prove
successful in helping explain the dynam-
ics of real markets. This remains a very

weak area for the class of models de-
scribed here. Further calibration tech-
niques and tighter test will be neces-
sary.... However, there are some key is-
sues which affect these markets in partic-
ular. First, they are loaded with param-
eters which might be utilized to fit any
feature that is desired in actual data....
(Ibid, pp. 19-20, Italics added)

Judging from the results of recent progresses in
the literature of artificial stock market, that mo-
ment will come in a couple of years. When that
moment does come, one may start to question how
these calibration techniques can be justified, which
leads to the foundation of this research: can we re-
gard GAs/GP as a suitable model of learning behav-
ior within society?. The answer can hardly be posi-
tive or convincing if Harrald’s criticism has not been
well taken. We therefore consider this phase of re-
search more fundamental. By saying that, this re-
search tends to modify GP in a manner such that
it has a closer connection with human learning and
adaptation.

MS-GP brings back search behavior, a subject
which was once intensively studied in economics
but has been largely ignored in the conventional
GAs/GP economic literature. As we shall see later,
through the idea of simulated annealing agents’
(traders’) search density can be connected to psy-
chological factors, such as peer pressure or economic
factors such as economic pressure. Furthermore, the
built-in mechanism “school” enables us to investi-
gate the role of “school” or the value of “education”
in the evolution of a very specific social process.
The statistics generated from simulations, such as
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the time series of the number of “students” regis-
tered, the number of “students” who receives futile
or fruitful lessons at “school” can all help us un-
derstand how “school”, or information industry in
general, coevolves with society.

In Section 2, we shall present the analytical
model on which our artificial market is constructed.
In Section 3, a concrete application of the institu-
tional GP to the artificial stock market is detailed.
Section 4 provides the experimental design. Exper-
iment results and econometric analyses of these de-
signs are given in Section 5 followed by concluding
remarks in Section 6.

2 The Analytical Model

The basic framework of the artificial stock market
considered in this paper is the standard asset pric-
ing model (Grossman and Stiglitz, 1980). The mar-
ket dynamics can be described as an interaction of
many heterogeneous agents, each of them, based on
her forecast of the future, having the goal to maxi-
mize her expected utility. Technically, there are two
major components of this market, namely, traders
and their interactions.

2.1 Model of Traders

The trader part includes traders’ objectives and their
adaptation. We shall start from traders’ motives by
introducing their utility functions. For simplicity, we
assume that all traders share the same utility func-
tion. More specifically, this function is assumed to
be a constant absolute risk aversion (CARA) utility
function,

U(Wi,t) = −exp(−λWi,t) (1)

where Wi,t is the wealth of trader i at time pe-
riod t, and λ is the degree of relative risk aversion.
Traders can accumulate their wealth by making in-
vestments. There are two assets available for traders
to invest. One is the riskless interest-bearing asset
called money, and the other is the risky asset known
as the stock. In other words, at each point in time,
each trader has two ways to keep her wealth, i.e.,

Wi,t = Mi,t + Pthi,t (2)

where Mi,t and hi,t denotes the money and shares
of the stock held by trader i at time t. Given this
portfolio (Mi,t,hi,t), a trader’s total wealth Wi,t+1 is
thus

Wi,t+1 = (1 + r)Mi,t + hi,t(Pt+1 + Dt+1) (3)

where Pt is the price of the stock at time period t and
Dt is per-share cash dividends paid by the companies
issuing the stocks. Dt can follow a stochastic process
not known to traders. Given this wealth dynamics,
the goal of each trader is to myopically maximize the
one-period expected utility function,

Ei,t(U(Wi,t+1)) = E(−exp(−λWi,t+1) | Ii,t) (4)

subject to

Wi,t+1 = (1 + r)Mi,t + hi,t(Pt+1 + Dt+1), (5)

where Ei,t(.) is trader i’s conditional expectations of
Wt+1 given her information up to t (the information
set Ii,t), and r is the riskless interest rate.

It is well known that under CARA utility and
Gaussian distribution for forecasts, trader i’s desire
demand, h∗i,t+1 for holding shares of risky asset is
linear in the expected excess return:

h∗i,t =
Ei,t(Pt+1 + Dt+1)− (1 + r)Pt

λσ2
i,t

, (6)

where σ2
i,t is the conditional variance of (Pt+1+Dt+1)

given Ii,t.
One of the essential elements of agent-based arti-

ficial stock markets is the formation of Ei,t(.), which
will be given in detail in the next section.

2.2 Model of Price Determination

Given h∗i,t, the market mechanism is described as fol-
lows. Let bi,t be the number of shares trader i would
like to submit a bid to buy at period t, and let oi,t

be the number trader i would like to offer to sell at
period t. It is clear that

bi,t =
{

h∗i,t − hi,t−1, h∗i,t ≥ hi,t−1,
0, otherwise. (7)

and

oi,t =
{

hi,t−1 − h∗i,t, h∗i,t < hi,t−1,
0, otherwise. (8)

Furthermore, let

Bt =
N∑

i=1

bi,t (9)

and

Ot =
N∑

i=1

oi,t (10)
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be the totals of the bids and offers for the stock at
time t, where N is the number of traders. Following
Palmer et al. (1994), we use the following simple
rationing scheme:1

hi,t =




hi,t−1 + bi,t − oi,t, if Bt = Ot,

hi,t−1 + Ot

Bt
bi,t − oi,t, if Bt > Ot,

hi,t−1 + bi,t − Bt

Ot
oi,t, if Bt < Ot.

(11)
All these cases can be subsumed into

hi,t = hi,t−1 +
Vt

Bt
bi,t − Vt

Ot
oi,t (12)

where Vt ≡ min(Bt, OT ) is the volume of trade in
the stock.

Based on Palmer et al.’s rationing scheme, we can
have a very simple price adjustment scheme, based
solely on the excess demand Bt −Ot:

Pt+1 = Pt(1 + β(Bt −Ot)) (13)

where β is a function of the difference between Bt

and Ot. β can be interpreted as speed of adjustment
of prices. One of the β functions we consider is:

β(Bt − Ot) =
{

tanh(β1(Bt −Ot)) if Bt ≥ Ot,
tanh(β2(Bt −Ot)) if Bt < Ot

(14)
where tanh is the hyperbolic tangent function:

tanh(x) ≡ ex − e−x

ex + e−x
(15)

Since Pt cannot be negative, we allow the speed of
adjustment to be asymmetric to excess demand and
excess supply.

The price adjustment process introduced above
implicitly assumes that the total number of shares
of the stock circulated in the market is fixed, i.e.,

Ht =
∑

i

hi,t = H. (16)

In addition, we assume that dividends and inter-
ests are all paid by cash, so

Mt+1 =
∑

i

Mi,t+1 = Mt(1 + r) + HtDt+1. (17)

2.3 Model of Adaptive Traders

In this section, we shall address the formation of
traders’ expectations, Ei,t(Pt+1 + Dt+1) and σ2

i,t.
Motivated by the martingale hypothesis in finance,
we shall assume the following function form for
Ei,t(.).

Ei,t(Pt+1 + Dt+1) = (Pt + Dt)(1 + θ1tanh(θ2 · fi,t))
(18)

The virtue of this function form is that, if fi,t =
0, then the trader actually validates the martingale
hypothesis. Therefore, from the cardinality of set
{i | fi,t = 0}, denoted by N1,t, we can know how well
the efficient market hypothesis is accepted among
traders.2 The population of functions fi,t (i=1,...,N)
is determined by the genetic programming procedure
Business School and Search in Business School
given in the following two subsections.

As to the subjective risk equation, we take a mod-
ification of the equation originally used by Arthur et
al. (1997).

σ2
i,t = (1−θ3)σ2

t−1|n1
+θ3[(Pt+Dt−Ei,t−1(Pt+Dt))2].

(19)
where

σ2
t|n1

=

∑n1−1
j=0 [Pt−j − P t|n1 ]2

n1 − 1
(20)

and

P t|n1 =

∑n1−1
j=0 Pt−j

n1
(21)

In other words, σ2
t−1|n1

is simply the historical
volatility based on the past n1 observations.

2.4 Business School and Single-
Population GP

The major component of artificial stock markets is
the adaptive traders, who can be regarded as an
evolving population. Since Arifovic (1994), genetic
algorithm has been employed to drive the evolving
population of agents in economics. Chen and Yeh
(1996) generalized this approach by using genetic
programming. The style of GP used in Chen and Yeh

1This simple rationing scheme is chosen mainly to ease the burden of intensive computation. An realistic alternative is to
introduce the double auction price mechanism. However, computationally speaking, this idea is very demanding for genetic
programming. We are currently working on it in a separate project.

2Of course, this number cannot be taken without some caution. Notice that fi,t can be arbitrarily close to zero, but not
identically zero. In this case, it is essentially consistent with the martingale hypothesis, and N1,t might not be completely
informative. To cope with this problem, what our programming does is to treat fi,t essentially zero if

| fi,t − 0 |≤ ϑ,

and ϑ can be determined by the end-user. In this paper, ϑ is set to 10−5.
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(1996) is known as single-population GP in agent-
based computational economics, which is different
from multi-population GP. In single-population GP,
each tree can be regarded as a forecasting model
used by an agent; hence, the adaptation of agents
(in terms of their forecasting models) can be directly
represented by the standard operation of GP. How-
ever, due to Harrald’s criticism mentioned in Section
1, we consider a modified version of single-population
GP in this paper. Our modified version is character-
ized as an addition of a business school to the artifi-
cial stock market.

The business school in our model functions as
usual business schools in the real world. It mainly
consists of faculty, and their different kinds of models
(schools of thoughts). Let F be the number of fac-
ulty members (forecasting models). These models
are propagated via a competition process driven by
the faculty through publications. In this academic
world, a scholar can ill afford to keep something se-
rious to herself if she wants to be well acknowledged.
If we consider business school a collection of forecast-
ing models, then we may well use single-population
GP to model its adaptation.

Nonetheless, scholars and traders may care about
different things. Therefore, in this paper, different
fitness functions are chosen to take care of such a dis-
tinction. For scholars, the fitness function is chosen
purely from a scientific viewpoint, say, forecasting
accuracy. For example, one may choose mean abso-
lute percentage error (MAPE) as the fitness function
(Table 1). Single-population GP is then conducted
in a standard way. Each faculty member (forecasting
model) is represented by a tree (GP parse tree). The
faculty will be evaluated with a prespecified sched-
ule, say once for every m1 trading days. The review
procedure proceeds as follows.

At the evaluation date, say t, each forecasting
model (faculty member) will be reviewed by a visi-
tor. The visitor is another model which is generated
randomly from the collection of the existing models
in the business school at t−1, denoted by GPt−1, by
one of the following three genetic operators, repro-
duction, crossover and mutation, each with proba-
bility pr, pc, and pm (Table 1). In the case of repro-
duction or mutation, we first randomly select two
GP trees, say, gpj,t−1 and gpk,t−1. The MAPE of
these two trees over the last m2 days’ forecasts are
calculated. A tournament selection is then applied
to these two trees. The one with lower MAPE, say
gpj,t−1, is selected. We then run a tournament again
over the host gpi,t−1 and the visitor gpj,t−1 (in the
case of reproduction) or gp′j,t−1 (in the case of muta-

tion) based on the criterion MAPE, and gpi,t is the
winner of this tournament.

In the case of crossover, we first randomly se-
lect two pairs of trees, say (gpj1,t−1, gpj2,t−1) and
(gpk1,t−1, gpk2,t−1). The tournament selection is ap-
plied separately to each pair, and the winners are
chosen to be parents. The children, say (gp1,gp2),
are born. One of them is randomly selected to com-
pete with gpi,t−1, and the winner is gpi,t. The follow-
ing is a pseudo program of the procedure Business
School (Also see Flowchart 1). Table 1 is an exam-
ple of the specification of the control parameters to
evolve the business school.

Procedure [Business School]
0. begin

1. Calculate MAPE(gpi,t)
2. A = Random(R,C,M) with

(pr, pc, pm)
3. If A = C, go to step (11).
4. (gp1, gp2) = (Random(GPt−1),

Random(GPt−1))
5. Calculate MAPE(gp1) and

MAPE(gp2).
6. gpnew = Tournament Selection

(MAPE(gp1),MAPE(gp2))
7. If A = R, go to step (17).
8. gpnew ← Mutation (gpnew)
9. Calculate MAPE(gpnew)
10. Go to step (17)
11. Randomly select two pairs of trees

from GPt−1

12. Calculate MAPE of these two pairs
of GP trees

13. gp1 = Tournament Selection
(PAIR 1)

14. gp2 = Tournament Selection
(PAIR 2)

15. (gp1, gp2)← Crossover (gp1, gp2)
16. gpnew = Random(gp1, gp2)
17. gpi,t = Tournament Selection

(MAPE(gpi,t−1),MAPE(gpnew))
18. end

2.5 Traders and Business School

Given the adaptive process of the business school,
the adaptive process of traders can be described as
a sequence of two decisions. First, should she go
back to the business school to take classes? Sec-
ond, should she follow the lessons learned at school?
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In the real world, the first decision somehow can be
more psychological and has something to do with peer
pressure. One way to model the influence of peer
pressure is to suppose that each trader will examine
how well she has performed over the last n2 trading
days, when compared with other traders. Suppose
that traders are ranked by the net change of wealth
over the last n2 trading days. Let Wn2

i,t be this net
change of wealth of trader i at time period t, i.e.,

∆Wn2
i,t ≡Wi,t −Wi,t−n2 , (22)

and, let Ri,t be her rank. Then, the probability that
trader i will go to business school at the end of period
t is assumed to be determined by

pi,t =
Ri,t

N
. (23)

The choice of the function pi,t is quite intuitive. It
simply means that

pi,t < pj,t, if Ri,t < Rj,t. (24)

In words, the traders who come out top shall suffer
less peer pressure, and hence have less motivation to

go back to school than those who are ranked at the
bottom.

In addition to peer pressure, a trader may also
decide to go back to school out of a sense of self-
realization. Let the growth rate of wealth over the
last n2 days be

δn2
i,t =

Wi,t −Wi,t−n2

|Wi,t−n2 |
, (25)

and let qi,t be the probability that trader i will go
back to business school at the end of the tth trading
day, then it is assumed that

qi,t =
1

1 + expδ
n2
i,t

. (26)

The choice of this density function is also straight-
forward. Notice that

lim
δ

n2
i,t

→∞
qi,t = 0, (27)

and
lim

δ
n2
i,t

→−∞
qi,t = 1. (28)
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Therefore, the traders who have made great progress
will naturally be more confident and hence have little
need for schooling, whereas those who suffer devas-
tating regression will have a strong desire for school-
ing.

In sum, for trader i, the decision to go to school
can be considered as a result of a two-stage inde-
pendent Bernoulli experiments. The success proba-
bility of the first experiment is pi,t. If the outcome
of the first experiment is success, the trader will go
to school. If, however, the outcome of the first ex-
periment is failure, the trader will continue to carry
out the second experiment with the success proba-
bility qi,t. If the outcome of the second experiment is
success, then the trader will also go to school. Oth-
erwise, the trader will quit school. If we let ri,t be
the probability that trader i decides to go to school,
then

ri,t = pi,t + (1− pi,t)qi,t

=
Ri,t

N
+
N −Ri,t

N

1

1 + expδk
i,t

(29)

Once a trader decides to go to school, she has
to make a decision on what kinds of classes to take.
Since we assume that business school, at period t,
consists of 500 faculty members (forecasting mod-
els), let us denote them by gpj,t (j=1,2,...,500) The
class-taking behavior of traders is assumed to fol-
low the following sequential search process. The
trader will randomly select one forecasting model
gpj,t (j=1,...,500) with a uniform distribution. She
will then validate this model by using it to fit the
stock price and dividends over the last n3 trading
days, and compare the result (MAPE) with her orig-
inal model. If it outperforms the old model, she will
discard the old model, and put the new one into prac-
tice. Otherwise, she will start another random selec-
tion, and do it again and again until either she has
a successful search or she continuously fail I∗ times.
The following is a pseudo program of the procedure
Visiting the Business School (Also see Flowchart
2).

Procedure [Visiting Business School]
0. begin

1. Calculate MAPE(fi,t)
2. I ← 1
3. Randomly select a gpj,t (∼

U [1, 500])
4. Calculate MAPE(gpj,t)
5. If MAPE(gpj,t) < MAPE(fi,t), go

to Step (10)
6. I ← I + 1
7. If I ≤ I∗, go to step (3)
8. fi,t+1 = fi,t

9. Go to Step (11)
10. fi,t+1 = gpj,t

11. end
Equation (29) and the procedure Visiting Busi-

ness School give the distinguishing feature of our
adaptive traders. As we mentioned earlier, there is
no direct interaction among traders in terms of the
genotype. Therefore, the conventional SGA or SGP
used to evolve a population of traders is no loner
applicable here. In other words, our traders are not
GP(GA)-based. Instead, their adaptation behavior
is modeled by an explicit search process. The search
process starts with a decision to search or not. This
decision is stochastic, i.e., the trader at any point in
time cannot be sure whether she should start search-
ing, and the uncertainty of this decision is further
modeled by a technique similar to simulated anneal-
ing (SA).3 In sum, it is a society composing of SA-
based traders and SGP-based faculty, who coevlove
with different fitness functions (objective functions).

3 Experimental Designs

One of the formidable tasks for agent-based compu-
tational stock markets is the design of traders. As
LeBaron (1998) pointed out: “The computational
realm has the advantages and disadvantages of a
wide open space in which to design traders, and
new researchers should be aware of the daunting de-
sign questions that they will face. Most of these
questions still remain relatively unexploited at this
time. (p.18)” Nevertheless, one should notice that
this issue is not confined to agent-based computa-
tional finance, and is widely shared by all research
in bounded rationality. For example, Sargent (1993)
stated “This area is wilderness because the research
faces so many choices after he decides to forgo the
discipline provided by equilibrium theorizing. (p.2)”

LeBaron’s and Sargent’s description of this
wilderness can be further exemplified by Table 1.
Facing such a wide open space, we have to admit
that some choices we made may be arbitrary, and

3To be precise, the search procedure introduced above is not simulated annealing. In simulated annealing, the decision to
accept a new solution is random. However, here, it is the decision to search a random one. By this setting, the learning rate
is endogenously determined for each individual rather than exogenously given.
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that the results may not be robust to all designs.
Hence, in addition to run many runs in a single de-
sign, it is also crucial to test many different designs,
i.e., to test many tables like Table 1, while with dif-
ferent parameters. This paper, however, has a very
limited scope, i.e., to illustrate the rich dynamics
our artificial stock market can possibly offer, and
the questions it can effectively deal with a single ex-
periment. 4 Therefore, while we do fine-tune some
of our parameters listed in Table 1, we do not inten-
tionally calibrate our parameters for the purpose of

replicating the stylized facts of financial time series.5

The simulation results of our artificial stock mar-
ket are mainly a series of time series variables of
traders (microstructure) and the market. They are
summarized in Table 2.

4In fact, we did have multiple runs before coming to this point. The simulations results presented here can be considered
a typical one in the sense that many properties reported here are widely observed in other runs. Therefore, to make the
presentation to have a focus, we shall only exemplify what we learn from this market by a single “typical” run. Nevertheless,
to have better communication with readers, we have put our program to the website so that it can be freely downloaded,
examined and tested. The website address is:
http://econo.nccu.edu.tw/ai/staff/csh/Software.htm

5According to LeBaron (1998), one of the missions of the agent-based modeling of financial markets is to replicate time
series features of real markets. Lux (1995, 1998), Lux and Marchesi (1998), Chen, Lux and Marchesi (1999) have showed how
these stylized facts can be replicated in a specific style of agent-based models.

10



4 Simulation Results

Based on the experimental design given above (Ta-
ble 1), a single run with 14,000 generations was con-
ducted. Notice that the number of generations is
also the time scale of simulation, i.e., GEN = t.
In other words, we are simultaneously evolving the
population of traders while deriving the price Pt. In
the following, we shall present our results in an order
to answer a series of questions motivated by Pagan
(1996).6

1. Are prices and returns normally distributed?

2. Does the price series have a unit root, i.e., does
the price series follow an I(1) process?

3. Are returns independently and identically dis-
tributed?

In addition to the “up” part, agent-based computa-
tional models provide us with rich opportunity to
study the microstructure, i.e., the behavioral aspect
of traders. In our artificial stock market, a trader’s
behavior can be well kept track of by a list of vari-
ables given in Table 2. This list of variables enables
us to address a lot of interesting issues in behavioral
finance.

1. What does the traders actually believe? Does
she believe in the efficient market hypothesis?

2. What exactly is the forecasting model (or the
trading strategy) employed by the trader?

3. How sophisticated is the trader? Will she get
more and more sophisticated as time goes on?

In the following, we shall illustrate how these issues
can be approached by our agent-based artificial stock
market.

First, are price and returns normally distributed?
The time series plot of the stock price is drawn in
Figure 4. Over this long horizon, Pt fluctuates be-
tween 55 and 105. The basic statistics of this series,
{Pt}14000t=1 , is summarized in Table 3. Given the price
series, the return series is derived as usual,

rt = ln(Pt)− ln(Pt−1). (30)

Figure 5 is a time series of stock return, and Ta-
ble 4 gives the basic statistics of this return series.
From these two tables, neither the stock price series

{Pt} nor return series {rt} is normal. The null hy-
pothesis that these series are normal are rejected by
the Jarqu-Bera statistics in all periods. The fat-tail
property is especially striking in the return series.
This result is consistent with one of stylized facts
documented in Pagan (1996).

Second, does the price series have a unit root?
The standard tool to test for the presence of a
unit root is the celebrated Dickey-Fuller (DF) test
(Dickey and Fuller, 1981). The DF test consists of
running a regression of the first difference of the log
prices series against the series lagged once.

∆ ln(Pt) = ln(Pt)− ln(Pt−1) = β1 ln(Pt−1) (31)

The null hypothesis is that β1 is zero, i.e., ln(Pt)
contains a unit root. If β1 is significantly different
from zero then the null hypothesis is rejected. As can
be seen from the second column of Table 5, from the
total number of 7 periods none leads to a rejection
of the presence of a unit root.

Third, are returns independently and identically
distributed? Here, we followed the procedure of
Chen, Lux and Marchesi (1999). This procedure
is composed of two steps, namely, the PSC filtering
and the BDS testing. We first applied the Rissanen’s
predictive stochastic complexity (PSC) to filter the
linear process. The third column of Table 5 gives us
the ARMA(p, q) process extracted from the return
series. Interestingly enough, all these seven periods
are linearly independent (p = 0, q = 0). This result
corresponds to the classical version of the efficient
market hypothesis.

Once the linear signals are filtered, any signals
left in the residual series must be nonlinear. There-
fore, one of the most frequently used statistic, the
BDS test, is applied to the residuals from the PSC
filter. Since none of the seven return series have lin-
ear signals, the BDS test is directly applied to the
original return series. There are two parameters re-
quired to conduct the BDS test. One is the distance
parameter (ε standard deviations), and the other is
the embedding dimension (DIM). We found the re-
sult is not sensitive to the first choice, and hence,
we only report the result with ε = 1. As to the
embedding dimension, we tried DIM =2,3,4,5, and
the result is given in Table 6. Since the BDS test
is asymptotically normal, it is quite easy to have an
eyeball check on the results.

What is a little surprising is that the null hy-
pothesis of IID (identically and independently dis-

6Pagan (1996) summarized a list of stylized facts in financial time series.
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tributed) is not rejected in 6 out of 7 periods. The
only period whose return series has nonlinear signals
is Period 5. Putting the result of PSC filtering and
BDS testing together, our return series is efficient
to the degree that, 85% of the time, it can be re-
garded as a iid series. But, if the series is indeed
independent (no signals at all), what is the incentive
for traders to search? Clearly, here, we have come to
the issues raised by Grossman and Stiglitz 20 years
ago (Grossman and Stiglitz, 1981).

One of the advantages agent-based computa-
tional economics (the bottom-up approach) is that it
allows us to observe what traders are actually think-
ing and doing. Are they martingale believers? That
is, do they believe that

Et(Pt+1 + Dt+1) = Pt + Dt? (32)

If they do not believe in the martingale hypothesis,
do they search intensively? In other words, do they
go to school and can still learn something useful in
such an iid-series environment? To answer the first
question, the time series of N1,t in Table 2 is drawn
in Figure 6. The figure is drawn only up to the first
2203 trading days, because after that the group of
believers goes extinct. Hence, while econometricians
may claim that the return series is iid, traders simply
do not buy it. 7

This naturally brings up the second question: if
they do not believe in the martingale hypothesis, what
do they actually do? Figure 7 is the time series plot
of the number of traders with successful search, N3,t.
Due to the density of the plot and the wide range of
fluctuation, this figure is somewhat complicated and
difficult to read. We, therefore, report the average of
N3,t over different periods of trading days in Table
7. From Table 7, it can be seen that the number of
traders with successful search, on the average, fluc-
tuates about 200. At a rough estimate, 40% of the
traders benefit from business school per trading day.
Clearly, search in business school is not futile.

It is interesting to know what kind of useful
lessons traders learn from business school. Based on
our design given in Section 3, what business school
offers is a collection of forecasting models {gpi,t},
which may well capture the recent movement of the
stock price and dividends. Therefore, while in the
long-run the return series is iid, traders under sur-
vival pressures do not care much about this long-run
property. What motivates them to search and helps
them to survive is in effect brief signals. A similar

observation was made by Peters (1991):

The evidence calls into question the Ef-
ficient Market Hypothesis, which under-
lies the linear mathematics used in most
capital market theory. It also lends va-
lidity to a number of investment strate-
gies that should not work if markets are
efficient,.... This finding is of partic-
ular importance for practitioners, be-
cause experience has shown that these
strategies do work when properly applied,
even though theory tells us they should
not work in a random-walk environment.
(Italics added.)

Another way to see what traders may learn from
business school is to examine the forecasting models
they employ. However, this is a very large database,
and is difficult to deal with directly. But, since all
forecasting models are in the format of LISP trees,
we can at least ask how complex these forecasting
models are. To do so, we give two definitions of the
complexity of a GP-tree. The first definition is based
on the number of nodes appearing in the tree, while
the second is based on the depth of the tree. On
each trading day, we have a profile of the evolved
GP-trees for 500 traders, {fi,t}. The complexity of
each tree is computed. Let ki,t be the number of
nodes of the model fi,t and κi,t be the depth of fi,t.
We then average as follows.

kt =
∑500

i ki,t

500
, and κt =

∑500
i κi,t

500
. (33)

Figures 8 and 9 are the time series plots of kt

and κt. One interesting hypothesis one may make
is that the degree of traders’ sophistication is an in-
creasing function of time (the monotone hypothesis).
In other words, traders will evolve to be more and
more sophisticated as time goes on. However, this is
not the case here. Both figures evidence that, while
traders can evolve toward a higher degree of sophis-
tication, at some point in time, they can be simple
as well (Also see Table 7). Despite the rejection of
the monotone hypothesis, we see no evidence that
traders’ behavior will converge to the simple mar-
tingale model.

Figures 7, 8 and 9 together leave us an impression
that traders in our artificial stock market are very
adaptive. About this phenomenon, Arthur (1992)
conducted a survival test on it.

7One possible explanation for this inconsistency is that, under survival pressure, traders only care about their short-term
performance, and and are only looking for models which are able to work in the short term. In fact, as what we shall see
later, traders in our artificial world are very active on trying and using new models.
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Figure 4 : Time Series Plot of the Stock Price
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Figure 5 : Time Series Plot of Stock Returns
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Figure 6 : The Number of Traders with Martingale Strategies on Each Trading Day
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We find no evidence that market behav-
ior ever settles down; the population of
predictors continually co-evolves. One
way to test this is to take agents out
of the system and inject them in again
later on. If market behavior is stationary
they should be able to do as well in the
future as they are doing today. But we
find that when we “freeze” a successful
agent’s predictors early on and inject the
agent into the system much later, the for-
merly successful agent is now a dinosaur.
His predictions are unadapted and per-
form poorly. The system has changed.
(p.24, Ialics Added)

Authur’s interesting experiment can be consid-
ered as a measure of the speed of change in a sys-
tem. If a system changes in a very fast manner, then
knowledge about the system has to be updated in a
similar pace; otherwise, the knowledge acquired shall
soon become obsolete. To see how fast our artificial
stock market changes, we made an experiment sim-
ilar to Arthur’s survival test. Since in our artificial
market business school is update every 20 periods
(m1 = 20, Table 1), we can measure how fast the
knowledge become obsolete by calculating the num-
ber of traders with successful search on the hth day
after business school has updated the knowledge.

It is expected that knowledge acquired on the
day immediately after the updating day should be
most helpful for the searching traders. Therefore,
the number of traders with successful search should
be strikingly high on that day, and the farther it
is from the updating, the less the chance of having
a successful search. More precisely, denote N3,t by
N3,hi , where t = (i) · 20 + h, and let

N3,h =
∑14000/20

i=1 N3,hi

14000/20
, (34)

then a test similar to Arthur’s “Jurassic Park” ex-
periment can be reformulated as follows. N3,h is a
monotonic decreasing function of h. To see whether
this property will apply to our system, Table 8 re-
ports the statistics N3,h. This series of numbers
starts with a peak at 308, and quickly goes down
below 300 and then drops further below 200 as h in-
creases. This result simply says that when more and
more people knows the secret, there can be no longer
any secret.

The last result also shows the co-evolving com-
plex dynamics between business school and the mar-

ket. To survive, school must adapt to market dynam-
ics. On the other hand, market dynamics generate
students for “school” who, in turn, bring the knowl-
edge learned from “school” back to the market, and
that knowledge may have further impact on mar-
ket dynamics. The patterns discovered by business
school are eventually annihilated by the traders who
learn and make a living on these patterns. However,
on the process of annihilating these patterns, new
patterns are further generated for school to discover,
and this process goes on and on. One may call this
process a self-destruction-and-generation process.

5 Concluding Remarks

The single experiment conducted here has demon-
strated the rich dynamics that our artificial stock
market can generate. We also show the relevance of
this rich dynamics to financial econometrics and be-
havioral finance. For the latter, we address Peters’
criticism on the efficient market hypothesis as well
as the survival test with our dynamics of microstruc-
ture. It is interesting to note that, while econometri-
cians on the top may claim that our artificial market
is efficient, our traders on the bottom do not act as if
they believe in the efficient market hypothesis. This
result seems to be consistent with our experience of
the real world, and is one of the interesting features
one may expect from the bottom-up approach.

Appendix: The Software AIE-
ASM

The software used to simulate the artificial stock
market reported here can be directly downloaded
from
http://econo.nccu.edu.tw/ai/staff/csh/Software.htm.
The current version is AIE-ASM Version 2. This
website will be continuously updated when new ver-
sions are available. There are two papers which
can be helpful for potential users. Chen, Liau and
Yeh (2000) provided instructions on how to install
this software. They further exemplified the use of
this software system by examining its performance
from the aspect of price discovery. Chen and Yeh
(2000) studied the complex dynamics of this soft-
ware system as a 25-dimensional dynamical system
under several different settings, which include the
ones with and without a b-school, ones with differ-
ent speed of price adjustment (β1 and β2), ones with
different rank functions (Equation (23)). Apart from
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Figure 7 : The Number of Traders with Successful Search on Each Trading Day
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Figure 8 : Traders' Complexity : The Average of the Number of Nodes of GP-Trees
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Figure 9 : Traders' Complexity : The Average of Depth of GP-Trees
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research, for those who are interested in using this
software system for teaching, there are also materi-
als written in Power Point, which are available upon
request.
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