FRERAFASE R AR LT ERRAS

TR AONER ) ZEREHNAG SRR ZHMEAR

The Theoretical Derivation and the Dynamic Process Simulation of
the Rank Size Rule

EHER MR E
st E 435 ¢ NSC 89-2415-H-004-041
AT 80 4£8 A1 REIHE1 A3 A
STEEXHARCH
BATEMR D BLBEAREE A

TERR 0% 1A 248



TPER KNER 2 RRRHAGR BRI HEAR

X £

BRAEETHEBTIRLE T (Zipf's law) $REEELH# 8 1 F e
MBERTRTA AT hE ARNBREES > LERCHI T AT T RERY
AR AR - T 2R (Gibrat's law) S AL £ X T8 40654
U RS SST 8 ik RAEFEAR W 69P5 B A1k R] (Rank-Size Rule)- Ax &8
HERH -~ BRANSEEVRGLZT BB TR T Tz gAML S &L
BTr—ReAsdl > EMESEFRER logit VBB T THE 5 E 840
TAVHREKEERRFAFHERSEY - RESTHE T SEFAL &Y
HPERPHFLEBLTERSFTHER SR SAANBE 8- AAFH logit
HAMBEREMRET - FIRR;EADESRINERE RO M Rk
BHREEERHRNBE - TRNGEEEME - L RANBEREGEBT > 484
ERRSRSBENEELTE -

TETMEBET ESLR] (Pover law) 2% 2 EF 8 RSB (self-
organized structure) #45# % # (complex system) 3£ E#H ; AEEH
FIYRBRT AN THGERLER (Zipl's law) AR BRI THER
TEHFEFHROTH - AXEZEAUREHAR AL TEROSLEBNAELE
HEREUELR A e MHERRTHEDEERLHAGRE - & 7MLEH
REAR M A R MR R S 1845 242 (Gibrat' s law) B2 £ 217 (Zipf' s
law) 9% 0H - AR KRBT SRS B ELAR KBS EREEIRE
FREMGDER ) MEEMRE R e LB R R R s B g
KaieypPaHAE - MRS R R ELEMEBREERZRaNST TR
ROBHBAATEREEOBLEHRARE AERILTORSE - BH My
BLESFABAFYHABLASRE  ATHMOE A B L BA > Bassd
MR EENZRGMD ARTBASEAMA LN ENRECBEERRDH
MEREBEAFHUAARE -

WISt - A KT > MR RAERR BRASERM > B2k
A



The Theoretical Derivation and the Dynamic Process Simulation of the Rank-Size
Rule

Abstract

Zipf’s law has been considered the minimum criterion for the city growth model
due to its robust empirical evidence across various types of countries and dates.
Gibrat’s law is proved to be the condition for the emergence of Zipf's limit
distribution by a statistical method. This paper shows that a general economic growth
model with logit choice probability will converge to Zipf's law in the steady state. The
growth process derived from the gravity type optimal migrant flow is homogeneous.
This implies that the gravity type optimal migrant flow has limit distribution
converging to Zipf’s pattern based on Gibrat’s law. Without the assumption of discrete
choice probability, the pattern of region’s limit distribution is closely related to the
property of the externality effects of residents and firms. Zipf's pattern will emerge as
the limit distribution if the externalities from resident and firm converge to an
asymptotic value as city size getting large.

Power law has been shown to be a common feature of many self-organized
complex systems, and Zipf's law in regional science is the most famous of all these
distributions. This paper shows that the assumption of homogeneity of the random
growth process as assumed in Gibrat's law will generate city size distribution as power
law. However, Gibrat's law does not necessarily generate Zipf's limiting pattern. City
distribution could possibily converge to a Zipf's pattern limiting distribution only with
a diminishing decreasing standard deviation of the random growth rate. Moreover, the
value of the dimimishing rate of the standard deviation of city growth rate determines
the speed of the convergence and the value of the converged slope. The homogeneous
random evolving process is the essential underlying feature, which generates the
common power law property of many complex systems. Nevertheless, the variation of
the changing rate of increased potential connections and the sensitivity of interactions
among cities are the major reasons for the differences of the slopes among self-

organized systems.

Keywords: Zipf's Law, Gibrat's Law, Rank-Size Rule, Self-organized criticality,
Complex systems



The Theoretical Derivation and the Dynamic Process Simulation of the Rank
Size Rule -  Gibrat’s Law and the Growth of Cities

Abstract

Zipf’s law has been considered the minimum criterion for the city growth model due
to its robust empirical evidence across various types of countries and dates.
Gibrat’s law is proved to be the condition for the emergence of Zipf's limit
distribution by a statistical method. This paper shows that a general economic
growth model with logit choice probability will converge to Zipf's law in the steady
state. The growth process derived from the gravity type optimal migrant flow is
homogeneous. This implies that the gravity type optimal migrant flow has limit
distribution converging to Zipf’s pattern based on Gibrat's law. Without the
assumption of discrete choice probability, the pattern of region’s limit distribution is
closely related to the property of the externality effects of residents and firms. Zipf's
pattern will emerge as the limit distribution if the externalities from resident and

firm converge to an asymptotic value as city size getting large.
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l. Introducticn

Zipf's law presents a robust regularity in cities’ limiting distnbution. The
empirical evidence shows that countries with different economics structures
mostly converge to the same limiting pattern. It is examined in most modern
countries by Rosen and Resnick {1980); in India in 1911 by Zipf (1949); in U.S.
history by Dobkins and loannides (1998), Krugman (1996) and Zipf (1549); and
in mid-mineteenth century China by Rozman (1990). These empirical evidences
of different countries and dates support Zipf's law.

<

This general distribution pattern can be viewed as a “self-organized
criticality”. Bak, Tang and Wiesenfeld (1987) had shown that dynamical systems
might evolve into a “self-organized critical point”. Zipf's law can be expressed as
the probabulity that the size of a city is greater than some level S (or the rank of
the city with city size S) is proportional to 1/8.

Gabaix (1999) states that Zipf's law is the necessary. condition for a local
growth model. Traditional explanations of Zipf's law mostly come from t.he
economic force point of view (Losch 1954; Hoover 1954; and Beckman 1958).
However, the balanping of transport cost, externalities and productivity difference
do not really explain why the limit distribution is as Zipf’s pattern {Gabaix 1999).

Analysis based on random process prospect gives a very different explanation for

this problem (Simon 1955). The assumption in Simon’s model empirically shows
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contradicting to the real world (Duncan Black and Vernon Henderson 1999).
Gabaix (1999) proposes that the robust empirical regularity may due to the simple
statistical property. He shows that a homogeneous growth process referred to as
Gibrat’s law would derive a limit distribution as Zipf's pattern. This finding
connects the static limiting distribution to the corresponding dynamic growth
process. Consequently, questioning the reason of Zipf's law could be related to
examining the property of the growth process.

The purpose of this paper is to investigate the possible relation between the
economic mechanism and the statistical condition (Gibrat’s law) in explaining
Zipf's distribution. We are interested in the following questions: Does a general
economic mode] evolve to a city growth process characterized by Gibrat’s law
theoretically? Given the robust evidence of Zipf's law, what kind of implication
that Gibrat’s law could indicate in the economic growth model?

Section 2 introduces the Gibrat’s law. Section 3 presents the possible
relation between the growth process and Gibrat's law in a general economic
model with and without a logit choice probability assumption. The conclusion is
in Section 4.

2. Gibrat’s Law

Gibrat’s law was first presented by Robert Gibrat (1931} to model the relation



between the dynam'ics of firm size and industry structure. Sutton (1997) suggests
that the evolution of market structure is a complex phenomenon and the proper
understanding of the evolution of the structure may require analyzing both the
economic mechanisms and the statistical effects.

The evolution of city growth is a complex phenomenon charactenized by the
features of complex systems, Gabaix (1999) proposed Gibrat's law to explain Zipf's
law from a pure statistica] view. Gibrat’s law refers 'ghat cities with a homogeneous
growth process would converge to Zipf's distribution in the steady state A
homogeneous random growth process has common mean and common variance
which are independent of city size. He shows that an independent and identically
distributed random growth process will have limit distnbution with the tail
distribution of city sizes at time t proportional to the inverse of city size in the
steady state:

P(S>s)=als (1}
Where parameter S is the size of the city and parameter a is a constant. This is
Zipf’s Law. Given a random growth process with the same mean and variance of
growth rate, 1t could be proved that this Zipf's pattern 1s the necessary steady-state
distribution.

Some empirical works have studied the property of the gromh process of



cities. Eaton and Eckstein (1997) haverfOund that there is no correlation between the
initial size and the growth rate in both Japanese and French cities. Gabaix (1999)
uses Eeaton and Eckstein’s data to .show that the variance of the growth rate does
not seem to differ across city sizes. We present the data in Taiwan to examine the
relation between mean and variance growth rate versus city size in 1971 and 1998 in
figure 1 and 2. There are 43 cities in the figures. The cities are chosen by the
criterion that these are at least 50,000 inhabifants in the cities. The figures show that
mean growth rate and the variance growth rate of cities in Taiwan between 1971 and
1998 are not strongly correlated with city size.

This Gibrat’s law is a pure statistical explanation for Zipf's distribution. It
would be important and legitimate to analyze the possible underlying economic
mechanism and its correlation to this summarized statistical effect.

3. The Model
3.1 A General Economic Model

Assume the population growth in a region is from migration and natural birth
and death. There are overlapping generation residents with death rate, x . Residents
migrate to the city they choose from other region and live there until they die.

Assume a, is the amenities level of city 1 at time t, and w, is the wage in city i at

time t. The amenities level is independent and identically distributed. The utility



level of a resident \.:.rith consumption C in city 118 Ca,. Let S, be the population
in city 1 at time t. Assume there is external benefit (e g, better public infrastructure
and frequent social co_ntact) and cost (e.g., congestion and air pollution) to the
residents due to the size of the city: E(S,). The migrants maximize the
utility, £(S,, yw,a,, to choose the residential city.

In equilibrium, the common utility level is:

U,00,) = EGS, w0, @

Let A, be the total immigrants in the region at time t. Let p, be the probability
that rni.grants will move to ctty 1 at time t. The migrant which move to city 1 at time
t,m,, equals p, M, The total population in city i at time t, 5, , is:

S, =pM, +(+7-x)§, ,, (3)
where parameter r is the birth rate in the region, and % is the death rate in the
region. Assume the production technology F is constant return to scale and the labor
force is proportional to the population in the city. The production function m city 1
at time t is:

A(S,;)F(Su} = A(S.‘r }F(mu + (l - K)Si,;q) = A(S,,)F(m S,',;q) = A(Sﬂ- )S;'_rqf(mij J{S:',I-'I )»

ir?
where function f is increasing and concave, and function A(S,) 1s the

agglomeration effect of firms. This agglomeration effect 1s the external benefit and

cost in firm’s production (e.g., larger labor accessibility and frequent information



contact as benefit, ;md higher land rent and congestion as cost). The wages of the
new immigrant is:

w, = A8, m, 1S, ) @)
The equilibrium utility level 1s:

U, =a, E(S)AS ) (m, 18, ) (5)
The growth rate of city 11s as follows:

Yo ={m, +(-x)8, ., )‘nfS,._;_l =7 U Ha, ESHAS, M+ (z-x)  (6)

The equilibrium utility level, [/,, is the same for all cities in the region; and the
amenities distribution 1s independent of the city size. If there is no external effect for
residents and agglomeration effect in production, the growth rate of city is
independent of city size. This growth process is referring to Gibrat’'s law.
Consequently, the limiting distribution will converge to Zipfs pattern.

However, the existence of both external effect in resident, (5, ), and
agglomeration effect in production, A(S, ), suggests that the condition for the
emergence of Zipf's pattern in the steady state is that the combination effect of these
two external and agglomeration effects become independent of city size. However,
these two external effects are mostly caused by city size.

The possible situation that this total external effect would be independent

of city size is when these external effects reach the same boundars' or criticality for



cities. Larger cities have external effects close to some boundary on; criticality. This
1s corresponding to the empirical evidence that Zipf's law explains the limit
distribution better for larger cities. If the net external effect (from positive and
negative external effects) is bounded or have some common asymptotic value, the
growth rate will become independent of size in the upper level. That is, Zipf's
pattern will emerge in the limit distribution if the externalities from resident and
firm converge to an asymptotic value as city size getting large.

Curry (1964) has mentioned that the resulting actions from different optimal
decisions may appear as random as a whole. In another words, a deterministic rule
may lead to a probabilistic result. This might due to the nonlinearly decision rule of
agents, which inherent the property that deterministic rule may derive stochastic
result.

3.2 A General Economic Model with the Logit Choice Probability

Assume the unsystematic part of the utility function is independent and
identical extreme value. For a single random variable case, the extreme value
distribution and the normal distribution are practically the same.' Given the extreme
value distribution assumption, the location choice probability p, is as logit model.

The functicnal form and the discrete dynamic process of the choice probability are

! See Ch. 3, Kenneth Train (1990).



the following:

_ Bxp(Ui,t )
P = S eplU,,)

)
Take the rate of change of p., with respect to time to derive the evolution process
{Nykarmp and Reggiani, 1991).
P :ur‘pi(l—pr')_pr'zujpj (3)
JEi

And then approximate this continuous evolution (equation (8)) in discrete time to

derive the following discrete terms: {Wilson and Bennett, 1985)

Pien ™ (ufr +1)pi1 - ur'rpirz - pirzuﬂ Pi (9)

i
Where the variable, %, , is the change of the utility level of residents in city i at time t.
The choice probability is influenced by it’s own location benefit and the competitive
forces from all other cities in the region. The gravity model has a logit type
functional form of the location choice probability.
The growth rate of city size in city i at time t is:

Y =8, =80/ 804

=P 1P +A+T7-K)p, , + (T B poli+(z-k), (10)
It shows that the growth rate of city i,7,, is proportional to the corresponding
location choice probability, p, . Consequently, the property of the distribution of the

city size growth rate is the same as the distribution of the growth rate of the choice

probability.



Apply the di.scrcte probability in equation (9) to derive the growth rate of the
choice probability:
s = P — P Py =1, —i}u,-.p,-. (1)
P=
The average and variance of the growth rates of the choice probability in the stéady

state are the following:

E[Bam 1= M i#:Eij:] (12)
Varl6, 1= 3 a1 Varlp, )+ 232 #/Cov(p,.py) (13)

The average growth rate of the choice probability is varied by the
corresponding change of utility, #,. In equilibrium, the utility level is the same
across cities as in equation {3), the change of utility is the same across cities in the
steady state. The average growth rate of the choice probability (equation (12)) and
the growth rate of city size (equation (10)) are the same across cities.

Furthermore, the variances of the probability growth rate are also the same
across cities. It shows that both the average and varianées. growth rates are
independent of city size in the steady state. According to Gibrat’s law, the general
economic model with logit choice probability has limit distribution converge to

Zipf's pattern.



4. Conclusion

Gibrat’s law explains Zipf's law in a very different way from traditional
economics mechanisms. It 1s easy and neat as a pure statistical explanation. Using
a general economic growth model with the logit choice probability assumption, the
limit distribution will converge to Zipf's pattern without further conditions of the
externalities according to Gibrat’s law. Without the assumption of extreme value
distribution or the logit choice probability, the presented general economic growth
model shows that the properties of residential externalities and agglomeration effect
closely affect the pattern of its limit distribution. The robust empirical evidence of
Zipf s distribution implieé that the externalities and agglomeration economies (from
both resident and firm) are independent of city size in the steady state. Zipf's pattern
will emerge in the limit distribution if the externalities from resident and firm
converge to an asymptotic value as city size getting large.

Gibrat's law shows that a homogeneous growth process converges to Zipf's
pattern in the steady state. The optimal migrant flows from gravity theory wili
generate a homogeneous growth process that is independent of city size. This
growth process derived from agents' optimal solutions based on deterministic rule
will have Zipf's limit distribution.

Two major sources of explanations for Zipf's law (econ(_)mics mechanism

and statistical method) are correlated vertically. The optimal decisions driven by the
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economic forces are the microscope of agents’ behavior; and the suminarized effect
of the growth process to the limit distribution as a whole in the region is at the
macro level. Multiple optimal decisions in the micro level do not necessarily result
in & deterministic result. On the contrary, it‘ mﬁy appear random as a whole in the
limit. A general location problem may endow the property of a complex system:

deterministic rule leading to a stochastic result.
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The Theoretical Derivation and the Dynamic Process Simulation of the Rank
Size Rule - Order from Random Growth Process in the Evolving Complex Systems

Abstract

Power law has been shown to be a common feature of many self-organized complex
systems, and Zipf's law in regional science is the most famous of all these
distributions. This paper shows that the assumption of homogeneity of the random
growth process as assumed in Gibrat's law will generate city size distribution as
power law. However, Gibrat's law does not necessarily generate Zipf's limiting pattern.
City distribution could possibily converge to a Zipf's pattern limiting distribution only
with a diminishing decreasing standard deviation of the random growth rate.
Moreover, the value of the diminishing rate of the standard deviation of city growth
rate determines the speed of the convergence and the value of the converged slope.
The homogeneous random evolving process is the essential underlying feature, which
generates the common power law property of many complex systems. Nevertheless,
the variation of the changing rate of increased potential connections and the
sensitivity of interactions among cities are the major reasons for the differences of the
slopes among self-organized systems.
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1. Introduction

The world 1s full of complex systems that are self-organized not only in
response to exogenous disturbance, but also in response to internal fogic. There is no
global controller in the complex system. Many levels of hierarchical organization
define the interaction among different level of units. Various deterministic interacted
mechanisms in different level of hierarchy and the stochastic factors caused within
and outside the system organize the systems' behavior. Global weather, developing
embryo, global economy and growing cities are all examples of this self-organizing
system. Global economy is composed of many levels of hierarchical organization that
consists of various levels of agents and units interacted with each other. The evolution
of the global economy results from the evolution of the system. Similarly, the growth
of cities within a region, a country or globally is also corresponding to the selt-
organized mecharism. Cities' growth within a region is caused by both deterministic
and stochastic factors. The deterministic factor is based on the systematic features of
various hierarchical organizations. Those include the location choices of different
agents (residents and firms) and the policy choices of different units; those choices are
generated from systematic self-interest optimization decision process. Objects from
vanous self-organizing systems, such as war, sandpiles, earthquakes, forest fires, and
city distnbution, disprlay a size distribution as power function. Po_wer law has been

shown to be a common feature of many complex systems; this common feature



reﬂects certain regularity of the size distribution in different systems. Zip'f law in city
distribution is the most famous regularity among all these distributions; it states a
linear relation between log of city rank and log of city size of cities' limiting
distribution in different countries. This feature indicates a certain limiting hierarchical
composition of city distribution and is strongly supported by empirical evidence in
different data set. The application of Gib_rat‘s law explains Zipf's pattemn by a
statistical mechanism. However, this pure statistical explanation is lack of condition
for the existence of the limiting distribution and also lack of consideration of the self-
organized property and economic foundation.

The purpose of this paper is to investigate the possible underlying mechanisms
or properties in complex systems that would lead to this general simple regularity
given different structures. Furthermore, to explain power law and Zipf's law from the
self-organized complex system point of view that has not been taking into account to
explain Zipf's pattern before.

Section 2 introduces the essential idea and property of the dynamical complex
systems. Section 3 gives a brief review of power law, rank-size rule and Zipf's law
which describe urban size distnbution in régional studies. Section 4 shows the
common features of the self-organized criticality: power law. Section 5 investigates

the emergence of power law and Zipf's law theoretically and empirically both from



the stochastic process and self-organized feature point of views. The conclusion is in

Section 6.

2. The Evolving Complex System

Philip Anderson, the Nobel laureate physicist defined the complex system as a
science of "emergence”. It is about the surprising ensembles from the nonlinear
combination of the interacting units in the system. From the structure point of view,
the complex system is self-organmized as systems form from almost random or
homogeneous state based on some deterministic rules. Complexity is also defined as a
measure of the sensitivity of particles in the systems. It is the potential connections
among agents in the systems. The complex system is first observed in physics and
biology. Further research about economy as an evolving complex system is discussed
in Santa Fe Institute in 1987. The nonlinear dynamic structure among the interacting
units results in several special features.

Authur, Durlauf and Lane {1997) pointed out six features of the complex
system: no global controller, dispersed int_craction, crosscutting  hierarchical
organization, continual adaptation behaviors, perpetual noveliy niches, and out-of-
equilibrium dynamics. The organized units 1n the systems are interacted with each

other in a very pluralistic form. There are many levels of hierarchical organization



defining the interaction among different level of units. Vanous determimstic
interaction mechanisms in different level of hierarchy organize the systems' behavior.
There is no global controller in the system. In addition, the various deterministic
interaction rules are adaptive, and the system is perpetual novelty. The most important
feature that is very much different form the classic economic theory is the out of
equilibrium features. There is no unique optimum or global equilibrium in the system.

Systems with these features are called adaptive nonlinear networks. Due to the
structural features of the system, there are some essential properties of this adaptive
nonlinear network. The possible evolving outcomes of the system is path dependent;
the histonical shock is very cructal for the result. Also, it shows “lock-in” property in
the evolution process. Once an "alternative" is chosen, it is difficult to exit (named as
lock-1n effect) due to the increasing return to scale property. Thus, the evolving result
is possible to be inefficient as the whole or at the end. Even there is a better
alternative later, the system might stock in fhe less efficient .alternative due to the
ncreasing return to scale property. The outcome of the system is not predictable and
multiple equilibria are possible.

The evolving outcome is very sensible to the initial conditions and the value of
parameters. Different value of the parameters will result in different charactenstic of

the evolving process. Some evolving process is predictable and stable, but some are



unpredictable and unstable. Features of this self-organized complex system have been
applied to study various economic phenomena, such as positive feedback in
economics, the historical path dependence in urban systems, nonlinear theory in
global business cycle, input and output structure in the percolation economics, and the
financial feedback in market mechanisms { see Arthur 2000; Krugman 1996, Day
1994). Urban systems are composed of different levels of hierarchy units whose
location and policy decisions form the systematic part of the system behaviors.
Krugman (1996) suggested two principles of self-organized process in
explaining economic system: order from instability and order from random growth.
The first principle indicates the astonishing empirical evidence that simple order
emerges from the unstable self-organized criticality that is generated from the out-of
equilibriom dynamicffil systems. The second principle states the possible explanation
for the feature of the emergence of order. Gibrat’s law is a typical example. This

principle will be further investigated.

3. Zipf's law and Gibrat’s law
Pareto distntbution is most commonly employed to study urban sizes in
regional research (see Mills and Hamilton 1954}

G(x)= Ax* : (1)



where G(x} is the number of cities with at least x people; it could be interpreted as
the rank of the city with x people. Variablex is the city size; parameters A and «
are constants to be estimated from the data (cited from Mills and Hamilton 1994, p.
78). Relation in equation (1) is also called power law, which describes the number of
cities with a population larger than x is proportional to x™°(see Fujita, Krugman
and Venables 1999, ch. 12} The power law with the exponent, a, close to one, 1s
referred to as Zipfs Law. The alternative name is the rank-size rule (see Fujita,
Krugman and Venables 1999, p.217):

G(x) = Ax™ @
It fefers the following relation:

xG{x}=A (3)
Zipf's law (or rank-size rule) proposes that the product of the city size (x} and its rank
(G(x)} is a constant. Take the log of the city size and city rark in equation (2):
| In{ Rark) = A'-In{ Size) (4)
where A'=1n{4}; it is a constant. Equation (4) is an alternative expression and most
commonly employed to present Zipf's law (or rank-size rule). This relation has robust
empirical evidence across countries and time. When an urban system has city
distribution as Zipf's law, the constant A in equation (3) represents the population of

the largest city in the region. Consequently, the second-largest cityrwould have one-



half the population of the largest, and the third, one-third that population, etc. This
distribution regularity in various urban systems are based on different levels of
economic decision processes.

Gabaix (1999) proposes Gibrat's law to describe Zipfs pattern in city
distnibution. He states that if cities grow randomly with the same expected growth rate
and the same standard deviation, the limiting distribution will converge to Zipfs law
(Gabaix 1999). Gibrat's law indicates that when cities' size randomly grows with a
homogeneous growth process', the limiting distribution will converge to Zipf's pattern

regardiess of the distribution type of the growth rate.

4. The common order from the self-organized criticality: power law

The hierarchical structures and the interaction among agents generate the
complex evolution process. Per Bak et al demonstrated that dynamical systems
naturally evolve into highly interactive critical states which are barely stable { see Bak,
Tang, and Wiesenfeld 1987 ). This self-organized criticality, where a small cause may
lead to a large event, is the common underlying mechanism behind the special feature:
the power law distribution of the corresponding events ( see Bak and Paczuski 1995 ).

The events, named as the complexity cascades of self-organized criticality in social

! The expected growth rate and standard deviation of city growth rate are the same across cities; they
are independent of city size ,



system, take the form of wars, strikes, economic depressions, collapses of government,
coalitions, emergence of cities, and many others. The historical details of these events
are unpredictable; however, the statistical distribution of these events is predictable.
This predictable power law appears as a straight line in a double logarithmic plot of
rank and size. it is empirically observed in various complex systems: ecological
systems, social systems and geophysical phenomena They are organized by various
mechanics and networks type, but all results in characteristic power function in the
size distribution.

Brunk (2000) propose that the evolution process of the complex system
characterized by the self-organized criticality is composed of two parts: a systematic
growth factor and a random growth factor The systematic growth factor is
characterized by the underlying mechanism and depends on the current degree of
"complexity” of the systems. The complexity is measured as the degree of the
potential connection among members, and is growing as the syétems getting larger or
extending more subsystems. The increasing complexity implies increasing in the
sensttivity of interactions. A random growth factor could be generated either inside or
outside the systems. These systematic and -unsystematic growth. factors together with
the increasing complexity property in the complex systems are essential in explaining

power function phenomenon. The most robust evidence of power function in



complexity cascades appears in urban system.

Zipf (1949) found that city sizes follow a very simple distribution law. He
showed that the size distribution of cities satisfies power law with a scaling exponent
equals one empirically for many different societies and time periods. It is named as
Zipf's law showing that the probability the size of a city greater than some size x is
proportional to 1/x. The expression of Zipf's law can be visualized by taking a country
cross sectional data on city size and city rank. The plot with the log of rank along the
y-axis, and the log of the population along the x-axis will mostly show a straight line
with slope very close to —1.

The empirical evidence of Zipfs law is shown in various data sets: most
modern countries ( see Rosen and Resnick 1980 ), India in 1911 { see Zipf 1949 ), US.
histbry ( see Dobkins and loannides 1998; Krugman 1996; Zipf 1949 ) and China in
the mid-nineteenth century ( see Rozman 1990 ). More recent data shows that Zipf's
law remains rather good approximation for developed countries. However, cities in
countries with a unique social structure, such as the former USSR or China, do not
quite follow Zipf’s law ( see Marsili, and Zhang 1998 }.

Empirical evidences show that individual decision rules followed by the
underlying hierarchical structure do influence the generating process of self-organized

criticality. The growth of the cities in the region is characterized by the hierarchical



system and is self-organized. Gabaix (1999) proposes Gibrat's law to describe Zipf's
law in city distoibution. However, Gabaix's work only shows that if there is a steady
state process of the tail distribution of city sizes, the limiting distribution would be as
Zipf's pattern. He did not discuss the condition for the existence of the steady state
process.

This finding of (Gibrat’s law suggests a pure statistical view in explaining
Zipf's law other than the usual economics views based on the urban theories.
According to the urban theories, agents in the space system (residents and firms)
make their location decision§ depending on their corresponding economics
considerations to optimize their own goals. The major consideration in location
decisions includes the location accessibility and the agglomeration effects. The
agglomeration effect could be measured as the sum of agents (residents or firms) in
each city weighted by its corresponding location accessibility. The larger the
agglomeration effects the larger the location attractiveness; cdns_equently, the faster
this place would grow. According to this explanation, it seems counter intuitive that
city growth is independent of city size as (ibrat’s law proposing. In the next section,
we will investigate the possible explanation for the Zipf's law concerning self-

organization features, location theory and Gibrat's law.

10



5. A model and the simulation about power law
5.1 The model

According to Gibrat’s law (Gabaix 1999),1 Cities’ limiting distribution will
converge to Zipf™s pattern if they grow randomly with the same expected growth rate
and the same standard deviation.

One way to present the distnibution of randomly growing cities is by Joseph
Steindl (1965): Consider a region consists of n zones. Let x,, denotes the normalized
size of zone 1 at time t, which is the population of city 1 divided by the total region
population. The growth of city size is proportional to the current city size. The growth
rate of zone i at time t, &, | is identically independent distributed with mean zero and

variance 02._,2. The growth process of the normalized size of city 1 at time t is as

follows:
Xir "X TELX {5}
X = (1+ £, )I.i,:—] = xi_O(l +E, (a+ Ef_z)---(l + 5:‘,:) (&)

The sum of the normalized size of all cities in the region at certain time period 1s one:

Y. x,, = 1. Consequently, the average normalized size at each time period stays

constant through time. Assuming the time period is so short that the growth rates, ¢ ,,
is refatively small. This justify the following approximation:

logl+e,,)=¢,. N
Taking logs of equation (6); it becomes:

log x,, =logx,, +E, HE L. TE, (8)
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The term log x, , would be very small comparing to the term logx,,as ¢ > x, the
distribution of logx, is approximately normal distribution with mean zero and
variance ,’z when the growth rate of cities at time t have the same variance
o’ across cities. Thus, the distribution of normalized city size x, 15 lognormal.

In addition, city rank can be expressed as the tail distribution of city sizes at
time t:

R(X)=P(x,> X) (9)
As t — w0, the observations of log R(X) versus log X' would lie in a straight line
with negative slope if the distribution of normalized city size were lognormal. This
represents the power pattern limiting distribution:

R(X)=al/X* (10
This is the power law feature that is common in many evolving complex systems.
Generally, a group of entities with homogeneous random growth rate will generate
power law lumiting distribution if there is steady state process.

An alternative method in Gabaix (1999) is applied here to investigate the
pogsible limiting distnbution given a homogeneous random growth process. Assume
the city growth i)rocess 1s as in equation {5). It follows:

X, ={l+€ )%, =¥ X, (11)

where y, =1+¢,, and x, denotes the normalized size of zone i at time t. The tail
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distribution of city sizes at time t (equation {9)) can be expressed as (Gabaix, 1999).

R0 = Px, > X)= [T R G0 (12)

Assume a general distribution of the type R (X)=a/X*", we could derive a
general term from equation (12):

R(X)=aX POR P OBy, O By P50, (13)
The condition of the existence of a steady state process R (X)=R(X) is:
lim Hy ™ }1=1. A constant, g(r)=p, will do. The value of parameter f is not
necessarily to be one to assure the existence of a steady state limiting distribution.
This indicates that if there is steady state process, the limiting size distribution is as
power function, not necessarily as Zipf's law. This finding is different from statement
of Gabaix (1999) that the limiting distribution would be Zipf's law.
5.2 Simulation

The simulation experiments in this section is based on the homogeneous
growth process assumed in dbrat‘s law. Cities randomly grow with the growth rate of
the same expected mean and standard dewviation. The growing process is independent
of city size. A homogeneous growth process across cities includes two types: (1)
homogeneous across cities and time, and (2) homogeneous across cities only. Both

types of growth process will be simulated in this section.

In experiment 1, we assume the first type of growth process that cities grow
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with the same expected mean and standard deviation across cities and time. The
standard deviation of the random growth factor is assumed constant across cities and
time: o’zl,1 =0, where Uuz represents the variance of the growth rates of city / at
time £. The variance of the random growth rate indicates the degree of growth stability
of certain city at certain time. If cities in the region grow with different variance
(cri.llz), it shows that cities grow with different degree of stability. Cities with smaller
variance of growth rate will have growth pattern more stable than cities with larger
variance of growth rate. If cities in the urban system grow with the same variance
(crf}, the vaniance of the random growth rate represents the degree of the
heterogeneity among cities' growth. The larger the variance, the more diverse cities
grow; on the contrary, the smaller the v_ariance, the more evenly cities grow.

The evolutions of cities in the urban system are interacted with both
competitive and cooperative relationships. The growth of city in the urban system
reflects the location advantage from the interaction among cities in the system. Thus,
the heterogeneity among cities' growth mainly refers to the relative location
advantages or disadvantages among cities. A constant variance of the random
growth rate across cities and time (o) indicates that the differences among cities'
location attractiveness remain the same across time. However, in the real world, the

differences among cities' location attractiveness tend to change across time due to the

14



change of various economic phenomenon. We simulate this urban system and
estimate the slope of equation (14) to study its evolving process.
In( Rank) = A'+an(Size) (14)

This relation is derived from pareto distribution in equation (1) of cities
distribution. The sign of the slope (a) 1s negative due to power law; the absolute value
of the slope indicates the degree of diverse in cities' size. A larger absolute value of
the slope implies that size of cities is more evenly distributed; a smaller absolute value
of the slope implies a more heterogeneous size distribution.

In this expeniment, we simulate city growth given homogeneous random
growth rate across cities and time. The parameter values and the simulation processes
are presented in Appendix. The estimated slopes (@) in equation {14) given different
value of standard deviation of the random growth rate are presented in Table 1. All the
estimated slopes are negative as pareto distribution describes. All estimated absolute
value of slopes given different value of standard deviation decrease as time pass. This
denotes that cities in the urban system evolve into more and more heterogeneously
distnbuted. In other words, sizes of cities are getting more and more diverse as time
pass by. Furthermore, the estimated absolute value of the slope is getting smaller as
time pass without a limit boundary. This result indicates that cities would continue

heterogeneously grow without a limiting distribution given the homogenecus random
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growth rate across locations and time. A constant slope indicates a power law
distribution. As the slope equals -1, the distribution fuifiils Zipf's law.

This finding is inconsistent with Gibrat's law. Given the assumgption of Gibrat's
law, Gabaix only shows that it the steady state exists, Zipf's pattern would be the
limiting distribution in the steady state. In other words, he shows that Zipf's limiting
distribution 1s the possible result if there is steady state given the homogeneous
growth process. Gibrat's law does not assure that Zipf's distribution is the necessary
condition of the homogeneous growth process. The simulation shows that the
assumption in Gibrat's law does not assure the existence of the steady state in size
distribution; however Zipf's pattern emerges only when a steady state process exists.
We would like to discuss further the possible condition for the existence of a steady
state process given the assumption in Gibrat's law.

As we mentioned earlier, cities' random growth rate with a smaller standard
deviation {o?) denotes less difference amoug. cities' locatior; attractiveness 1n the
region, thus, cities' growth is less various; cities' size is more evenly distributed. The
Iess the differences of the location attractiveness among cities, the larger the absolute
value of the regression slope (a). On the contrary, a random growth rate with a larger
standard deviation indicates larger differences among cities' location attractiveness in

the region; cities’ growth is more diverse; cities’ size is more heterogeneously
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distributed; and the estimated slope 15 flatter (Table 1).

In this evolving urban system, agents choose cities to locate according to their
decision rule one by cne and period by period. There is no global controller designing
the growth of the region. It is all determined by the dispersed interaction among
agents. Also, according to the adaptation behaviors within the hierarchical structures
in the system, the potential connections and interactions among agents and locations
are getting more and more frequent and sensitive during the evolution process. More
frequent interactions and increasing sensitivities among locations and agents would
lead to less variance of the relative location attractiveness among cities. Thus, this
growing sensitivity feature could be characterized by a decreasing standard deviation
of cities' random growth rate. However, the increase of the sensitivities and
connections among agents and locations are reducing and converging to a crtical state.
This feature could be characterized as a diminishing decrease of the standard
deviation of cities' random growth rate.

Cities grow based on the growth rate with a diminishing decreasing standard
deviation is simulated in experiment 2. The simulation results are presented in Table 2.
Assume that the standard deviation of the random growth factor, o, 15 decreasing in é
reducing rate across time, We use a simple for_m to express this standard deviation:

o, =0t | (15)
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Where the parameter, b, represents the reducing rate of the standard deviation. This
equation 1s a simple model reflecting a diminishing decreasing standard deviation. A
growth rate with a constant standard deviation across cities and time will generate an
urban system with cities evolving into more and more heterogeneously distributed
without limiting distribution; the absolute value of the slope in equation (14) is
decreasing. A growth rate with a decreasing standard deviation without boundary
across time will generate an urban system with cities evolving into less and less
heterogeneously distributed in a constant rate; the absolute value of the slope in
equation (14) is decreasing with a limiting value. A growth rate with a diminishingly
decreasing standard deviation across time will generate an urban system with cities
evolving into less and less heterogeneously distributed in a diminishing rate; the
absolute value of the slope in equation (14) is decreasing to a limiting value in a
diminishing rate.

Given the same initial condition, a larger diminishing'rate {b) denotes the
standard deviation, o, decreases faster across time. The faster the standard deviation
decreases, the faster the dispersion of the growth rate among cities is reduced;
consequently the slower the speed of changing into heterogeneous city size
distribution is; finally, the faster the urban system converge to a limiting distribution.

By the way, the larger the diminishing rate of the standard deviation, the smaller the
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vatue of the standard deviation, and the larger the absolute value of the slope. On the
contrary, a smaller diminishing rate indicates that cities' size distribution is more

heterogeneous distributed and converge slower. These features are observed in Table

The random growth rate with a diminishing decreasing standard deviation
across time affects the reduction speed of the regression slope. As the potential
connection and sensitivity among cities increase across time, the diverse of the
relative location advantage among cities decrease, and .conseqUent]y the vanance of
the growth rate across cities decrease. The speed of cities' evolution from uniform to
heterogeneous is reducing. As the potential connections and sensitivity of
interactions among cities are increased in a diminishing rate, the speed of cities’
evolution into heterogeneous distribution s reduced and hopefully the urban system
converge to a limuting pattern given certain parameter value. Furthermore, the
converged slope 1s closely related to the speed of the decreasiﬁg rate of the variance
of the growth rate.

Simulation result in Table 2 shows that a diminishing decreasing standard
deviation of the growth rate under Gibrat's law possibly lead to a convergence of size
distribution given certain parameter value. That is, this further condition of the

standard deviation of growth rate given Gibrat's law may result in a steady state
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process. However, it does not promise the limiting pattern in the steady state process
as Zipf's pattern. Zipt's pattern only emerges given certain values of parameters. We
could conclude that given the assumption in Gibrat's law, a diminishing decreasing
standard deviation of the growth rate is the necessary condition for the existence of a

steady state process and a limiting distribution.

6. Conclusion

Power law has been shown to be a common feature of many complex systems,
and Zip'f law in regional science is the most famous of all these distributions. The
application of Gibrat's law explains Zipf's pattern by a statistical mechanism.
However, this pure statistical explanation is lack of condition for the existence of the
limiting distribution and considerations_ from self-organized process. This paper is the
first work investigating the source of Zipf's law from the complex system point of
view. It shows that if region grows based on random growth rates with the same mean
and variance across cities, it will generate power law distribution of city size.
However, a random growth process as assumed in Gibrat's law does not necessarily
generate Zipf's limiting pattern. According to the features of the dynamic complex
systems, the adaptation behaviors of the interacted agents under the hierarchical
structures in the system will lead to more frequent potential connections among agents

and higher sensitivity of interactions. As the potential connections and sensitivity of
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mteractions among agents and cities increase into a crtical state across time, it
reflects the difference of the location attractiveness among cities n the region is
reducing in a diminishing rate. This could be characterized by a growth rate with
diminishing decreasing standard deviation. The simulating result shows that a
diminishing decreasing standard deviation of the random growth rate could possibly
generate a Zipf's limiting distribution given certain parameter value. Moreover, the
value of the diminishing rate determines the speed of the convergence and the value
of the converging slope.

Generally, this finding also explains the power law features of the other
complexity cascades from the corresponding self-organized complex systems. System
particles with homogeneous random evolving rate would generate the power function
distribution. A homogeneous random evolving process is the essential underlying
feature, which generates the common power law property of many complex systems.
Nevértheless, the major reason that the slopes of power functions differ among
various self-organized critical systems is the vanation of the changing rate of the
increased potential connections and sensitivity of interaction within the systems. In
other words, the converging slope of the power function is highly related to the
changing rate of the increment of potential connection and the level of complexity.

Our finding suggests that homogeneous growth process does not assure the
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existence of the Zipfs pattern distribution. Cities grow with the random growth
process with diminishing decreasing standard deviation would lead to a convergence
of city distribution. The diminishing rate and the initial value of the standard
deviation would affect the pattern of the limiting distribution. That is, Zipf's limiting
distribution will appear given a diminishing decreasing standard deviation growth rate

with certain value of parameters.
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Table 1

Estimated slope (a) in Simulatior. of Cities Growth with Constant Vartance (o ” )

In{ Rank) = A'+aln( Size)

Experiment {1 2) 3)
o 0.01 0.05 0.1
S1 -10.81 -2.39 -1.36
S2 -7.96 -1.70 -(.82
S3 -7.17 -1.33 -0.67
S4 -6.12 -1.12 -0.59
S5 -5.10 -1.16 -0.53
S6 459 -1.02 -0.50
S7 -431 -0.99 -0.44
S8 -3.95 -0.87 -0.42
S9 -3.74 -0.84 -0.41
S10 -3.57 -0.79 -0.39
Notes:

The number of cities: 100,
The experimental time periods: 500.
o . The standard deviation of the random growth rate.

S1: The estimated slope of the regression of log rank against log size at time t=50.

S2: The estimated slope of the regression of log rank against log size at time t=100.
S3: The estimated slope of the regression of log rank against log size at time t=150.
54: The estimated slope of the regression of log rank against log size at time t=200.
S5: The estimated slope of the regression of log rank against log size at time t=250.
S6: The estimated slope of the regression of fog rank against log size at time t=300.
S7: The estimated slope of the regression of log rank against log size at time t=350.

S8: The estimated slope of the regression of log rank against log size at time t=400.

§9: The estimated slope of the regression of log rank against log size at time t=450.
S10: The estimated slope of the regression of log rank against log size at time t=500.
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Estimated slope {a) in Simulation with Decreasing Variance (o’ )*

In( Rank) = A'+aln{Size)

Table 2

Experiment 1)) (2) 3)
o, 0.1 0.1 0.1
b 1 0.23 0.1

Sl -5.918 -1.881 -1.543
S2 -53.903 -1.566 -1.181
S3 -5.898 -1.420 -1.116
S4 -5.877 -1.283 -0.989
S5 -5.860 -1.203 -0.884
S6 -5.856 -1.208 -0.805
57 -5.841 -1.164 -0.723
S8 -5.839 -1.121 -0.664
SO -5.843 -1.097 -0.611
S10 -5.836 -1.097 -0.593

Yo, =g,

Notes:

The number of cities: 100.

The expenimental time periods: 500.

S.D.: The standard deviation of the random growth rate.

S1: The estimated slope of the regression of log rank against log size at time t=50.

52
S3
S4
35
S6
S7
S8
S9

: The estimated slope of the regression of log rank against log size at ime t=100.
: The estimated slope of the regression of log rank against log size at time t=150.
. The estimated slope of the regression of log rank against log size at time t=200.
: The estimated slope of the regression of log rank against log size at time t=250.

: The estimated slope of the regression of log rank against log size at time t=300.

- The estimated slope of the regression of log rank against log size at time t=350.

: The estimated slope of the regresston of log rank against log size at time t=400.
- The estimated slope of the regression of log rank against log size at time t=450.
S10: The estimated slope of the regression of log rank against log size at time t=500.
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Appendix

1. Experiment 1 (Table 1): Cities' growth rate with constant standard deviation
Simulation paramefter:
Number of cities in the region: 100
The experiment time periods: 500
The observed time pericds: 50
The imtial city size: 1
Cities in the region randomly grow with normal distribution
(Mean=0, Variance =c’, ¢ =0.01, 0.05, and 0.1)
Simulation process:

1. Generate growth rate by randomly drawing from a normal distribution with
mean zero and each of the assumed constant standard deviation (0.01, 0.05, and
0.1)

2. In period 1, 100 Cities grow according to the randomly drawing growth rate
in step 1 given the same initial population (initial city size =1). Derive 100 cities
size at period 2.

3. In period 2, 100 Cities continue growing from period 1 according to the
randomly drawing growth rate in step 1. Derive 100 cities size at period 2.

4. Repeat step 3 unti] period 50; estimate the slope by regressing In{rank) versus
In(size).

5. Repeat step 4 until period 500
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2. Experiment 2 (Table 2): Cities' growth rate with diminishing decreasing standard
deviation
Simulation paramefter:
Number of cities in the region: 100
The experiment time periods: 500
The observed time periods: 50
The imtial city size: 1

Cities in the region randomly grow with normal distribution
{(Mean=0, Variance =a,’, &, = o,t™°)

(o,a)=(0.1,1),{01,023)and {0.1,0.1)
Simulation process:
1. Generate growth rate by randomly drawing from a normal distribution with

mean zero and each value of the assumed decreasing standard deviation

{gt :O-Gtia)

2. In peniod 1, 100 Cities grow according to the randomly drawing growth rate
in step 1 given the same initial population (initial city size =1). Derive 100 cities
size at period 2.

3. In penod 2, 10C Cities continue growing from period 1 according to the
randomly drawing growth rate in step 1. Derive 100 cities size at period 2.

4. Repeat step 3 until period 50; estimate the slope by regressing In(rank) versus
In(size).

5. Repeat step 4 until period 500.
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