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Abstract

We analyze the formation and stability of coalitions for a situation where
finitely many individuals form different coalitions and their payoffs depend
on the consequence of a noncooperative game with different coalitions, and
examine the moving path of individuals among various coalitions. Our main
finding is to show that there exists at least one evolutionarily stable coalition
equilibrium in I'™". When addressing the evolving path of coalitions, we
conclude that in the case of symmetric strategies and symmetric population
shares, if each coalition’s population share is too small, the equilibrium
requires a reduction of the number of coalitions, but if each coalition share
is too large, the equilibrium requires an increase of the number of coalitions.
Furthermore, when u;(.)s are symmetric but x is asymmetric, then (i) the
highest payoffs are oscillatory across time still stability happens. (ii)In the
evolutionarily stable structure, each group share the same population and

the coalition numbers is hence | Dy(z, 7t)].
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1 Introduction

The study of formation of coalitions has been one of the most intriguing and chal-
lenging problems open to game theorists. Many solution concepts were primarily
designed as ways to solve the problem of joint determination of coalition structure
and the allocation of the coalitional surplus among coalition members. However,
the following social behavior seems to be neglected in the existing literature: In
presidential election, different groups of civilians gather to support their favorite
candidates to win the election game; Gamblers bet on different football teams and
their rewards depend on the competing results among teams. These examples
point out a situation where finitely many individuals form different coalitions and
their payoffs depend on the consequence of a noncooperative game with differ-
ent coalitions. The present paper intends to analyze the formation and stability
of coalitions in this category, and analyze the moving path of individuals among
various coalitions.

The first related literature is the discussion of coalition forming. Essentially,
the process is viewed as two stage: players form coalitions in the first stage, and
then decide on the allocation of the coalitional surplus, given a fixed coalition
structure in the second stage. There are two settings as to why coalition structure
form to begin with (Kurz, 1988). First, Aumann and Dreze (1974) regard the
coalition structure to be such that each coalition forms, operates, and generates
its coalition payoff. In this sense, the Aumann-Dreze coalition is a real entity
to realize its potential value. Second, the view of Owen(1977), Myerson (1978),
Shenoy (1979), Hart and Kurz (1983), and Aumann and Myerson (1988) is that
the coalition structure is formed only as a bargaining tool aiming to increase the
payoft of individual members. This entails a subtle bargaining among individual
players within each coalition and among all the coalitions.

Our paper falls into the first category, in the sense that individual forms differ-

ent coalitions in order to realize the payoff from the noncooperative game among



coalitions. Consequently, we will not handle the various issues arising only from
the second category, such as consistency (Hart and Kurz (1983)), which requires
the same solution concept for the bargaining among the coalitions and within each
coalition. However, we focus on the issue of stability which will be encountered in
both settings.

Solution concepts in coalition structures are usually discussed in terms of val-
uations (or allocations). That is, let N be the set of players, v be the worth of
coalitions, and a partition of player set m = {m, m,...m, } be a coalition structure.
A possible solution for the coalition game (N,v,7) is a payoff allocation among
players, given the coalition structure 7. The strategy aspect is ignored in the ex-
isting literature. The main difficulty comes from the fact that different coalitions
of players will define different games. Hence, even if we assume symmetry among
players, the stable cooperative solution concepts® require immunity to deviations in
forming different subcoalitions, which in turns require modelling different games to
take into account those deviating subcoalitions. The main concern of the existing
cooperative solutions has been how to distribute the coalition values (represented
by v) among and within each coalition, rather than how to obtain the coalition
values, to be addressed in the present paper.

Our paper intends to explore the strategy issue in coalition structures, and ask if
there exist strategies (among the coalitions) to support a stable coalition structure,
in the sense that no single individual wishes to join in an already existing coalition
or form a new coalition. However, to focus on our main concern and simplify the
analysis, we make the following assumptions, which are different from that of the
existing work. First, we assume that the player (population) set is large but finite
(Weibull (1995)), where ”largeness” implies that each individual is insignificant,
and ”finiteness” allows us to eschew the measuring problem. The insignificance

of individual motivates us to assume further that each individual’s payoff depends

'For example, the von Neumann-Morgenstern solutions, the core, the bargaining set, the

nucleolus, the kernel and the Shapley value.(Aumann and Dreze (74)).



on the value of the coalition which she belongs to. Specifically, each individual’s
payoff is actually the coalition value? determined by the strategy profile (among
the coalitions) and the relative size of coalition. A close to reality interpretation
of this assumption is that each coalition’s value is a public good, whose value can
be appreciated by each member of the coalition.

The public good interpretation draws our attention to the literature (Tiebout
(1956), Westhoff (1977), Greenberg and Weber (1986), ) of ”strong Tiebout equi-
librium”, which is a strong Nash equilibrium (Aumann (1959)) in the game of
choosing communities. Aumann introduced the notion of strong Nash equilibrium,
requiring that an allocation not be subject to improving deviation by any coalition
of players. This requirement is too strong, as agreements must be resistant to de-
viations which are not themselves resistant to further deviations. Recognizing this
problem, Bernheim, Peleg, and Whinston (1987) introduced coalition-proof Nash
equilibrium which requires only an agreement be immune to improving deviations
which are self-enforcing. A deviation is self-enforcing if there is no further self-
enforcing and improving deviation available to a proper subcoalition of players.3
Our paper resembles to this line of literature in characterizing equilibria in the
context of noncooperative games, but we focus on games among coalitions, rather
than among individuals. An equilibrium in a game among coalitions, if it also
guarantees the stable coalition structure of individuals, is called an equilibrium to
support an evolutionary stable coalition structure.

The term ”evolution” is meant to capture the movement of individuals among
coalitions. Since an equilibrium can be viewed as a steady state in the population
and strategy adjusting process, the study of the process will provide interesting

implications to the equilibrium. This topic is related to multi-population models in

2 Another setting to avoid the discussion of distributing within coalitions is to assume a fix

division rule (Bolch (1996)).
3We do not consider coalition-proof equilibrium with correlated strategies. ( See Moreno and

Wooders (96)).



the evolutionary game theory literature (see for example Weibull (1995)), however,
we use a simpler setting as will be described in the text. Except for this, our model
distinguishes form the standard setting in that individuals are free to move across
populations ( that is, coalitions).

Finally, we investigate the cooperation possibility among coalitions and address
a small implication to folk theorem, which has been excessively discussed in the
game theory literature (see for example, Osborne and Rubinstein (1994)). Folk
theorem says that the efficient payoffs can be supported as average payoffs of
subgame perfect equilibria. The rationale for this result is that players can punish
the deviators by switching to the minimax equilibrium (the reservation utility).
However, when individuals are free to move, the punishment decision will force
individuals move toward the deviating coalition which ensures the highest payoff.
Hence the partition will change and the game is not the same each period. When
a coalition really deviates, other coalitions can only find the best reply to this
deviation, and hence would not be the minimax strategy. As a result, the only
possible payoff is which can be supported by the equilibrium with evolutionary
stable coalition structure.

The rest of the paper is organized as follows. Section 2 presents the model of
coalition forming. Section 3 is the discussion of evolutionary path. Section 4 is

the concluding remarks and an implication to folk theorem.



2 Evolutionary stable coalition equilibrium

Let £ be a finite but large* population of individuals. Individuals make their
coalition decisions independently and simultaneously,” and the induced partition
of population defines a coalition structure. That is, Vi € L, i's coalition strategy
k' is to choose which coalition to belong to, or equivalently of which role to play
in resulted coalition game.® k' € K* := {K C L]i € K}. Let K =X K' be the
set of coalition strategy profiles, and k as one element, k = {k'};c. é K. Let w(k)
be the induced coalition structure, i.e., w(k) := {n*(k) C N|i,j € (k) if and only
if k = k', for k7, k' € k}.” Let n™® denote the number of subsets in 7(k), that is,
n™*®) .= |r(k)|. Fix a k, n(k) = {m, T, ... T,=t» }. Let II be the set of all possible
coalitions, II := {n(k)|k € K}. To index each coalition, let N () be the set of
indexes for each coalition in 7, i.e., N(m) := {1,2,..., n™}. For future inference,
denote II"" as a subset of II such that the numbers of every coalition in IT"" is n™,
ie, II"" = {r e Il||x| =n"}.

Given 7, we define an n™-player coalition game in a triplet containing the player
set, strategy profiles and payoffs, that is, I := (N (7), (x;)jen(r), (w2, T))jen(n)-
In this game each coalition 7;, j € N(7), plays the role j in I'"™". Let C; be

coalition j’s strategy set and x; € A(C;) be the associated mixed strategy set.

4The same setting can be found in Weibull (95). The assumption of ”finiteness” enables
us to easily calculate the proportion of each coalition’s members; The ”largeness” implies that
each individual is insignificant so that mutual deviation in terms of correlated strategies is not

appropriate in this case.
5The alternative assumption of sequential formation of coalitions can be found in Selten (81),

Chatterjee et al. (93), Moldovanu (92), Winter (93) and Bloch (96) in the case of small number

of individuals.
SEach individual is assumed to choose only one coalition and the detail of individuals’ coalition

decision rule will be discussed in Section 4.
“We use the definition of § coalition. The alternative setting is v coalition. The difference

concerns with different settings to the behavior of the complementary coalition. (Hurt and Katz

(1983), p. 1060).



r = (xj)jen(r) is hence one strategy profile. For j € N(m), u;(x,7) denotes
coalition j’s payoff in I'" and is continuous in x. Here we encounter some problems
for the discontinuity of payoff function. Intuitively, u;(z,n) is not continuous
in m. Hence, despite that we consider mixed strategies for each coalition, there
does not necessarily exist an equilibrium. To simplify and ensure the existence
of a coalition structure,® we make the following explicit assumptions. First, we
assume that each member in a coalition shares the same payoff as the coalition, i.e.,
u'(z,7) = u' (z,7) = u;(x,7), Vi,7 € 7;. As mentioned in the Introduction, this
could be justified by the public good argument. Second, we assume coalition values
to depend on the relative attraction in the structure. That is, u;(x, 7) = u;(z, p;),
where p; = % be the population share of coalition j. Third, similar to Tiebout
(1956) in assuming the per capita cost of a local public good to be a U-shaped
function of community size, we assume that u;(z, p;) is concave in p,. The concavity
assumption reflects the congestion cost of crowd. Without it, the equilibrium
structure is trivially the grand coalition.

To keep the generality, the following definition is presented in the general form

uj(x, ).

Definition 1 Given a w € 11, x is an evolutionarily stable coalition equilibrium of

™" if x is an equilibrium of ™" and Vi € 7;, m; €argmax u'(z, w(k', k_;)).

KleK?
A coalition structure is said to be evolutionarily stable if it is supported by
a strong equilibrium of I'*. The notion requires an agreement not be subject
to an improving deviation by any coalition of individuals. That is, there ex-

ists a strategy profile x such that u*(x, 7(k% k_;)) > u"(ff,ﬁ(gi, k-i)). Note that

8Non-superadditivity is the most compelling explanation for the formation of a coalition
structure. Aumann and Dreze (1974) described a situation in which certain exogenous conditions
result in a partition of individuals into a finite numbers of jurisdictions. Other groups of causes
include the existence of legal limitation (Guesnerie and Oddou (1981)), geographic and spatial

limitations (Westhoff (1977)), and communication problem.



since different strategy combinations lead to different coalition structures, we have
re x A(Cj) andz € x A(C;). But fortunately since individuals are as-

JEN(7) JEN(m)
sumed insignificant, given the coalition decisions of the rest of the population, it
suffices to check if ui(z, 7(k', k_;))> ' (z, m(k', k—:)) (as requested in Definition 1).
In what follows, we turn to the explicit assumption of w;(z, p;).

We first examine the extreme case when each coalition’s payoff is not related
to the size of each coalition, that is, u;(x, p;) = u;(x), Vj € N(w), Vr € II. This is
equivalent to treating the coalition value as a pure public good. In such case, the
set of evolutionarily stable coalition equilibria is the set of equilibria for I'"" that
result in identical payoffs for each coalition. That is, x is an evolutionarily stable
coalition equilibrium if z; €argmax u;(z;,z_;) and u;(z) = u(z),Vj € N(m),
Vr € II. Examples with evo:]cljllet?(()fljairily stable coalition equilibria can be found
in the prisoner dilemma games and the battle of sex games. The main problem
with this class of games is that the existence is obviously not generally guaranteed,
for instance the hawk and chicken games. Notice also that in this case the set of
evolutionarily stable coalition equilibria is strictly included in the set of equilibria
for I'™".

When each coalition’s payoff is related to the size of each coalition, Proposition
1 shows the existence of an evolutionarily stable coalition equilibrium. Recall that
uj(x,p;) is continuous in x and p;, and concave in p;,Vj € N(m), Vr € II. To

proceed our proof for the existence, Lemma 1 and Lemma 2 are required.

Lemma 1 If the payoff function is symmetric with respect to the maximal ar-
gument p*, then in an evolutionarily stable coalition equilibrium (if exists), (1)

ui(z, pi) = uj(z, p;) for Vi,j € N(m); (2) it cannot be p; < p* for Vi € N(m).

Proof: Firstly, let Z be an equilibrium® of I'"™". Suppose u;(Z, p;) # wi (T, pir),
and without loss of generality, assume u;(Z, p;) > uy(Z, py). Then given the coali-

tion choices of the rest of the population k_;, individual j is better off deviating

9The finiteness of N () is supported by the assumption of finiteness of L.



to coalition 7. But then Z will not support an evolutionarily stable coalition struc-
ture. Secondly, let  be an equilibrium and suppose p; < p*, for Vi € N(m).
In other words, equilibrium happens in the increasing part of the utility func-
tion. We are left to show that an individual’s deviation in her coalition choice
is always beneficial. Consider a group deviation from coalition i’ to i such that
;i (Z,p;) = uy (T, pir)+e€. Since w (T, p;) = U (T, py) for arbitrary [, m, and we know
from the presumption that u;(Z,p;) > U (T, py) for all m € N(m)\i. Since this
deviation is beneficial, Z cannot be an evolutionarily stable coalition equilibrium.

O

For each coalition game ', denote T as the corresponding normal form. =
(N(m), (%;)jen(r), (Wj(x)jene)), where ;(.) is not related to the coalition size.
Denote R;(z_;, ) as the set of coalition i’s best response to the strategy profile of
the rest coalitions z_; in I'™", and Ei(:c,i) as player i’s best response set to x_; in

—nT

r
Lemma 2 Ri(z_;) C Ri(z_;,m) for some 7 € II.

Proof: (1) Let e; € R;j(x_;), then there exists a 7 such that e; € R;i(x_;, 7).
Suppose e; ¢ R;(x_;,7), that is, u;((e;, z_;),p;) < w;((€;,2_;),p;) for some €; ¢
R;(z_;). Since u,(.) is continuous, there exist p; and p} such that u;((e;, 7_;), p;) =
ui((€;,_;),p;). Lemma 1 says that it must be p; < p, < p* or p* < p, < p; in
equilibrium. The former is not possible since it violates the individual’s coalition
decision. The latter indicates that u;((e;, x_;),p}) > u;((€;, z—;), p}), which implies
that coalition 7 is better off deviating to e;.

(2) Consider e, ¢ R;(x_;) such that (e, v_;) < U;(es, v_;). By continuity
of the utility function, there exists a population state such that u;((ex, z_;), p;) >

ui((es, z—;),pi) for p; < p* < p;. O

Proposition 1 There exists at least an evolutionarily stable coalition equilibrium

in T,



The existence is guaranteed by the Kakutani fixed point theorem, and by
Lemma 2, the set of evolutionary stable equilibrium includes the set of equilib-

. =n"
rium of I .

3 Evolutionary stable coalition structure-the sta-
bility condition

In this section, we assume that there is only a proportion 6 of each coalition that
will reconsider their coalition choices at each point of time. ¢ can be interpreted
as the birth/death rate. We hope to examine the movement of each coalition’s
population share across time, from any initial partition 7°. The movement is taken
place in a discrete time version. Throughout this section, we examine the paths
for a given strategy profile. One can interpret this as the following. Given a
new provision of each jurisdiction’s public good, how will people move from one
jurisdiction to another? The case when each coalition’s strategy varies with its
population is left for further discussion.

Consider a partition of the population at time ¢, 7* := {n{, 75, ...7" ., }. Let x be
a strategy profile in I'V™) . Denote u;(z, pt) as coalition i’s payoff given the strategy
profile z and the population share pf at time ¢. Denote k7 as individual ;s coalition
choice if it is j’s turn to reconsider her coalition choice. Upon renewing, individual
j observes each coalition’s payoff from the previous period, and chooses myopically
the coalition(s) with the highest payoff. We assume that if there are more than
one coalitions with the highest payoff, the renewing individual randomly chooses
one with equal probability. That is, &/ = i, if i € D(z, ') :=argmax uy(x, pl,).
Denote Dy(z) := |D(x,7")| as the number of coalitions which pohsesgs(.;r)the highest

payoff at time ¢. The population shares dynamics are

)
Dy(x)

(O ph+ph) = dpi=(1 - &)pi+ if i € D(x,7"), (1)

ke—t

0
t+1 t
pi = pz + I
Dt (.’E)



pitt = (1 - 6)pl, if i ¢ D(z,7"). (2)
For those coalitions whose previous period payoffs are not among the highest

(i ¢ D(z,7")), there will be only outflows of population. For those whose previous
period payoffs are among the highest, there will still be a proportion ¢ of population

reconsidering their coalition choices, but, there will be a proportion #(a:) of them

(after reconsidering) choosing to stay in their original coalitions. Notice from

equation (1) that even among the highest, if p! > #(w), there will still be outflows

from coalition 7.

We first examine the case where u;(.) is identical for each coalition ¢, and z
is symmetric. There are mainly two groups: when the population partition is
symmetric and when it is not. If the partition is symmetric, i.e., pt = ... = pf,

then Dy(z,7") = N(x*). Hence for each i € N(x*), the population share dynamics

[
Dy(z)

equivalently, pt = N% (where N; := |N(7)|). In other words, when p! > N%? there

is as equation (1). Stability'® requires (1 — &§)pt + = p! for i € N(x%), or

is only an outflow of population from each coalition, and when p} < N%, there is
an inflow of population to each coalition.

We discuss three possible scenarios for equilibrium. Firstly, if p} = ... = p!, <
N%v then by equation (1) pi™ > p! for each i € N(n*). This would not be possible
for a fix population. By concavity and continuity of the utility function, there
will exist an M(7') C N(x') (i.e., 57 > 3-) such that pf = ... = ph, = 31
and D(z,7t) = M(7), and hence pi™ = pt for i € M (7). That is, in the

case of symmetric strategies and symmetric population shares, if each coalition’s
population share is too small, the equilibrium requires a reduction of the number
of coalitions. Secondly, if p! = ... = pl, > N%, then by equation (1) pi™ < pf
for each 7 € N(x'). Like the previous case, this would not be possible for a fix

population. Hence slightly differently, there will exist an M (") D Ny(n') such

0By stability, we mean that each coalition’s population share does not vary with time. Since
each individual is insignificant, we assume that whether each coalition consists of the same

individuals will not affect the payoff.
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that pt = ... = ptﬁt = M\% and Dy(z,7") = ]\Z(%t), and pitt = p! for i € ]\Z(%t).

That is, if each coalition share is too large, the equilibrium requires an increase of

the number of coalitions. Finally, if p} = ... = pl, = N%v then pi™ = pt, Vi € N(m).

)

We now consider the general case when the population is asymmetric. The
development of each group depends not only on its initial location in distribution
but also its strategical advantage among coalitions. Accordingly, we can identify
two cases by the size of Dy(x, 7). Firstly, if D;(z,7") = N(n*) and without loss of

generality,!! let p! = p <p*fori< 2, and pt =P > pf for i > z. Recall that p* is

the maximal argument of u(.). For this case, by equation (1), we have p.**

> pl
for i < z and pi™ < pt for i > z. If the utility function is symmetric to p* (so that
Dyyq(x, ) = N(xt)), then both groups of coalitions are converging to the size
of %

Secondly, if Dy(z,7*) = My(z) C N(x') and without loss of generality, we
consider four subgroups: A;, A, A3, A4. The connections are: Ay, Ay C M;(x) and
Az, Ay C N(7")\M;(x), and for each i € Ay, A3, we have p! < pf and for i € Ay, Ay,
we have p! > p?. The movement of coalitions in each subgroup is as follows: (i) In

group As since pt < p¥, by equation (2) the size of coalition ¢ € Az is decreasing

through time (pi™ < pt). Coalitions i € Az will ultimately diminish as ¢ increases.

(ii) In group Ay, by equation (2) the size of coalition ¢ € A4 will be decreasing,.

However, since p! > pi for this case, the process of decreasing ceases at time t (to

be defined), from which each coalition in A4 then joins in the group of Dy(z, 7).
(iii) Notice that since A;, Ay C My(z), for some p and p with p < P, it must
be true that p; = p for all i € Ay and p; = p for all i € Ay. (Otherwise, the payoff

level will not be equivalent). Therefore in group Ay, we can further identify two

cases: if pl < M% for Vi € Aj,, then by equation (1) p™ > pt till some point of

time 7, from which p! > - then p?l < pl. If pt > M%? we have pl'
t

> pt.

(iv) In group A;, we have pit*

> p! but the extent of increase varies with the

1T the equality of the population share for both groups i < z and i > z is not satisfied, then
Dy(a,mt) # N(r).

11



population shares of group As in the following sense. If p§ < M% for j € A, then by
equation (1) pé»“ > pz- for j € Ay. Combining the movement in group A;, we have
Dyyq(z, m*1) = A;. Accordingly, we have pi™ > pit! for i € Ay, but p§+2 < p§+1,
for j € Ay. Since the size of group A; keeps on growing, we know Dy o(x, 7'72) =
A;. The process will continue till some time ¢ where Dy(z, 7r?) = M,."? From t and
so forth, p! > pi for all i € Ay, As.

If p§ > M% for j € As, then p?rl < p?. By symmetry of the utility function, the
number of coalitions with the highest payoffs at ¢t 4+ 1 is the same as time ¢, that
is, Dy (z, w1 = M(z).

If p§. = M% for all j € Ay, Ay, the population share remains unchanged but
this temporary stability stays till time ¢, at which j € A4 joins in the group of
D;;(cc,wz). The existence of time ¢ is guaranteed by the continuity of the utility

function. Proposition 2 summarizes our finding.

Proposition 2 When both u;(.) and x are symmetric, (i) if the partition is sym-
metric, the only evolutionarily stable structure is ' = {m{,n5, .7’ .}, where
each |mf| = —q. (i) if the partition is asymmetric, those coalitions with |wf| < p*
and which are not among the highest profit will ultimately diminish; the rest will

form another stable structure at some time t, where all coalitions have the share

1 =
Dz(ivﬂ—t) ’

mt] =

As the end of our discussion, we now assume that w;(.,.) is identical for each
coalition 4, but x is asymmetric. Without loss of generality, we rank the coalitions
according to the levels of payoff in Tnt and let u;(z,0) be the payoffdi;(z) for j €
N(7) in T That is, u1(z,0) denotes the highest coalition payoft argmazt;(z),

VieN ()

and us(z,0) denotes the second highest coalition payoff, and so on. Fig. 1 gives an

illustration for this arrangement. By definition, uy(x,0) > us(z,0) > ... > uz(x,0),

12345 the same as defined in the discussion of group Ay, and M; = |Dy(x, 7t)| at time ¢. Notice
further that Group A4 will not join in D;(x, ) earlier than group As, whose population share

must have been lower to be in D;(z, ) in the first place.

12



;r(x,T[’)

. (x, 1 le(())(c:]ﬂ
uy(x,1)
u,(x,1)
s (x.0)
ug(x1)

u,(x,1)

u, (x,0)
u,(x,0)
uy(x,0)
u,(x,0)
us(x,0)
ug(x,0)

u,(x,0)

u, (x)

u . (x,0) p;

Figure 1: Ranking the coalitions according to the levels of payoff

where n < n™ (with ”strictly less” if more than one coalitions have the same level
of payoff). Every ug(z,ply) for ¢ = 1,2,..0 is concave in the size of coalition p),
and recall p* as the value of p when w;(.,.) is maximized. To ensure the existence
of a coalition structure, we assume that u;(z, 1) is not too high, which is similar to
assume non-superadditivity to avoid grand coalition to be the only consequence.
To examine the movement of each coalition, we classify the following cases.
Firstly, when pfb < p* for ¢ = 1,2, ..m, all coalitions’ payoffs are increasing in
the size of the population. If Dy(z,7") = M(x) C {1,2,.7n},'® then for every

¢ € M;(x) the population movement follows equation (1) and hence péfl > pé); for

¢ ¢ My(x), the movement follows equation (2) and hence pf;“l < pl. Therefore
at time ¢ + 1, we have Dy q(x,7"") = M;(x) and the highest payoff is firstly
increasing then decreasing till time ¢ at which either of the following situations

happens:

13We eschew the discussion of Dy(x,7!) = N(x!) only for simplification. The alternative

assumption is to assume that some coalition’s payoffs are much less than the others.

13



(a) If Dy(z, %) = Vi(z) C {1,2, .7} \M,(z), then for ¢ € Vi(x) we have pi“ >
pl; for ¢ ¢ Vi(x) (including M;(x)), the movement follows equation (2) and we have
péfl < pg). Therefore at time  + 1, if Dy, (z, 7°") = Vi(z), then the movement is
as just described; if D, (z,7"™) = M;(x), meaning that the coalitions in M,(z)
retain their leadership in payoffs), the movement is as earlier.

(b) If Dy(x,n?) = Vi(x) D M,(x), then since pg) > Vi? for ¢ € M;(x) and
pg) < vl; for ¢ € Vi(x)\M(z), we have pﬁfl < pg) for ¢ € My(z) and pf;“l > pz for
¢ € Vi(x)\M;(z). By symmetry of the utility function, D, (z,7"™) = Vi(z), and
the movement at 7+ 2 repeats the process at £+ 1 till time ¢ at which all members
of V4(x) are in the decreasing part and some new members will join in the group
with the highest payoff and the process repeats (a) or (b).

For an illustration, suppose in Fig. 1 that D;(z,7") = {3}, (point C), with the
highest payoff @, (x, 7t). So p5™ > pb, till time , when D;(z, 7*) = {3,4} (point C,

D), with the highest payoff of level T(z, 7*). From equation (1) we have p?rl < h

and pi“ > pi. Note that from time ¢ to ¢, the highest payoffs are decreasing from
Ty (x, ), with maximum at point p* and decreasing till T (z, 7°). Step (a) and (b)
stop at a time ¢ when p! = m, Vi € Dy(x,7"), and pt = 0, Vi ¢ Dy(x,7*). The

numbers of coalitions in an evolutionarily stable structure is hence | D;(z, 7).

Proposition 3 When u;(.)s are symmetric but © is asymmetric, (i) the highest
payoffs are oscillatory across time still stability happens. (ii)In the evolutionarily
stable structure, each group share the same population and the coalition numbers

is hence |Dy(x, 7).

(i) When!? 7! is asymmetric. The analysis is similar to the case with symmetric

14\We eschew the discussion of pg > p*, ¢ = 1,2,..n, which is unlikely.
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4 The concluding remarks and implication

The present paper analyzes the formation and stability of coalitions for a situ-
ation where finitely many individuals form different coalitions and their payoffs
depend on the consequence of a noncooperative game among different coalitions,
and examine the moving path of individuals among various coalitions. The model
actually consists of two stages. In the first stage, each individual chooses which
coalition to belong to, and this leads to the formation of a coalition structure
m. All coalitions in 7 then play an n™-player noncooperative game in the second
stage. The payoff for each individual depends on the strategy combinations of all
participating coalitions and the proportion of population for the coalition which
he belongs to.

We defined an evolutionarily stable coalition equilibrium of I'"™", which will
support an evolutionarily stable coalition structure not subject to an improving
deviation by an coalition of individuals. Our specific findings are as follows. Firstly,
we show that there exists at least one evolutionarily stable coalition equilibrium
in I'™". This result is based on an explicit assumption on utility function, that is,
we assume that coalition values depend on the population share of each coalition
and is concave in p;. Secondly, when addressing the evolving path of coalitions, we
conclude that in the case of symmetric strategies and symmetric population shares,
if each coalition’s population share is too small, the equilibrium requires a reduction
of the number of coalitions, but if each coalition share is too large, the equilibrium
requires an increase of the number of coalitions. Thirdly, in Proposition 2 we show
that when both u;(.) and z are symmetric, (i) if the partition is symmetric, the only
evolutionarily stable structure is « = {x{, 7}, ..’ }, where each |} = —.
(i) if the partition is asymmetric, those coalitions with |7f| < p* and which are
not among the highest profit will ultimately diminish. Finally, when wu;(.)s are
symmetric but x is asymmetric, then (i) the highest payoffs are oscillatory across

time still stability happens. (ii)In the evolutionarily stable structure, each group
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share the same population and the coalition numbers is hence | D;(z, 7).

Our model can draw an interesting implication regarding Folk theorem in re-
peated games. Folk theorem says that the efficient payoffs can be supported as
average payoffs of subgame perfect equilibria. The rationale for this result is that
players can punish the deviators by switching to the minimax equilibrium (the
reservation utility). However, when individuals are free to move, the punishment
decision will force individuals move toward the deviating coalition which ensures
the highest payoff. Hence the partition will change and the game is not the same
each period. When a coalition really deviates, other coalitions can only find the
best reply to the deviation, and hence would not be the minimax strategy. As a
result, the only possible payoff is which can be supported by the equilibrium with

evolutionary stable coalition structure.
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