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The Theoretical and Empirical Analysis of the Dynamic Spatial Interaction Model

Abstract

The purpose of this paper is to theoretically derive a dynamic spatial interaction
model based on the entropy theory and use this derived growth process to explain
the mysterious Zipf’s law. Empirical findings show that (1) the purposed dynamic
process possibly generates both stable and unstable patterns according to the value
of the parameters. (2) In the stable evolution, the model possibly generates both
deterministic and stochastic growth processes. (3) Both deterministic and stochastic
growth processes could converge to Zipf’s pattern. (4) Evidence from cities in
Taiwan shows the diminishing estimated intercept and slope as the proposed model
predicted. Size distribution in Taiwan converges to Zipf's pattern.
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1.

Introduction

It is well known that the size distribution of cities is surprisingly well
described by Zipf’s law across countries with various economic structures and
histories. Its robust empirical evidence and significant regularity in economics
make Zipf’s law the minimal criterion for any urban growth model. However,
there is a lack of plausible theoretical models to explain this empirically robust
distribution.

The expression of Zipf's law can be visualized by taking a cross sectional
data on city size and city rank. Then draw a graph with the log of rank along the
y-axis, and the log of the population along the x-axis. The resulting graph will
mostly show a straight line with slope very close to —1, based on the regression.
The linear relation of log of size versus log of rank is explained as the famous
Zipf’s law. This amazing result is shown in various data sets: most modern
countries (Rosen and Resnick [1980]), India in 1911 (Zipf [1949]), U.S. history
(Dobkins and Ioannides [1998], Krugman [1996], Zipf [1949]) and China in the
mid-nineteenth century (Rozman [1990]). Empirical exercises of different
countries and periods show the general explanation power of Zipf's law. There
have been quite a few important efforts to explain or resolve the puzzie of rank-

size rule: such as economics models (Losch [1954], Hoover [1954], Beckman



[1958]), Krugman’s spatial model (Krugman [1999]), and Simon’s random-
growth model (Simon [1955]). The puzzle still remains even though these efforts
do offer different ways to analyze the possible theoretical foundation.

Gabaix (1999) proposed Gibrat’s law to explain Zipf’s law. He finds that
homogeneous growth processes will lead the distribution to converge into a Zipf
pattern. Homogeneity of growth processes refers to the common mean and
common variance of city growth rate. In spite of the driving forces of the growth
of cities, or the economic structures of the countries; as long as they satisfy
Gibrat’s law, Zipf distribution will appear. According to Gibrat’s law, both mean
and variance of growth rate are independent of the size of the city. Randomly
growing cities with the same expected growth rate and the same variance will
converge to a Zipf pattern.

Gabaix’s work proposes a general and neat interpretation to explain that
puzzling regularity - Zipf’s law. Gabaix uses Eeaton and Eckstein’s data to show
that the variance of the growth rate does not seem different across sizes. Eaton
and Eckstein (1997) find there is no correlation between the initial size and the
growth rate for both Japanese and French cities. These empirical results show
some evidences for Gabaix’s finding. However, the interaction behavior among

cities, that is the essential driving force of agglomeration, in the region is not



expressed in Gabaix’s work.

The purpose of this paper is try to explain Zipf’s law by a growth process
oriented from a spatial interaction model, which is theoretically derived from the
concept of entropy in physics. Furthermore, there are a few questions about Zipf’s
law that we wish to understand more from this paper: What does Zipf’s law indicate
in cities’ distribution? What does the slope of the curve is close to —1 means? Is it
possible to change this “law” in terns of the timing and the slope?

The major concept of entropy is to derive the maximum uncertainty estimator
given the limited information. This feature has been greatly applied in urban and
regional modelling for commuting pattern and location choice probability in
transport and location models. These urban and regional modelling mostly focus
on the static solution from entropy, such as probability distribution and the implied
spatial interaction model. Nijkamp and Reggiani (1991) have derived the dynamic
process of the location choice probability distribution from entropy, nevertheless,
the evolution property and the size distribution have not been investigated. Due to
the legitimate explaining power of the static probability estimator from entropy in
regional modelling, it is quite essential to investigate the properties of the followed
dynamic process and the converged distribution. Due to the surprising regularity

of Zipf's law in empirical size distribution of various countries and at different times,



it is greatly motivated to exam the features of the evolution process from entropy
and the possible relation between this evolution process and the mysterious Zipf's
law.

Section 2 is the theoretical background of the proposed dynamic logit model.
Section 3 investigates the property of the proposed model through simulations, and

examines the size distribution of cities in Taiwan. Section 4 presents the conclusion.

2. Residential location and the spatial interaction model
2.1 Entropy in a spatial interaction model

The application of entropy-maximizing methods to the trip distribution has
been discussed in Wilson (1967). The major concept is to maximize the
“uncertainty” in terms of possible assignment subject to all prior information with
respect to the trip distribution. The entropy theory applied in this topic aims to
derive the most probable trip or migrant distribution given additivity conditions and
transport cost budget constraint. The solved optimal trip estimator is:

T, = AB,OD exp(—fc;) )

where A; and B,are balancing factors, and exp(—/X;) is the distance friction
function. Parameter, £, in the distance friction function is the marginal possible

states (the objective function in entropy problem) per unit of transport cost. And the



parameter, c,, represents the general transport cost between location i and j. The

ij >
function of this optimal flow appears corresponding to the idea of gravity theory.
Please see appendix for the details of the deriving process or variable explanation.

The probability of transport or migrant from location i to j derived from the

gravity type migrant flow (equation (1)) is:

@

_ _5_ _ =~ _ _ Bjﬁjexp(—ﬂcij) _ wjexp(_ﬂcij)
Pij = 6i = AiBjD;eXP( ﬂcij) = ZBijeXp(—ﬂCij) ZWjCXp(—ﬂCij)

2.2 Qualitative choice model
Traditional location theory assumes households maximize their utility subject
to budget constraints in residential location decisions. Assuming V. as the

L

systematic household utility and ¢, as the error term, the household utility function

is as follows:
U, =V, +¢,. G)
Under the consideration of household utility maximization, and given the

distribution for the unsystematic part of utility (&,)', the probability that the

household will migrant from city i to city j is

P, =Prob(U, >U,, for all I, 1#j)= )

! Assume that each &, is distributed independently, identically in accordance with the extreme
value distribution.



This is the multinomial logit model. The utility function plays the role of location
advantage. The larger the observed utility a household could achieve at city j, the
more attractive that city j is to the household; consequently, the higher the
probability that the household would choose to migrant to city j. The probability
that the household would migrant from city i to city j (equation (2)) is the relative
location advantage.

2.3 Dynamic process of the discrete choice model

A simplified probability model with time variable from equation (2) is:

_ exp(vj,t )
O3 exp(Vy,)
1

&)
where Z”:P,.,t =1. This is in a multinomial logit form based on the assumption that
i=1

a household chooses alternative j to achieve the maximized observed utility V;.
The negative term, — /&, (in equation (2)), represents the major concern that
location choice is based on in this simplified model. It indicates the reduction of the
possible number of states due to city i’s location in the region. The shorter the
distance between city i and other cities, the higher the location accessibility at city I;
consequently, the higher the selection advantage at city i. In an extended model,
the location endowment other than location differences will also be included in this

location advantage term. The discrete dynamic logit model derived by Nijkamp and

Reggiani (1991) is as follows:



P = (I}J +DP;, - f/f Pj,t2 -P, Zl:f/lpz,t (©)
I
The first two terms at the right-hand side is the logistic growth of choice probability
P,. The third term is the interaction effects within region. This dynamic spatial
interaction process from entropy expresses that the change of choice probability for
city j not only is influenced by its current choice probability in a decreasing rate,
other cities’ choice probabilities also play competitive roles in city j’s growth.

The variable V, is the observed utility or location benefit in city j. This
systematic location benefit is assumed to consist of two parts according to the time
variable: (1) Geographical advantage, a location advantage caused by known
geographical endowment and benefit, is fixed through time. It is the source of the
deterministic force in the dynamic process. (2) Agglomeration advantage, another
kind of location advantage caused by external effect from population and

employment gathering together, is varied through time. It is historical dependent

and the source of possible stochastic force in the growth of cities.

Vi,t = \Ili + h(yi,r) ™)

3. The long runs location pattern of the spatial interaction model

3.1 The model



The discrete dynamic logit model is simulated. We assume a region with n
cities. Each city grows due to immigrants or industries from outside region.
Assuming there is no inter-cities immigrants. The growth process is based on the
discrete dynamic location choice probability as in equation (6). We simulate the
spatial interaction model to exam the property of the evolution process by varying
variables and the initial condition: number of city (n), length of time path (t),
change of utility (a), and the initial value of location choice probability P,.

Households choose residential location where utility is maximized, and the
industries choose location where their profits are maximized. Both utility and profit
in corresponding location reflect the location advantage to the decision makers. The
location advantages are the major concern of decision-makers in their location
decisions of this model. Under the assumption that the location advantage is
decomposed into two parts: fixed and time varying parts. They are corresponding to
determined and stochastic forces of growth processes. The determined location
advantage named geographical advantage affects the growth of city through the
initial location choice probability that reflects the relative geographical advantage.
Furthermore, the time varying location advantage influences the growth of city
through the change of utility in the model. The change of utility through time is the

change of the time-dependent advantage (agglomeration benefit).



In the simple case, assuming the change of utility as a constant «;:
P, =(a,+DP, -a,/P’ —Pjy,z;a,}’,’, ®)
I
If change of the utility @, equals zero, the choice probability will be fixed through
time and converge to the real size proportion in the long run. The growth process
reaches steady state when the choice probability converges to the real size
proportion.
3.2 Simulation
The evolution process based on the dynamic spatial interaction modelpossibly
leads to two different kinds of dynamic patterns: stable and unstable processes
depending on the parameter values.
(1) Stable process
Assume there are 50 cities in the region, and all has uniform initial city
zise. The change of the utility is assumed as a constant ‘a’. It is generated from
the random number within a range (0, 0.04). The simulated time path for cities
in the region is presented in Fig. 1.1 and Fig. 1.2. The dynamic probabilities
and city sizes are converging to a stable trajectory.
(2) Oscillating process

Another experiment based on the same assumption and initial condition

as in the previous experiment. The range of the random number generated as
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the change of utility is changed to (0, 2.7). The simulated time path for all 50
cities is presented in Fig. 2.1 and Fig.2.2. The dynamic probabilities and city
sizes are oscillat@ng with the unstable trajectories. These two experiments show
that the same dynamic interaction rule would lead to two essentially different
evolution processes due to the value of parameter (scale of time varying

location advantage).
Features in stable evolution

Assume the same numbers of cities, (n=50), evolution time, t (100), and
the scale of time varying location advantage, a (0.04), are all the same as in
experiment (1). The simulated distribution of city size and rank is presented in
Fig. 3.1. The Zipf plot that shows the distribution of log size versus log rank is
presented in Fig. 3.2. We run the regression of Zipf’s law.

In (Rank) = A — B In (Size),

The result is

In (Rank) = 6.17 - 0.67 In (Size),
(0.77 0.57)

where the 95% confidence interval of estimated slope is in parentheses, and
the R*is 0.787. The estimated slope in Zipf plot is different from 1 which
Zipf’s law would predict. The experiment results are in Table 1.1 and Table 1.2.
The small value of the standard deviations of both estimated intercept and

slope implies that a negative slope Zipf plot could always be generated from a
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dynamic logit model. Also, given the same conditions and randomly generated
change of utility parameters, different growth processes have close estimated
value of both intercepts and slopes in the Zipf plot.

(3.1) Evolution time and region size

The simu]ations in this section are based on the same number of cities
(n=50), and the scale of time-varying location advantage (a=0.04). The only
difference is the evolution time path (t). The regression result is in Table 2.1.
The simulation result of the region of 100 cities (n=100) is in Table 2.2. The
corresponding evolution graphs and the Zipf plots are in Fig. 4 and Fig. S.

The absolute value of the estimated slope in the Zipf relation is getting
smaller after a longer evolution time. The longer the time the more
divergence of the size of cities in the region. This is due to the cumulated
effect of the location advantage. A longer evolution time reduces the scale of
the slope in the Zipf relation. At a certain time during evolution, the
absolute value of the slope will be close to 1. In Table 2.1, the number of
cities is 50, and the estimated slope is close to one at t=67; in Table 2.2, the
number of cities is 100, and the estimated slope is close to one at t=75. A
larger region (more number of cities) does not change the features that city

sizes get less homogeneous in longer evolution time. On the contrary, larger
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number of cities in the region reduces the speed of the interaction process.
(3.2) The scale of the time-varying location advantage

The change of the time-varying location advantage is assumed to be a
constant, &, in equation (8), for each city through time. Table 3 lists
simulation results given different values of parameter ;. The larger the value
of parameter ¢, the smaller the absolute value of the slope. This implies that
the more significant the difference of each city’s change of utility that affect
migrants’ choices, the more divergent the city sizes within the region.
(3.3) Test of lock-in effect

In this experiment, we change the value of parameter «; of city 3 into
three times the original scale at time t=50, and exam whether the final choice
probability distribution (t=100) would be changed. The correlation coefficient
of the final distribution with and without the change of the parameter is 0.86.
The city which dominates the region is still be the dominant city even if city 3
has relatively higher time varying location advantage than the original
dominate city in the middle of the evolution. This result implies the possible
“lock-in” property of the dynamic process. This property is one of the
essential features of the self-organization system.

(3.4) The average and variance of the growth rate across sizes

12



The condition of Gibrat’s law is examined given initial arbitrary
probability distribution. Fig. 6 shows the plot of growth rate versus
normalized population size. The mean growth rates at the first period is
clearly independent of city sizes; the mean growth rates at period 100 also
does not show significant relation with the city sizes.This feature has
empirical evidence in Eeaton and Eckstein (1997). The mean and variance of
the average growth rate is in Table 4. The variance of growth rate across
sizes is the same. The average growth rate across sizes does not seem the
same across cities.” However, the differences between average growth rate
across cities are within 0.0391.

(3.5) Determinism versus chance

To distinguish the time-dependent property in the location advantage V;
as in equation (7) allows both deterministic and stochastic features into the
growth process. The geographical advantage is determined by the given
location benefit, which is fixed cross time. City with higher geographical
advantage has selection advantage. Agglomeration advantage depends on
current size of population and employment; it is changed through time and is

historical independent.

2 An F-test evaluates the equality of the average growth rate of N cities show significant differences
across N cities in both initial distributions. The F-statistic is F=1056 given initial uniform

13



Allowing only known geographical advantage in the location advantage
(utility or profit) without time-varying location advantage will make the
region growth pattern becomes deterministic. The dominant city will always
be the one with highest geographical advantage. Including the time-varying
location advantage but assuming constant value (constant change of
agglomeration and other time-dependent advantage through time) will also
lead to a deterministic long tern pattern. The long run distribution is based on
the initial known location advantage and known effect from agglomeration.

Relaxing the assumption of the constant change of utility into a time-
varying variable will include the stochastic features into the dynamic process.
Assume the agglomeration advantage is bounded. The simulation results show
possible multi-dominate cities in the steady state; these dominant cities do not
necessarily endow the highest geographical advantage or the largest time-
varying location advantage. The historical dependent force dominates the
known geographical advantage in this case. This implies the special feature of
the model that a deterministic rule may lead to a stochastic long-term pattern.
And experiment results find that stochastic growth process also possible

generates Zipf pattern in the steady state.

distribution, and F=1493 given initial arbitrary distribution.
14



3.3 Evidence on the size distribution of Cities in Taiwan

We collect data on the population of 209 to 216 cities in Taiwan for the years:
1971, 1974, 1977, 1980, 1983, 1986, 1989, 1992, 1995, and 1998 The criterion for
selection is population of at least 20,000 inhabitants. The regression result for all 10
years is in Table 5. Data of cities in Taiwan shows that the absolute value of the
estimated slope is decreasing and converge to 1 through time. The adjusted &? is
0.96 in 1971 and increases through time. The size distribution of cities in Taiwan
tends to converge to the Zipf's law. Similar to the result of previous simulation
(Table 2), both estimated intercept and slope have diminishing absolute values cross
time. This indicates that the urban system in Taiwan converges to a less
homogeneous city size distribution. This may due to the cumulated effect of
location advantage including both fixed geographical and time-varying location

advantages..

3 The data are from Statistics Annals by Ministry of Interior.
15



4. Conclusions
In this paper, we exam the property and long run distribution pattern of a
growth process derived from the entropy concept. The proposed model possibly
generates both deterministic and stochastic growth processes. Both deterministic
and stochastic processes could reach Zipf pattern in the long run.
Zipf’s law indicates certain degree of the combination of different size of cities.
The decreasing absolute value of the slope as time pass by from both empirical data
and simulation result indicates that cities grow from a more homogeneous states
into a more heterogeneous distribution. In the evolution process, Zipf’s law shows
that the region will not evolve beyond certain degree of “heterogeneous
distribution”. The absolute value of the slope will not decrease infinitely. The
converged level is at a certain distribution which corresponds to the slope equals —1.
The converged state is at the balance point of two contradicting forces: positive and
negative agglomeration effects in cities. The timing of the converging time mainly
depends on the following conditions: the initial location differences and
endowments which affect decision makers’ location advantage, and the change of
the location advantage through time. The change of the location advantage
essentially indicates the change of the net agglomeration effect (positive and

negative agglomeration effects) in cities. A change of the interaction effect and the
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structure of both positive and negative agglomeration effect may change the
converging distribution (slope).

Some major findings about the properties of the growth process of this model
are as follows. (1) The purposed dynamic process possible generates both stable and
unstable patterns according to the value of the parameters. (2) In the stable
evolution process, the purposed model possibly generates both deterministic and
stochastic growth processes. (3) The dynamic logit choice model possibly generates
Zipf’s pattern. (4) The longer the evolution time; the less homogeneous of cities in
the region; the smaller the absolute value of the slope in Zipf’s plot. This is due to
the cumulated effect of location advantages. (5) The number of cities in the region
affects the speed to reach Zipf’s pattern. The larger the size of region (number of
cities), the slower the evolution process. (6) The larger the change of utility through
times the faster the speed of the evolution process. (7) Evidence from cities in
Taiwan shows the diminishing estimated intercept and slope as the proposed model
predicted. Size distribution in Taiwan converges to Zipf's pattern.

Simulation findings correspond to the findings from previous studies that for
most modern countries with different economic and social structures, the
distribution of city sizes tends to follow Zipf’s law. Although there exist countries

or urban systems which differ from a Zipf pattern, but they show patterns converge
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to Zipf distribution. Given the assumption of the dynamic process of location
choice probability and the randomly generated geographical advantage, an urban
system with certain parameter value will evolve to a Zipf pattern in the long run.
The timing of the Zipf pattern achieved depends on the number of cities and the
relative location advantage. The location advantage includes both fixed and time-
dependent advantages. This helps us to explain why most countries with different
properties could converge to the same long-run Zipf’s pattern. The influence from
the change of relative location advantage (or related parameters) on the timing of
steady state for Zipf distribution is an important question for future research in

policy implication.
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APPENDIX: Entropy Theory in Spatial Interaction and the Dynamic Logit Model

Let T, be the number of trips (or migrants) and c; is the travel cost between
zones i and j; let O, be the total outflows from zone i, and D; be the total inflows
to zone j. The entropy w(T;) measures the uncertainty of assignments of individual
units to an origin-destination matrix. Maximizing logarithm of w(T;) subject to the
additivity conditions (2), (3) and transport cost budget constraint (4) derive the most

probable arrangement of spatial distribution of trips in the system.

T
W(T.'j)— H HTij! (1)
2T, =0, @
2T, =D, ©

The travel budget C is expressed as follows:
2.2.¢T;=C )
i
The following consistency condition should also hold:
22T, =30,=3D;=T ©)
1 ] 1 ]
The-optimal flowT; is derived:
T; = A;B,0,Dexp(-fc;) (6)
where A, = {D BDexp(-fc,)}"
j

and B, = {ZAiOiexp(—ﬂcij)}’l )
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The term -fc; represents the reduction in total numbers of possible states induced
from transport cost between i and j, and the term exp(—/X;) is the distance friction
function. A, and B,are balancing factors. The function of this optimal flow
appears corresponding to the idea of gravity theory,

The derived gravity type migrant flow from i to j (Equ. (6)) gives the

probability of a destination choice from i to j as the following:

T — B .Bexp(—ﬂci.) W.exp(—fc;)
Pj==-= A;B;Djexp(-fc;) = — = : .

— = 8
Yo ZBijexp(—,Bcij) ijexp(_ﬂcij) )

where W, = B}.Fj is the weight. Consider possible time varying probability,

adding the time variable into equation (8):

Wj,t exp(_ﬂcij,t )

B TS exp(— ) )

where ¢, , represents the distance between i and j at time t.

ij,t
This equation is transformed into a simple form by omitting the symbol of the
origin i and assuming weight W, =1,and - fc;, =u;,.

exp(u it )

P =m (10)

where u;, could be interpreted as a choice factor, which is the utility achieved by

choosing alternative j. The above probability is the formula of multinomial logit
models in discrete choice models, which assume a household chooses alternative j

to achieve the maximized utility u;.
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The evolution of the dynamic multinomial logit model is expressed by the change

of probability P, with respect to time t:

dP; , . d| exp(u;)

=P =— 11
dt 7 de | D exp(u,,) (1)
P, =u; P(1-P)- P, > uF, (12)

nzj
where the symbol t is omitted for the sake of simplicity. The term u; represents the

change of utility through time; it is assumed to be a constant « ;. Expression (12) is
a system of Lotka-Volterra type. The first term at the right-hand side is the logistic
growth of population P,, and the second term is the interaction effects among

population. Equation (12) is approximate by discrete time and derive:

Pj,t+l = (aj +1)Pj,t —aijj.tz —Pj,tZaIPl,t (13)

Jj=l

where a; =u,
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Table 1.1
Simulation result of 'rank-size' regression (n=50) *
In (Rank) = A - B In (Size)

A B
10.097 1.393
10.637 1.483
10.387 1.441
9.952 1.362
9.681 1.311
10.947 1.548
9.879 1.351
9.174 1.211
10.377 1.439
11.815 1.712
9.970 1.364
9.896 1.343
Mean 10.234 1.413
Standard deviation 0.678 0.122

* City size (n=50), evolution time (t=50), scale of location advantage (a=0.04)



Table 1.2
- Simulation result of 'rank-size' regression (n=100) *
In (Rank) = A — B In (Size)

A B
6.221 0.679
5.943 0.634
6.192 0.679
6.143 0.679
6.636 0.761
6.867 0.800
5.946 0.633
5.945 0.646
6.535 0.757
6.467 0.735
5.899 0.639
Mean 6.295 0.702
Standard deviation 0.330 0.059

* City size (n=50), evolution time (t=100), scale of location advantage
(a=0.04)
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Table 2.1
Simulation result of 'rank-size' regression (n=50)
In (Rank) = A ~ B In (Size)

Time A B
(Estimated constant) (Estimated slope)

50 3.62 1.28
60 8.69 1.13
65 8.36 1.07
67 7.96 0.998
70 7.73 0.96
75 7.54 0.93
80 7.13 0.85
100 3.09 0.70
200 2.54 034
300 2.28 0.26

Notes: Scale of location advantage (a=0.04)

Table 2.2
Simulation result of ‘rank-size' regression (n=100)
In (Rank) = A — B In (Size)

Time A B
(Estimated constant) (Estimated slope)

50 9.91 1.41
60 8.56 1.12
65 8.72 1.16
70 8.10 1.04
75 7.97 1.01
80 7.44 0.90
100 6.53 0.73
200 4.61 0.36
300 3.88 0.24

Notes: Scale of location advantage (a=0.04)
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Table 3
Change of scale of location advantage (a)*

a A B

0.004 68.723 12.415
0.04 9.762 1.324
04 2.765 0.115
0.9 2.318 0.030

* Number of cities (n=50), evolution time (t=50)
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Table 4

Means and variances of the average and variance of growth rates

Average growth rate Variance of growth rate
Mean -0.0042 8.82776-006
Variance 0.000132 1.1357e-039
Minimum -0.0242 8.8277e-006
Maximum 0.0149 8.8277e—006

Observations 50 50




Table 5°

'Rank-size' regression of cities in Taiwan

In (Rank) = A — B In (Size)

Year Observation A B Adj- R?
1971 216 21.138 1.478 0.96
1974 216 19.491 1.412 0.97
1977 216 18.932 1.355 0.97
1980 216 18.430 1.304 0.98
1983 216 18.055 1.265 0.98
1986 213 17.748 1.234 0.99
1989 210 17.351 1.196 0.99
1992 207 16.946 1.154 0.99
1995 207 17.060 1.163 0.99
1998 209 16.822 1.140 0.99

" Source: Statistics Annals by Ministry of Interior
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Fig. 1.1 The dynamic probability path of all cities in the region
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Fig. 1.2 The dynamic probability path of four cities in the region
(Including the cities with highest and lowest choice probability)
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Fig. 2.1 The dynamic probability path of all cities in the region
(n=50, =100, a=2.7)
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(Including the cities with highest and lowest choice probability)
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Fig. 5.2 The dynamic probability path of some cities in the region
(Including the cities with highest and lowest choice probability)
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