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Abstract

This paper proposes an agent-based computational
model of a lottery market based on an expected-utility
paradigm, in which agents’ decisions regarding lottery
participation are based on their own subjective beliefs,
and those beliefs are evolving over time with genetic al-
gorithms. The simulation results are then compared with
another agent-based lottery market with different agent
engineering. It is found that almost all emergent prop-
erties, such as the Laffer curve, the halo effect (lottoma-
nia), conscious-selection behavior, and the interdepen-
dent preference (regretting effect) are qualitatively ro-
bust with these two different designs of agents.

Keywords: Agent-Based Computational Model, Lot-
tery Market, Expected-Utility Paradigm, Emergent
Property, Designs of Agents

Motivation and Literature Review

(1) pioneered an agent-based computational model of
the lottery market. Using the model, one can simulate
and analyze different consequences of different designs
of lottery markets. For example, the specific question
addressed in that paper concerned the optimal lottery
tax rate, and, as one of their main experiments demon-
strated, the optimal tax rate was found to be around
40%, which interestingly mimicked the empirical obser-
vations. In this paper, we propose a different behavioral
model of gamblers (lottery participants), and compare
the agent-based simulation results derived with those
obtained in (1). The maotivation for this study is two-
fold.

Firstly, there has recently been an effort made to
understand and further the transferability of knowl-
edge between models and beyond, which is also known
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as model-to-model analysis.! Understanding complex
adaptive systems often seems to necessitate the use of
more than one model. Taking the lottery market as an
example, there is generally no unique description of
gamblers’ behavior as to their decision formation re-
garding lottery purchasing. The decision can be sponta-
neous, but it can also be deliberate. Therefore, it would
be useful to compare different behavioral models of lot-
tery participants so as to facilitate a better view of what
modeling brings to the understanding of real or artificial
societies. In this paper, we shall propose a behavioral
model of lottery participants based on the expected util-
ity paradigm. The agent-based lottery market built upon
this agent engineering is then compared with the earlier
one built upon a different engineering, namely, evolu-
tionary fuzzy decision rules.

The comparison is not just confined to the simulation
results, or their fitness to empirical observations. Even
though the simulation results of two different agent-
based models are the same, different models can still
provide different interpretations and hence bring dif-
ferent insights in regard to the same phenomena. For
example, as we shall see in this paper, through the ex-
pected utility paradigm, the subjective belief of lottery
participants is introduced into the model, and one can
then explore the role of the evolution of subjective be-
liefs in the emergent dynamics of lottery dynamics, a
mechanism which may not be available in the other
agent-based model.

Secondly, despite their interesting finding, (1) do en-
counter one major weakness, i.e. the absence of the halo
effect.? One possible explanation for the absence of the

1See, for example, the entire issue of Journal of Artificial
Societies and Social Smulation (JASSS), Vol 6, No. 4, 2003.
2The phenomenon that sales following a rollover are
higher than sales prior to the rollover is known in the industry



halo effect is that the agents’ behavior in the original
model, which is mainly characterized by evolutionary
fuzzy decision rules, may be a little overwhelming in
the sense that it leaves agents with too many parameters
to learn. With this degree of sophistication, it becomes
difficult for agents to make sense of the simple relation-
ship between the jackpot size and lottery participation,
which may indeed not have any simple rationale behind
it. Therefore, in this paper, we try to model agents in
a simpler way, which is very much motivated by the
standard expected-utility paradigm. We are well aware
that the conventional expected-utility maximization will
not entice agents to purchase lottery tickets, because the
expected return is normally negative for lottery invest-
ment ((4)). Nevertheless, if agents have expectations
different from the objective odds of winning, then it is
still possible to observe lottery participation. Further-
more, given agents’ subjective beliefs, when the jackpot
size increases, agents will generally intensify their lot-
tery participation.

Nonetheless, this new device does not necessarily im-
ply that the halo effect or lottomania will occur, as one
may expect. As mentioned earlier, this new approach
depends heavily upon agents’ subjective beliefs, which
shall evolve over time. Consequently, agents’ subjec-
tive beliefs may change during rollover so as to de-
crease their lottery participation, which makes the net
effect difficult to predict.2. So, it still makes us wonder
whether the phenomenon of lottomania will emerge in
this situation.*

The remainder of the paper is organized as follows.
Section 2 gives the skeleton of the agent-based lottery
market used in this paper, whereas the companion algo-
rithm (genetic algorithm) used to implement the lottery
market is detailed in Section 3. The experimental de-
signs are given in Section 4 followed by an analysis of
the simulation results and the work of comparison. Con-
cluding remarks are given in Section 6.

as the halo effect ((3; 4; 5)). The halo effect is partially due
to considerate media attention paid to rollovers, which in turn
creates a bout of lottomania.

3 A common feature of lotteries is that, if there are no win-
ners in a given draw, the jackpot prize pool from that draw is
added to the pool for the next draw, referred as to a rollover

4As has been well argued in (1), lottomania is not an ex-
ogenous setting, but is endogenously generated because one
has no control over the size of the jackpot, which in turn is an
aggregate outcome of individuals’ decisions regarding lottery
participation. They further provide an explanation as to why
this may occur given the genetic-algorithm learning. See their
Section 6.

Agent-Based Modeling of the L ottery
Market

We shall follow (1) to build up the three main aspects of
lottery behavior, which are lottomania, conscious selec-
tion, and aversionto regret. The difference between this
version of the agent-based lottery market and the early
one in (1) mainly lies in the formation of the decision
regarding lottery participation, denoted by «, which is
defined as the percentage of the income spent on lottery
purchasing. In (1), it is formulated as a standard fuzzy
decision rule or, more precisely, the Sugeno style of
fuzzy inference. The antecedent is a linguistic descrip-
tion of the jackpot size and is fuzzy, whereas the con-
sequent is a numerical description of the lottery invest-
ment and is crisp. While this modeling explicitly relates
the participation decision to the jackpot size, the pref-
erence (utility) and subjective belief of winning is not
involved. The current version differs from the former
one by taking into account these fundamentals of agents,
and modeling the lottery decision within an expected-
utility, but not necessarily a maximization, framework.
The lottery participation is considered to be a result of
satisfying behavior. This different agent engineering is
introduced as follows.

We begin by working on agents’ subjective beliefs re-
garding the probability of their winning the jackpot. Let
p; be agent 4’s subjective belief (probability) that he will
win the jackpot. We index p; by ¢ as p;  when we wish
to emphasize its adaptation and dynamics. With the de-
vice of the expected utility, agents’ decisions regarding
lottery participation «; can be treated as a control vari-
able to solve the following equation:

ui(I) = (1—=pi)ui[(1— i) I]+pivi[(1—c;) I +J], (1)

where J denotes the size of the jackpot and I denotes
the income the agents received in each period.®> (1)
assume all agents are risk-neutral, and w(I) = I. In
this paper, we follow a more standard formulation in fi-
nance, i.e. by assuming that agents are risk-averse and

The idea of Equation (1) is based upon the assumption
that the Lottery itself can be fun, and hence can enhance util-
ity. ((4)) Based on this assumption, the expected utility of
agents who participate in the lottery game is something like
u; (I) 4 € and is higher than u; (1), which is the utility of the
non-participating agents. We, however, do not pursue a fur-
ther maximization problem here due to the difficulty of model-
ing the detailed relationship between lottery participation and
subjective beliefs. We also notice that this is not a precise for-
mulation of the expected utility since there are several differ-
ent prizes associated with different winning probabilities. For
simplicity, only the jackpot prize is considered in this paper.
In addition, income I is exogenously given, and is identical
for all agents. In a separate paper, (2) study the case where in-
come is heterogeneous among agents, and examine the effect
of income distribution on lottery participation.



hence u(I) = logI. It is then easy to show that the
solution to problem (1) is

1 1
af = I— (Jii)lipi -1 (Jiq,)lipi

T I @
Clearly, o is less than 1, but we have to set 0 as a lower
bound (corner solution) in case the solution from (2) is
less than 0.
Following the discussion of (1), the final fitness func-
tion after taking into account a psychological factor,
namely, aversion to regret (6;), is then

w;[(1—6)I], if af =0 and Ny >0,
w[(1+6,)I], if af =0 and N, =0,

K2

’U,Z[(l — Oﬁ)] —+ ’/TZ'],

(2

u;(I) =
otherwise.

The fraction 6; (0 < 6; < 1) in the utility function
(3) measures how regretful the non-participant, charac-
terized by of = 0, would be if the jackpot was drawn
i.e. the number of winners of the jackpot is positive
(N, > 0). Onthe other hand, in a way that is opposite to
regret, the non-gamblers may also derive pleasure from
the gamblers’ misfortune, in particular when the jackpot
is not drawn (N, = 0). Since the mass media generally
only give a large coverage to the jackpot winners, and
not the losers, we therefore assume that the regret ef-
fect is asymmetric between lottery non-participants and
participants, as shown in the last part of Equation (3),
where 7, is the lottery prize.

The last feature of our model of agents is the con-
scious selection, which refers to non-random selections
of combinations of numbers. Inan “z /X lottery game,
both a gambler and the lottery agency shall pick 2 num-
bers out of a total of X numbers. To take conscious se-
lection into account, let Ei be an X -dimensional vector,
whose entities take either “0” or “1”. Consider a number
z, where 1 < z < X. If “0” appears in the respective
zth dimension, that means the number z will not be con-
sciously selected by the agent, while “1” indicates the
opposite. If b; has exactly = 1s, then one and only one
combination is defined, and the agent would select only
that combination while purchasing the lottery ticket(s).
If 52- has more than x 1s, then many more combinations
can be defined. The agent will then randomly select
from these combinations, while purchasing the ticket(s).
Finally, if b; has less than z 1s, then those designated
numbers will appear on each ticket bought by the agent,
whereas the rest will be randomly selected from the non-
designated numbers.

All these three aspects of lottery behavior will adapt
and change over time; therefore, they are all indexed
by t as p; ¢+, 0;+, and 5“. The evolution of the lottery
behavior is then driven by genetic algorithms.

Genetic Algorithms

The standard genetic algorithm is applied to evolving
the three behavioral parameters of the entire population,
POP, = {p; 4, bi,0;+}Y,, where N is the number of
agents. GA starts by encoding the behavior parameters
to binary digits (binary coding) or real numbers (real
coding), usually called the chromosome (finite-string)
representation. Here, we apply real coding to p; . and
0.+, since they are real numbers between 0 and 1. How-
ever, binary coding is applied to EM given that it is a
binary vector.

Tournament selection, associated with a tournament
size o, is employed as the selection scheme to deter-
(@jine who are the celebrities (mating pool). Given the
mating pool, offspring are generated by applying the
two genetic operators: crossover and mutation. First,
the crossover. Since each chromosome represents the
three different aspects of agents’ behavior, the crossover
is made in a pair-by-pair manner, i.e. to restrict the
swap only to the paired characteristic, called a paired
crossover. Each time the crossover works on only one
of the three pairs which are determined randomly. If it is
the pair of Em, the one-point crossover with a crossover
rate P is applied. If it is p; . or 6, ., the arithmetic
crossover with the same crossover rate is applied. Sec-
ond, the mutation. After the crossover, each part of the
resultant chromosome has a chance of being mutated.
For Ez-,t, the bit mutation with a mutation rate P,, is ap-
plied, whereas for p; . or 6;;, an arithmetic mutation
adjusted to a bit-mutation equivalent is applied to these
real parameters as in Equation (4).°

new old = 1 7 By
pt =p Jr;BP,,L(i) (=1)z2,
where p?'d and p¢ indicate the subjective belief be-
foreand after mutation. Bp,, and B are the Bernoulli
random variables with success probability P, (the mu-
tation rate) and one half, respectively.

When all offspring are produced, the steady-state re-
placement with the generation gap # is applied to re-
place the old generation. With the parameter 7, the
agents belonging to the top 1 — n percent would remains
and only the agents belonging to the bottom 7 percent
would be replaced by offspring.

(4)

Experimental Designs

We would like to see how this new design may come
up with anything significantly different from what was

6As the arithmetic crossover, we could use the standard
arithmetic mutation for the real-coding chromosomes. The
reason for using this bit-mutation design is to make our results
comparable to those of (1).



Table 1: The Experimental Design

Market Parameters

52,83, 54, S5

Pick z from X (z/X) 5/16
Lottery Tax Rate (7) 10%, ..., 90%
50, 51, O%, O%,

35%, 15%, 12%, 38%

Drawing Periods (7)

3

Number of Agents (V)

5000

Income (1)

200

GA Parameters

Range of p; o [0, 0.003]
Periods (Generations) (1) | 500
Crossover Rate (P.) 90%
Mutation Rate (P,,) 0.1%
Arithmetic Mutation Size | Equation (4)
Tournament Size () 200
Generation Gap () 100

obtained in (1). The behavior of the lottery market stud-
ied in (1) includes the optimal lottery tax rate associ-
ated with a simulated Laffer curve’, the impact of the
regret effect upon the Laffer curve, and the statistical re-
lationship between rollovers. Rollovers usually enhance
the attractiveness of the next draw, called the rollover
draw, sales (the halo effect), the evolution of conscious-
selection behavior, and the inter-dependence preference
(the aversion to regret).

To be able to compare the results of our new design
with those of (1), we follow almost the same experi-
mental design as theirs (see Table 1).% The design is
composed of two parts, namely, market parameters and
GA parameters.

Let us start with the market parameter. In an “z/X”
lottery game, both a gambler and the lottery agency
shall pick = numbers out of a total of X numbers,
and then different prizes are set for different numbers
matched. Let y denote the numbers matched. Clearly,
y = 0,1,...,2. Let S, be the prize pool reserved for
the winners who matched y numbers. A special term is

"The Laffer Curve is named after the economist Arthur
Laffer. He was an advisor to President Reagan in the early
1980s. The Laffer curve suggests that, as taxes increased
from fairly low levels, tax revenue received by the government
would also increase. However, as tax rates rose, there would
come a point where people would not regard it worth working
so hard. This lack of incentives would lead to a fall in income
and therefore a fall in tax revenue.

8However, since the modeling of lottery participation is
different between the two, not all control parameters are appli-
cable here. For example, the control parameters pertaining to
their fuzzy decision rules are not applicable to our case. Simi-
larly, our parameters as to the belief formation and adaptation
is also not applicable to their case.

given to the largest pool, S, namely the Jackpot.

Each prize pool, S, shall be shared by all players
who match y numbers, say N,,. The prize pool is defined
by the lottery taxrate, 7, which is the proportion of sales
that is not returned as prizes. Thus, the overall prize
pool is (1 — 7)S, where S is sales revenue and 1 — 7
is also called the pay-out rate. The overall prize pool
will then be distributed to each separate pool based on a
distribution (sq, ..., 5z : Do Sy = 1), i.e. Sy = s,(1 —
7)S. In the event where N, = 0, S, is added to the
next draw. A particularly interesting case is N, = 0,
i.e. the premise for a rollover draw. It is anticipated that
sy Will be increasing in y. To recap, a lottery game can
be represented by the following x+4-tuple vector:

L= (x,X,7,50,. Sz),

which is also shown in the upper half of Table 1.

Turning to the parameters pertaining to GA, most pa-
rameters are the same for those in (1) except for the
initial subjective belief, which is not applicable in their
model.® Here, the initial subjective belief p; ¢ is uni-
formly sampled from the range [0, 0.003]. This value is
set in accordance with the objective probability of win-
ning the jackpot, which is 1/('%) ~ 0.0002. We then
build a range centering around this objective probabil-
ity. The range starts from 0 and, after a few trials, we
find 0.003 to be a reasonable upper limit.°

Simulation Results

Twenty five independent runs were conducted based on
the design as indicated in Table 1. The results presented
below are therefore not based on a single run, but an
statistics for these 25 runs. To show the distribution of
the 25 runs, in some cases, the box-and-whisker plot is
used to demonstrate the statistics, say, the means, of the
25 runs (each run has 500 observations). The point ap-
pearing inside each box typically represents the median
of this sample distribution, and to make it more visible,
these points are connected by a line.
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Figure 1: Tax Revenue Curve (Laffer Curve) and the
Associated Box-Whisker Plot

Lottery Tax Rate and Tax Revenue

Figure 1 depicts the Laffer curve phenomenon noticed
by (1).1* The result here is comparable to the one ob-
served earlier.*? A noticeable difference is the location
of the peak. For (1), it is located at a tax rate of 40%,
but this one is higher, reaching up to 60%. However,
by running a non-parametric test for these medians, it
is found that the effective tax rates corresponding from
7 = 0.4to 7 = 0.6 are statistically insignificant. In ad-
dition to the “shift” on the peak, we also see the change
in the distribution of the effective tax rate. By looking
at the range (the box-and-whisker plot) of the effective
tax rate, there is generally an observed downward ten-
dency.3

The appearance of the Laffer curve basically portrays
the two counterbalancing forces as shown in Equations
(5) and (6).

T=75=7(al) (5)

®This by no means says that the value of these parameters
is unimportant. However, it is not the current focus of this
paper.

©obviously, this range cannot be set too high or too low. If
it is too low, the subjective belief is not much different from
the objective probability, and will result in almost no partici-
pation. On the other hand, if it is set too high, the participation
will be so high that rollover with a noticeable jackpot size is
infeasible. Besides, it may seem unlikely that we can have so
many over-confident people in the real world. The other pos-
sibility which we have thought about, but have not given it a
try, is to replace the uniform distribution with a right-skewed
distribution over [0,1], such as a Beta distribution with appro-
priate parameters.

1The statistics shown in Figure 1 are derived by dropping
the first 100 observations.

21pid, Figure 8.

1330 far, we do not have a good explanation for what may
cause this observed difference, except to confirm once again
the lesson that models of adaptation matter. Apart from that,
we should point out that agents in our model are risk-averse,
whereas agents in (1) are risk neutral. To what extent risk at-
titude can impact lottery tax revenue is a separate issue which
deserves another independent study.

Tax Rates (%)

Figure 2: Lottery Participation Rate and the Tax Rate
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Figure 3: Time Series of the Lottery Participation Rate
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The positive force as characterized by the plus sign in
Equation (6) says that, given the sales, the higher the
lottery tax rate, the higher will be the tax revenue. On
the other hand, we expect that a negative sign for the
relationship between lottery participation « and lottery

tax rate T, i.e.
oo

ar
Figure 2 confirms this expectation as it does show that
the lottery participation rate («) declines with the lottery
tax rate.

< 0.

Belief and Participation

The distinguishing feature of this paper is that it incor-
porates agents’ subjective beliefs into their decision for-
mation, while the subjective belief is not updated in a
Bayesian manner but is based on a social learning style
driven by GA. It is, therefore, interesting to see the con-
nection between agents' beliefs and participation. Fig-
ure 3 is a time-series plot of the average lottery partic-
ipation over all 225 (9 x 25) runs by pooling together
the cases of 9 different tax rates, whereas Figure 4 is
the corresponding time-series plot of beliefs. These two
figures together present the evolution of lottery partici-
pation and beliefs. The two figures support each other
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Figure 4: Time Series of the Market Belief (Average of
Subjective Beliefs)

with a simultaneous upward tendency. Remember that
we start with a very narrow range of the initial subjective
belief (see Table 1), but then we watch the emergence of
social euphoria: the subjective belief gradually evolves
toward a more optimistic state. This social euphoria is
supported by and then provides feedback to the lottery
participation. As shown in Figure 3, « increases from
a level of less than 5% to a range of between 12% and
15%, when the subjective belief p rises from the original
niche of 0.003 to a level of 0.023.

The result of social euphoria deserves a discussion.
It is true that most people, most of the time, do not win
the jackpot, and there is no prior reason why they should
collectively learn to be more optimistic. However, the
essence of social learning is that people not only learn
from their own experiences, but also from others’ expe-
riences. Furthermore, the survival of the fittest principle
operating in GA tends to make agents learn more from
those who win the lottery, particularly those who win
the jackpot (super rich people) than from those who do
not (mediocre people). Therefore, with this reinforcing
process, individuals’ experiences may become minor in
updating agents’ subjective beliefs.4

Rollovers and Sales

It is generally assumed that the large sizes of the
rollovers will enhance the attractiveness of the lottery
game. Statistics also tell us that the mean sales condi-
tional on the rollover draw is normally higher than that
of the regular draw.®> Nevertheless, this phenomenon is
not able to be fully replicated in (1).%8 This becomes a

The emergence of social euphoria may also help explain
why the lottery participation rate is not so sensitive to medium
and high lottery tax rates, such as those ranging from 7 = 0.4
to 0.6 shown in Figure 2.

5For a review of the empirical evidence, please see Table 3
of (1).

®They have carried out two statistical tests for their simu-
lated data. The first is simply to test the difference in mean
sales of a rollover draw and a regular draw, and the null that

Table 2: Rollover and Sales: Statistics from the Simu-
lated Data

Tax [t statistic] o R? |Anomalies

Rates|(p-value)|(p-value)

0.1 |[-97.277| 0.2507 [0.0546 61.8%
(0.0000) | (0.0000)

0.2 [-94.6081| 0.4593 [0.1289 62.8%
(0.0000) | (0.0000)

0.3 [-86.6937| 0.3447 |0.0898 56.9%
(0.0000) | (0.0000)

0.4 [-97.808 | 0.4498 [0.1029 60.2%
(0.0000) | (0.0000)

0.5 [-74.3719] 0.4124 [0.0782 45.5%
(0.0000) | (0.0000)

0.6 |[-80.9661| 0.3617 [0.0701 57.7%
(0.0000) | (0.0000)

0.7 [-56.3219] 0.4885 [0.0746| 23.3%
(0.0000) | (0.0000)

0.8 [-21.4805| 0.2484 [0.0759 15%
(0.0000) | (0.0000)

0.9 |-3.5939| 0.6067 | 0.555 0.4%]
(0.0049) | (0.0000)

The statistics in this table are based on the last 400 observa-
tions.

puzzle, and they refer to it as the disappearance of the
halo effect. A conjecture of this failure has been given
in the introductory section of the paper, which also mo-
tivates a different design of the agent’s behavior in this
paper. However, would this new design be able to de-
liver the halo effect?

To answer this question, we perform similar statisti-
cal tests as to what (1) have done, and these are shown
in Table 2. The ¢ statistic shown in the second column
is a test statistic for the null that the mean sales of the
rollover draw is greater than that of the regular draw,
i.e. the halo effect exists. From the corresponding p
value, we can see that the halo effect is uniformly re-
jected. This result is consistent with what was found in
(1): the halo effect is again absent.’

However, sales may actually fall in some rollover
draws, and the frequency of this anomaly can be as high
as 20% to 25% in some countries.'® However, the fre-
quency of anomalies found in (1) is around 60% (when
7=0.4, 0.5), which is simply too high to be compara-
ble with the real data. Here, we encounter a similar
problem. The fifth column of Table 2 also indicates the
high frequency of anomalies, say 60.2% (7=0.4), 45.5%
(7=0.5), and 57.7% (7=0.6). However, a few exceptions

the mean sales of the rollover draw is greater than that of the
regular draw is rejected for all tax rates. However, conditional
upon the rollover draw, it is found that sales do go up with the
jackpot size.

17 At this moment, we have not figured out a compelling rea-
son for the failure to generate the halo effect again except for
“murmuring” something as (1) have done. See their Section 6.

8See Table 3 of (1).
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Figure 5: Time Series of Rollover Frequency under Dif-
ferent Tax Rates

arise from the case where 7 is high. For example, when
7=0.7, the frequency of anomalies gets down to 23.3%,
which is almost the same as the number which we ob-
serve from the U.K. data.®

The third and the fourth columns are the regression
results of the following linear regression model:

St,rollo’uer =qap + O‘ljtfl + €. (7)

where “J;_1” is the jackpot size rolled in from the
t — 1th issue. Regression (7) is only applied to the sales
in the rollover samples, St yoiiover- Sales in the regular
draw are not taken into account since the jackpot size
must start from 0 for all the regular draws. While the
regression coefficient is positive and is significant, its
explanatory power in terms of the coefficient of deter-
mination (R?) is rather low as compared with the real
data.

To get a closer look at the behavior of the rollover,
Figure 5 shows the time series of the rollover frequency
under different lottery tax scenarios.?® It is quite evi-
dent to see that rollover frequency is positively affected
by the tax rate. This is mainly because lottery participa-
tion is adversely affected by the lottery tax rate. When
the lottery tax rate is high, the corresponding participa-
tion is low, hence it becomes much easier to observe the
rollover of the jackpot. For example, when 7 = 0.9,
the rollover frequency is almost as high as one. Fig-
ure 5 also shows that the rollover frequency declines
over time when the lottery tax rate is not high, say,
7 = 0.5,0.3 and 0.1. This is consistent with an in-
creasing tendency to participate in the lottery which we
found earlier (Figure 3).

Ibid, Table 3. Of course, the problem is that the lottery
tax rate in the U.K. is not as high 70%. So these two numbers
do not fit nicely.

2Here, we compute the rollover frequency for each period
based on the 25 runs with respect to different tax scenarios,
and transform it into its 100-period moving-average counter-
part.
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Figure 6: Time Series of Rollover Size, Normalized by
Total Income

Values

S S S S S S S S SR
1 21 41 61 81 101 121 141 161 181 201 221 241 261 281 301 321 341 361 381 401 421 441 461 431
Teriods

Figure 7: Time Series of the Degree of a Fair-Game
Belief

Finally, Figure 6 shows the time series behavior of
the rollover size. The series was drawn by pooling all
the runs for all scenarios and was then further normal-
ized by total income. Despite its constant fluctuations,
a long declining tendency is quite evident. This result
echoes well with the declining tendency of the rollover
frequency (Figure 5). When rollover is less frequent, it
becomes difficult for the jackpot to be accumulated con-
secutively, and hence its size with very likely start from
zero, and it will be hard for it to get high.

Conscious Selection

Chen and Chie (2003) develop a metric to measure the
degree of conscious selection, and this metric can give
one an idea of how far or close the agent is to a fair-
game believer. The metric d is briefly stated as follows:

),
d—{ )/ (%),

where z is the number of 1s appearing in b. As can be
easily shown, 0 ~ d < 1, and the higher the value of d,
the higher the degree of fairness perceived by the agent.

Figure 7 is the time-series plot of the d metric, which
is derived by taking the average over all simulation sam-
ples (25 runs over different 7s). As expected, d starts
from a very low number due to random initialization,
but then there is a tendency for a fair-game belief to

if z<ux,
if z>x,

(®)
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Figure 8: Time Series of the Degree of a Fair-Game
Belief under Different Tax Rates

evolve.?l Nevertheless, d does not converge enough
to 1. Instead, it seems to settle around the 0.5 level,
which is approximately equivalent to a = of 14. There-
fore, a degree of conscious-selection behavior is weakly
observed. This result is almost the same as the one ob-
served in (1).

If we further examine the evolution of the fair-game
belief by disaggregating it according to the tax scenarios
as shown in Figure 8 , the upward tendency remains un-
changed. However, we do notice the impact of 7. Gen-
erally speaking, d; increases at a faster rate with the de-
crease in 7. When 7 = 0.9, there is almost no change
in d;. This result indicates that learning in terms of the
fair-game belief becomes slow when the lottery tax rate
is high, and it becomes extremely slow when = = 0.9.
Basically, when people have already learned not to play
the lottery, whether the game is fair or not becomes a
secondary issue or even an irrelevant issue. Since the
tax rate impacts participation, the speed of the emer-
gence of the fair-game belief shown by Figure 8 is well
explained.

Aversion to Regret

In this social learning framework, not only do agents
learn from others, but their preference may also be in-
terdependent. By watching the evolution of the aver-
sion to regret (characterized by 6), we can actually see
how this interdependent preference may emerge or dis-
appear. We examine the values of 6 for all of the 5,000
agents in the last period (period 500), and take an aver-
age from this sample. Let us call the average 6. Figure
9 is the box-whisker plot of # over the 25 runs. The line

2'Here d is a reference number. Supposing the binary string
is randomly generated, then on the average, we can expect that
the frequency of 0 and 1 is half and half, which is 8 out of 16.
That is initially z = 8, and
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Figure 9: Regret Coefficient and Lottery Tax Rate
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Figure 10: Time Series of the Regret Coefficient

inside the box shows the median of the 25 runs. If we
just focus on the median, we see a relatively lower ten-
dency to regret formed in these markets as opposed to
that in (1), while they share a similar pattern regarding
the impact of 7 on the level of §. For instance, 7 tends to
have a positive effect on the level of 8, while this effect
is not significant when 7 is low.

As we have learned from Figure 5, when 7 is high,
lottery participation becomes low, which makes the
match more difficult and the rollover more easy. With
the specification given in Equation (3), a high @ is then
desirable for agents who do not gamble since they are
very likely to gain additional satisfaction by observ-
ing that there is no match for the jackpot given the
low participation rate. Hence, our agents are simply
smart enough to learn to be more preference-dependent.
On the other hand, when 7 is low, lottery participa-
tion is high, and a rollover is less likely, since a high
0 makes those non-participating agents more likely to
suffer rather than gain. So agents in the market should
learn to be less preference-interdependent. Further-
more, when lottery participation is high, e.g., if every-
body participates, then the strategy parameter 6 is no
longer relevant, as we have seen regarding the d in Sec-
tion , which may explain why the parameter 6 becomes



less sensitive to 7 when it is low.??

To further confirm what we have just said, Figure 10
gives the time-series plot of . A strong declining ten-
dency is observed here, meaning that agents become
less and less interdependent. This declining tendency
matches well with the increasing tendency of the lottery
participation rate as shown in Figure 3.

Concluding Remarks

Agent-based modeling provides us with a complete and
systematic treatment of human behavior in complex
adaptive systems. This paper provides an illustration
of this idea. The various kinds of interesting behavior
emerging from the bottom up allow us to see how each
piece of this development actually supports the others,
and should be better studied together in a coherent body;,
rather than being treated independently or exogenously.
Thus the social euphoria extensively observed in this
lottery market co-evolves with an increasingly active
lottery participation (Figures 3 and 4), which in turn co-
evolves with declining rollover frequencies and rollover
sizes (Figures 5 and 6) as well as a less interdependent
preference (Figure 10).

As a by-product, agent-based modeling provides us
with a tool to simulate evolution and learning, which
enhances our study of bounded rationality. Apart from
the co-evolutionary phenomena summarized above, ev-
idence of learning is prevalent in this model, which in-
cludes belief updating and the associated decision on
lottery participation (Figures 4 and 3), the emergence
of the fair-game belief (Figure 7), and the develop-
ment of the less interdependent preference (Figure 10).
All these four figures exhibit a strong tendency, and
the above-mentioned macro-dynamics are connected to
these micro-behavior.

Having brought learning into our discussion, we are
well aware of the lesson that agent engineering mat-
ters, or that learning or adaptive behavior can crucially
change the final results. With this in mind, this pa-
per considers a design that is different from that in
(1). This new design modifies the behavioral founda-
tion of agents. Originally, it was based on fuzzy deci-
sion rules, and now it is based on the expected-utility
framework. Does this change matter? The answer is
largely no. Most results we have from (1) remain robust
to this change. The phenomenon of the Laffer curve,
the absence of the halo effect, and the emergence of

2|t s interesting to see whether the theory of 6 developed
here can also help explain what we observe in (1). Actually,
a similar finding is also observed in (1), where we see 6 is
again positively related to 7. The only difference is that the
sensitivity of 6 to  becomes even weaker in (1), which seems
to suggest that 6 is not that relevant to a larger set of 7.

the fair-game belief remains unchanged, at least qual-
itatively. Even though the results remain unchanged,
our understanding and interpretation of the same re-
sults may change because of the different add-on be-
havioral mechanisms. For example, the emergence of
social euphoria, which is a main driving force to piece
together the most interesting simulated results, is simply
not available in (1), in which case a model of subjective
belief is simply not there.
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