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Gibrat’s Law and Scaling Puzzle in the Stochastic Growth Process

Abstract

Zipf’s law and proportionate growth process are two empirical regularities
concerning the growth and resulting size distribution of cities. Zipf's law for cities
and firms is one of the most robust empirical regularity in the social sciences
generally.  This striking pattern and its general form (power law) have been studied
theoretically and empirically. It appears to hold in all countries and dates. Gabaix
(1999) proposes Gibrat’s law as an explanation of Zipf's law. He shows that
homogeneous growth processes of cities possibly lead the distribution of city size
converging to Zipf's pattern.

The growth rate of city populations does not depend on the size of the city, which
characterizes that the underlying stochastic process is the same for all cities. This is
labeled the proportionate growth process. Empirical research has shown this
regularity in different data. There is a puzzle regarding these two regularities about
cities distribution: Gibrat (1931) has established a well known proposition that the
proportionate growth process generates lognormal distribution, rather than the Pareto
distribution. However, empirical works of city growth and distribution show the
coexistence of the proportionate growth and Pareto. This puzzle is finally solved
recently.

Eeckhout (2004) examines the untruncated Census 2000 data and finds that the
size distribution of the entire sample is lognormal rather than Pareto, and the growth
rate of cities is independent of city size. His work asserts a new look of the
empirical regularities concerning that city growth is proportionate and the resulting
distribution is lognormal.

Theoretically, proportionate growth process leads to lognormal distribution
empirically which make it a sufficient condition of lognormal distribution; however, it
has not been verified that proportionate growth process is also the necessary condition
for the lognormal distribution.

Positive spillovers (agglomeration economies) in production are important
reasons that firms and workers locate in cities. It is suggested that the concentration of
particular industries is the result of some set of cumulative processes involving some
form of increasing returns generated from self-reinforcing feature. Increasing returns
imply positive feedbacks, multiple equilibrium, nonpredictability, and lock-in
properties. The external benefit (agglomeration) generated from concentration of
activities is essential features of the formation of city. Nonetheless, the empirical
suggestion of city growth as proportionate growth process seems not congruous with
the feature of agglomeration economy in the city.
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The objective of this paper is to study the possibility of comprising the feature of
increasing returns into the city growth process and still resulting in a lognormal
distribution. We empirically investigate the property of the limiting distribution of the
general Polya process based on the process in Chung et al (2003) and Arthur (2000).
The feature of the growth process and size distribution of cities in Taiwan is examined.
Moreover, we investigate the emergence condition of Gibrat’s law in the proposed
stochastic nonlinear Polya process.

The simulations of the general Polya process find that the features of the
dynamic process as well as the limiting distribution are highly sensitive to the power
coefficient k of size in probability function. When k is greater than one, the dynamic
process is increasing returns. The degree of size differences is reinforcing by
corresponding size proportion. The limiting distribution is more diverged than the
initial distribution. It tends to lead to a positively skewed distribution depends on the
value of k. The limiting distribution appears lognormal given some parameters values.
The growth rate of size is positively related to corresponding location size. The larger
the size of location, the faster it grows. This finding states that a stochastic process
with increasing returns may lead to a lognormal limiting distribution. On the contrary,
when K is less than one, the dynamic process is decreasing returns. The degree of size
differences is diminishing. The limiting distribution of population proportion tends to
converge to be much more uniformly distributed than the initial distribution. The
population distribution in Taiwan approximates lognormal distribution; this is
consistent with Eeckhout (2004).



1. Introduction

Zipf’s law and proportionate growth process are two empirical regularities
concerning the growth and resulting size distribution of cities. Zipf's law for cities
and firms is one of the most robust empirical regularity in the social sciences
generally. This striking pattern and its general form (power law) have been studied
theoretically and empirically (Losch 1954; Hoover 1954; Beckman 1958; Simon and
Bonini 1958; Okuyama et al. 1999; Axtell 2001; Solomon et al. 2000, 2001).
Different models have been applied to explain power law and its special case, Zipf's
law (Simon 1955; Fujita, Krugman, and Venables 1999; Gabaix et al. 1999). It
appears to hold in all countries and dates. Gibrat’s law was first applied in
explaining the size distribution of firms (Marcus 1969; McCloughan 1995; Sutton
1997; Lotti et al. 2003). Gabaix (1999) proposes Gibrat’s law as an explanation of
Zipf's law. He shows that homogeneous growth processes of cities possibly lead the
distribution of city size converging to Zipf's pattern.

The growth rate of city populations does not depend on the size of the city, which
characterizes that the underlying stochastic process is the same for all cities. This is
labeled the proportionate growth process. Empirical research has shown this
regularity in different data (Edward Glaeser et al. 1996; Jonathan Eaton and Zvi
Eckstein 1997;and Yannis M. loannides and Henry G. Overman 2003). There is a
puzzle regarding these two regularities about cities distribution: Gibrat (1931) has
established a well known proposition that the proportionate growth process generates
lognormal distribution, rather than the Pareto distribution. However, empirical works
show the coexistence of the proportionate growth and Pareto. This puzzle is finally
solved recently.

Eeckhout (2004) examines the untruncated Census 2000 data and finds that the
size distribution of the entire sample is lognormal rather than Pareto. The stochastic
kernel density of the normalized growth rate is observed for various deciles. It shows
that both mean and the variance of the growth rate appear fairly constant over
different deciles. The growth rate of cities is confirmed to be independent of city size
empirically, which is consistent of other works. Their work provides a new look of the
empirical regularities concerning that city growth is proportionate and the resulting
distribution is lognormal. Eeckhout proposes a local externality model to explain the
empirical city growth process.

Eeckhout’s work empirically investigates the property of the city growth process.
They conclude that the distribution of growth rate is independent of city size labeled
as proportionate growth. However, in the surface plot of the kernel density estimation
of normalized growth rates, variances of the distributions do not appears constant in
all sizes.

Theoretically, proportionate growth process leads to lognormal distribution
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which is empirically observed in city size distribution. Proportionate growth is the
sufficient condition of the lognormal distribution; it has not been verified that it is also
the necessary condition for the lognormal distribution.

Positive spillovers in production are important reasons that firms and workers
locate in cities (Guy Dumais et al. 1997). This external benefit from the clustering of
economic activity named agglomeration economies includes localization and
urbanization economies. It is suggested that the concentration of particular
industries is the result of some set of cumulative processes involving some form of
increasing returns generated from self-reinforcing feature (Fujita, Krugman, and
Venables 1999). Eeckhout propose a model with local externalities to explain the
empirical size distribution of cities. Unfortunately, the feature of local economy in the
work is not crucial in generating the proportionate growth process.

Conventional economic theory is built on the assumption of diminishing returns.
Diminishing returns imply stable and predictable evolution process and result in a
single equilibrium point. However, diminishing returns do not apply everywhere.
Parts of economies especially knowledge-based economies are subject to increasing
returns (Scheinkman 1994). Increasing returns imply positive feedbacks, multiple
equilibrium, nonpredictability, and lock-in properties.

Arthur (2000) applies a simple nonlinear stochastic process, called Polya process,
to model the dynamic allocation process under positive feedback and increasing
returns. Polya process models the probability of addition to the categories is a
function of current proportions, which is an essential feature contained in various
allocation process in reality. This nonlinear dynamic allocation process is applied to
explain various problems of evolutions and corresponding limiting structures:
including consumer behavior and corresponding industries market share; industries
location decision and corresponding urban structure. As the improvement of
symmetric information and the unavoidable trend of global economy, the
knowledge-based economy becomes essential in the economy. Consequently, the
feature of knowledge-based economy is worthwhile to analyzed. Investigating the
classic nonlinear Polya process is a promising step to examine the feature of
increasing returns. Chen (2004) simulates Polya process given various kinds of
probability functions and concludes that a growth process with a diminishing returns
agglomeration economy or a bounded increasing returns agglomeration economy
would converge to a stable limiting distribution. On the contrary, the growth process
with an unbounded increasing returns agglomeration economy would generate a
fractal kind (power law) limiting distribution. Chung et al.(2003) theoretically
analyze generalizations of the classical Polya urn problem. They derive power law
distribution from the classical Polya urn problem given certain parameter conditions.

Empirical evidence shows that the growth process is proportionate; this is
reconfirm by the limiting lognormal distribution. However, proportionate growth



implies that the distribution of growth rate of city is independent of city size. This is
very much an opposite idea of the external economics from clustering activities.
Furthermore, there has not been confirmed that the proportionate growth is the
necessary condition for lognormal distribution.

The objective of this paper is to study the possibility of comprising the feature of
increasing returns into the city growth process and still resulting in a lognormal
distribution. We empirically investigate the property of the limiting distribution of the
general Polya process based on the general Polya process in Chung et al (2003) and
Arthur (2000). The feature of the growth process and size distribution of cities in
Taiwan is examined. Moreover, we investigate the emergence condition of Gibrat’s
law in the proposed stochastic nonlinear Polya process.

2. The Polya processes

The model applied in this paper is developed and introduced in Arthur (1984,
2000). The long-run limiting behavior of this nonlinear Polya type path-dependent
process is examined to investigate the possible features of the dynamic increasing
returns process.

Given finite set of locations (cities)i € N. Each city at time t has population

of size s, (i=1..,N);and x; (i=1...,N)describes the proportion of population of

city i in the region at time t. Let r(i=1..,N)be the benefits of resident for
locating in city i, consisting of geographical benefit g, and the agglomeration benefit
g(x;).  The utility of resident for locating in city i is a function of the resident’s
benefit:

Ui:V(ri)+ei :V(qi+g(xi))+ei:V(Xi)+ei1 (1)
where e; is the unknown part of the utility The location attractiveness due to
geographical considerations is independent of the current location's shares.
Consequently, given the time invariant geographical benefit,q;, the probabilities of
the locational choice of resident for city i, depends on the current location's

shares, X

L R

eVi (Xi)

pi(Xi)zF’rOb{Ui>Uj all J?fl}: W (2)
e 1\7]
Assuming the change of size at city i follow the dynamic process:
Sit1 = Sip T2 (%), i=1..,N., (3)
where



1 with  probability — p, (x;,)
Zit =19 with  probability  1-p,,(x,,)’

v(x;) =log(x;") +e;,

The probability of the locational choice is a function of power of size share xi". The

expected motion of the locational share depends on the determinate part, which
contains the choice probability function.

1
(W+t)[pi,t(xi,t)—xi‘t]. (4)

E[Xi,t+l

Xi,t] = Xi t

=t (LBl e, )n)-c0) ©

Xis w+n) X, ]
E(,..) =(Wi n)E{R‘;(_X”)—l} - f[E Pivtx(_xi" )D ~G(x,) ©)

S A ERICC

3. Simulation

The data used in this study is the population of 369 city, Township and District
in Taiwan in 2004 and 2005. We simulate the finite general Polya process in section 2
given various parameter values to analyze the asymptotic distribution properties.
Given finite number of locations N, the probability of location choice depends on the
current size share. The value of parameter in probability function is essential in
characterizing both the growth process and its limiting distribution.

3.1 k=1

The Polya process given the parameter k=1 implies that the location choice
probability at time t exactly equal to its current size proportions in the region. The
process remains in the initial distribution. The growth rate of size is independent of
location size.

pi,t(xi) = Xiy-

3.2 k1
The Polya process given the parameter k<1 generate a process with decreasing
returns. The degree of size differences is diminishing gradually depends on the value
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of k. The limiting distribution tends to converge to uniform distribution with small k.
The growth rate of size is inversely related to location size. The larger the size of
location, the slower its size grow.

3.3 k>1

The Polya process given the parameter k>1 generate a process of increasing
returns. The degree of size differences is reinforcing by corresponding size proportion
characterized by the value of k. The limiting distribution is more diverged than the
initial distribution. It tends to lead to a positively skewed distribution based on the
value of k. The limiting distribution appears lognormal given some parameters values.
The growth rate of size is positively related to corresponding location size. The larger
the size of location, the faster it grows.

4. Concluding remarks

The simulations of the general Polya process find that the features of the dynamic
process as well as the limiting distribution are highly sensitive to the power
coefficient k of size in probability function.

When Kk is greater than one, the dynamic process is increasing returns. The degree
of size differences is reinforcing by corresponding size proportion. The limiting
distribution is more diverged than the initial distribution. It tends to lead to a
positively skewed distribution depends on the value of k. The limiting distribution
appears lognormal given some parameters values. The growth rate of size is positively
related to corresponding location size. The larger the size of location, the faster it
grows. This finding states that a stochastic process with increasing returns may lead to
a lognormal limiting distribution.

On the contrary, when k is less than one, the dynamic process is decreasing
returns. The degree of size differences is diminishing. The limiting distribution of
population proportion tends to converge to be much more uniformly distributed than
the initial distribution. Moreover, the growth rate of size is inversely related to
corresponding location size. The larger the size of location, the slower it grows. The
population distribution in Taiwan approximates lognormal distribution; this is
consistent with Eeckhout (2004).
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