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As 1s well known, hypothesis testing is an important
task in economic, financial or econometric
analysis. Generally speaking, considering an omnibus
consistent test is usually the first attempt for many
researchers when there is no particular preferred
alternative to the null hypothesis. Despite the
capability of an omnibus test to detect deviations in
all directions, it is also well known that the
omnibus tests may lack power against the so-called
‘high frequency ° ° alternatives after invoking
spectral analysis. To avoid this ‘‘ power
deficiency ° ‘ problem in the omnibus tests, smooth
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tests are then proposed in various issues hypothesis
testing problems, and good theoretical properties and
empirical evidence of smooth tests have been
documented by many researchers. In the existing
smooth tests framework, the eigen-pairs of the
(asymptotic) covariance structure of the process
plays the central role. However, only for some few
processes, we may have explicit forms for the
corresponding eigen-pairs. In order to remedy this
deficiency, this project aims to propose more general
and more implementable smooth-type test. In this
project, we propose a new smooth-type test approach
without any knowledge of the covariance structure of
the process in forming the associated test statistic.
Given any basis functions, we have Fourier
representations for the process and the corresponding
Fourier coefficients. In essence, this new smooth-type
test approach i1s established by using the normalized
principal components for these Fourier coefficients.
Moreover, two associated data-driven smooth-type
tests are also proposed. In sum, other than the
conventional smooth tests,

this project provide a new, general and easy-to-
implement approach to increasing the

testing powers of the omnibus tests. The simulation
results support this approach.

basis functions, data-driven tests, eigen-pairs,
Fourier coefficient, Fourier representation,
normalized principal components omnibus tests, power
deficiency, smooth tests



1 Introduction

As is well known, besides estimating the model consistently, hypothesis testing is another
important task in economic, financial or econometric analysis; for example, there are the
goodness-of-fit tests of Anderson and Darling (1952), the tests for martingale difference by
Durlauf (1991), Dominguze and Lobato (2003) and Escanciano and Velasco (2006), and
the general model specification tests of Newey (1985), Tauchen (1985), Bierens (1982), and
Bierens and Ploberger (1997); to mention only a few. Some of these tests are designed for
detecting some specified alternatives to the null hypothesis, they are known as “directional
tests”. The directional tests are not consistent because they are developed to focus their
testing powers in the direction of some alternatives of interest. Another class of tests is the
so-called “omnibus tests”. Such tests are designed to against all alternatives and thus are
consistent. In the literature, the typical omnibus tests are either Kolmogorov-Smirnov (KS)
or Cramér-von Mises (CvM) types of tests.

Generally speaking, considering an omnibus consistent test is usually the first attempt
for many researchers in the hypothesis testing when there is no particular preferred alter-
native to the null hypothesis. Despite the capability of an omnibus test to detect deviations
in all directions, there is an important limitation of omnibus tests however. After invoking
spectral analysis to the covariance structure of the empirical process which forms the test
statistics in omnibus tests, the empirical process can then be represented as the infinitely
weighted sum of resulting eigenfunctions, where the weights are the corresponding eigen-
values. It immediately implies that omnibus tests may only have substantial local power
against few orthogonal directions, i.e., the eigenfunctions with larger eigenvalues, since the
sequence of eigenvalues is decreasing to zero. As a consequence, the omnibus tests may
lack power against the so-called “high frequency” alternatives, the directions (eigenfunc-
tions) with smaller eigenvalues. More details and discussions may refer to, e.g., Bierens and
Ploberger (1997), and Janssen (2000), Ecasnciano (2009), among many others.

To avoid this “power deficiency” problem in the omnibus tests, Neyman (1937) first pro-
poses the “smooth tests” for the problem of goodness-of-fit. After that, good theoretical
properties and empirical evidence of smooth tests in various hypothesis testing problems
have been documented by many researchers; e.g., Eubank and LaRiccia (1992) Delgado
and Stute (2008) for goodness-of-fit tests, Delgado et al.(2005), and Escanciano and May-
oral (2010) for testing martingale difference hypothesis, Stute (1997) and Escanciano (2009)
for model specification tests. In essence, the smooth tests are constructed by dropping the

decreasing weights in resulted spectral representation, the so-called Karhunen-Loeve (KL)



expansion, of associated processes in forming the test statistics. Therefore, they have better
power against “high frequency” alternatives than the corresponding omnibus tests. Smooth
test thus can be viewed as a compromise between omnibus and directional tests.

In the existing smooth tests framework, it is obvious that the eigen-pairs of the (asymp-
totic) covariance structure of the process plays the central role. Only when the process
is standard (weighted) Wiener process, standard (weighted) Brownian bridge, or Brownian
sheet, we may have explicit forms for these eigen-pairs. That is, for a general stochastic pro-
cess, Gaussian process without knowledge of covariance kernel in conventional model spec-
ification tests for example, the methods for estimating these eigen-pairs are further needed;
see e.g., William and Seeger (2000, 2001), Carrasco et al (2007), and Escanciano (2009).
These estimation methods, however, are sometimes not easy to implement, since there are
infinitely many, or at least as many as sample size, eigen-pairs to be estimated. In order to
remedy this deficiency, this project aims to propose more general and more implementable
smooth-type test.

In this project, we propose a new smooth-type test approach without directly estimat-
ing the eigen-pairs for the covariance structure of the process in forming the associated test
statistic. Given any basis functions, we have Fourier representations for the process and the
corresponding Fourier coefficients. It is then easy to compute the eigen-pairs and the prin-
cipal components for any finitely many Fourier coefficients. The new smooth-type test is
established by using the resulting normalized principal components. Moreover, from a prac-
tical viewpoint, two associated data-driven smooth-type tests are also proposed. Other than
the existing smooth tests, there are some good features of this proposed approach. First, the
conventional smooth test is just a special case of the proposed. Second, no knowledge of
covariance structure of the process is needed. Third, the implementation of the proposed test
is easy since it is not hard to find the principal components for any given Fourier coefficients.
Finally, because it is valid for any basis functions, the proposed approach can provide infor-
mation about the underlying data-generating process in different and more general ways.

This report proceeds as follows. We propose a new smooth test in Section 2. The asymp-
totic properties of the proposed test and a new data-driven test are discussed in Section 3.

Section 4 reports simulation results. Section 5 concludes this report.



2 The Proposed approach

Given any basis functions b;(t), j = 1,2,..., for L?[a, b), Fourier analysis represents
H(t, w) as
J
H(t,w)= 1 (w)bi(1), 1
(. ©) 15202%(‘”) i) (1)
]:

where ¢;(w) is the so-called Fourier coefficient associated with b;. Moreover, Parseval’s

Theorem gives that
b J
2 L 2
/a H(t, w)dr = lim ;qﬁj(w). )

Given J, let ® j(w) = [¢1(w)pr(w) - - - Py (w)], and A1, Ap, ..., Ay and uy, uy. ..., uy
respectively be the associated eigenvalues and eigenvectors for the variance-covariance ma-
trix of ® j(w), Var(® ;) say, where Ay > A, > --- > A; > 0. The we have

Var(®,) =UAU’', U'U=1,, 3)

where U = [ujuy---uy]aJ x J matrix, A is a J x J diagonal matrix with entries A;,i =
1,...,J, along the principal diagonal, and /; is a J x J identity matrix. Accordingly, we

may further represent ® ; as
@) = [UA 25 @),
where

O (w) = AU @ (w) = [¢] ()¢5 (@) - - ¢5 ()] (4)

is a vector of J normalized principal components for the Fourier coefficients associated with
basis functions {b;(¢)}. Note that these principal components {¢;’f (w)} are independent ran-
dom variables with zero mean and unity variance. Besides, since A ; are ranked in decreasing
order, ¢} () is the most informative component which accounts for the most variations of
resulted Fourier coefficients, ¢ () is the second one, and so on.

Given these J normalized principal components for the resulted Fourier coefficients



{¢j(w)}, we further have
! 2 / 1/2 ' 172
> ¢iw) = @0, = |[UA®} ()] |[UA 0 )]
j=1
= &% () AVPU'UAN 0% (0) = &% (0) A ()

J
j=1

a weighted sum of independent random variables quz(a)), j=12,---,J. As a conse-

quence, we may represent (1) and (2), respectively, as,

J J
H(t, ) = lim ;qu(w)bj(r) = lim ;mcp;*(w)b,-(t), 6)
b, A g 52
/a H*(t, w)dt = Jli)rréO]Z:;%(a)) = Jll)mm;kj(f)j (w). (7)
Note that if H(¢, ) is Gaussian, then for j = 1,2, ---, ¢j(a)) are independent standard

Gaussian random variables and (/5;.‘2 (w) are independent chi-squared random variables with

degree of freedom one.

2.1 New smooth-type test approach

In the hypothesis testing framework, if H, (¢, ) is the resulting empirical process such that

H, (t, w) converges in distribution to H (¢, w) under the null, that is,
H,(-) = H(-) under H,,

then the Ly-norm of H (¢, w) in (7) is the asymptotic distribution of the so-called Cramér-von
Mises (CvM) test statistic, fab H,(t, w)zd t say. Asis well known, the conventional CvM tests
suffer the problem of power deficiency since the diminishing weights A ; in (7) indicates that
the “high-frequency” alternatives, the directions of ¢;‘2 (w) with larger j, can not be detected
by the test. Therefore, we may drop the decreasing weights A.;, j = 1, ..., to improve testing
power. As a consequence, based on proper sample counterpart for d);?, &, j say, we propose

a new smooth-type test as

Tos =Y ¢n (@) ®)



2.2 Data-driven smooth-type tests

Based on statistic 7;, ; constructed in (8), we may propose two possible data-driven tests.
Given the upper bound J depending on the sample size, the first one introduces some penalty

function, P(n, J, g) say, as in typical model selection framework, that is
J
1 _ *2
r =36 ®
j=1

where J = argmin, _;_j ZJJ-ZI ¢:?j — P(n, J,q), and

2Jlogn, if max,_;_; |¢>;’;7j| < ./qlogn,

P(n, J, =
( 9) 2J, otherwise,

q 1s some fixed number; see e.g., Inglot and Ledwina (2006), Ecsanciano and Lobato (2009)
and Escanciano and Mayoral (2010).

Beaised, following Bierens (1990), we adopt another data-driven method that takes a
particular component (¢, j)z as the test statistic. Specifically, let f be a number between one
and J such that

2 2 S _ 7
(¢:j) = max (((b;:j) , 1<) =< J)-
The second proposed data-driven test is

2 %k N2
I ==, )" (10)

where for some pre-specified numbers y > 0and 0 < p < 1,

B . ’ if * 2 * 2 < P;
T R O AR L an
j, otherwise,
with j, randomly chosen from a given set (e.g., {1, 2, ..., J D.

3 Asymptotic Properties

The result below follows easily from the maintained assumption that H,, converges weakly to
a Gaussian process H with mean zero. Let ®,, ; = [¢,.1¢n.2 - - - ¢, 7] and it corresponding

normalized principal components ®; ; = [¢* ¢*,---¢* ], then we have

. d .
Lemma 3.1 For a given J, ®, ; — ®,, as n — oo, where ® is a vector of J normal

random variables with mean zero.



It is then not difficult to see that the normalized principal components of var(®,, ;) also

converges in distribution to those of var(® ;). Therefore, it follows that
Lemma 3.2 For a given J,
o, -5 % ~ N (0, 1), asn — oo,
The distribution of J, ; is an immediate consequence of Lemma 3.2.
Theorem 3.3 For a given J,
Ty = (05 ) (9% ) -5 (@%)(®%) ~ x*(J)), asn — .
The result below establishes the null distribution of the data-driven test (11):

Theorem 3.4 With | determined by (11),
2 4. 2
I =5 X,
where Tnzj is given by (10).

In contrast with the data-driven method considered by Escanciano and Mayoral (2010),
the finite-sample size of this test ought to be more accurate because the statistic includes
only one principal component and its null distribution is x2(1). Without including more
components in the test, this test may not be powerful enough to detect the deviation from the

null in other directions.

4 Simulations

In the simulations we consider testing the martingale difference hypothesis and testing the
linearity of model specification. As the conventional smooth test is available only for the
former, the proposed test is compared with that of Escanciano and Mayoral (2010), Tf }VI
say, in this case but not otherwise. As benchmarks, we also compute the CvM and KS tests
based on a wild bootstrap procedure in all experiments. In our simulations, we consider
three sample sizes n = 100, 200, 300. For the proposed smooth tests, we simulate 7}, ; for
J =1,2,3,4,5 and the proposed data-driven tests, Tnl,f and Tnz’]T with j, randomly drawn
from {1,2,3,4,5}, p =0.5,and (y, J) = (0.8, 5), (0.7, 8), (0.6, 11) for n = 100, 200 and
300, respectively. All nominal sizes are 5%. The number of Monte Carlo replications is
3000; the number of bootstraps is 500.



4.1 Testing the Martingale Difference Hypothesis

For testing the martingale difference hypothesis, we follow the simulations in Escanciano
and Mayoral (2010). Letting u; be i.i.d. N (0, 1), we consider three different data generating

processes (DGPs) for size simulations.
(1) IID: y; = uy.
(2) GARCH: y, = o;u;, with 02 = 0.001 + 0.01y? | + 0.9052

(3) SV (Stochastic Volatility): y; = exp(o;)u;, where o; = 0.9360;_1 + 0.32v;, and v; are
alsoi.i.d. N (0, 1) and {u,} and {v;} are mutually independent.

The conventional CvM and KS tests are:

" -2
1
Can_—Z|: nytl(yz 1<yi-0 |
n

KSn: m

n

1 <vyi_1l|.
Om/—Z)’t (Yi—1 =< yi-1)

Under suitable regularity conditions,

H,(8) = W(t?(&)),

where W is the standard Wiener process, T2(§) = 0_2]E[yt21(yt 1 < &), and 02 =
]E[y ]. It is well known that the eigen-pairs associated with the covariance kernel of W are:
e 1
(=12
¢j(t) = \/Esin((j —1/2)nt), tel0,1], j=1,2,...

The empirical sizes are summarized in Table 1. As expected, the empirical sizes of the
bootstrapped CvM and KS tests are very close to the nominal size 5% in all cases. The
smooth tests of Escanciano and Mayoral (2010), Trf M "and the proposed smooth tests, T,.1,
perform reasonably well in most cases but are under-sized when the DGPs is SV. It can
also be seen that the data-driven test, Tnl,j’ of Escanciano and Mayoral (2010) is severely
over-sized, yet the proposed data-driven test, Tnz,j’ has very accurate sizes.

For power simulations we consider the following DGPs: Let u; be i.i.d. N (0, 1).
(4) NLMA (Nonlinear Moving Average): y; = u;—1u;—3(us—2 + u; + 1).

(5) BIL (Bilinear): y; = u; + 0.15u;—1y;—1 + 0.05u;—1y; 2.



(6) TAR-1 (Threshold AR):

v, = —05y;—1 +u, ifyg =1,
! 0.4y;—1 + us, otherwise.

(7) Exp-AR (Exponential AR): y; = 0.6y, exp(—O.Sytz_l) + uy.

The empirical powers are summarized in Table 2. Clearly, KS,, and CvM,, have quite
different power performance. While KS,, has no power in all cases but BIL, CvM,, has
no power against NLMA and has high power against TAR-1. Compared with CvM,,, the
conventional smooth tests TnEﬂ’I have better empirical powers under NLMA and Exp-AR
(except for T, 1) and have comparable powers under BIL and TAR-1. It is interesting to
observe that the proposed smooth tests, 7, ;, dominate the conventional smooth tests in
most cases. These results are encouraging, as they suggest that deviations from the null may
be detected without the knowledge of the covariance kernel of the limiting process. As for
the proposed data-driven smooth test Tnz,j’ its powers are, in general, lower than those of
T,.7, and the power loss may be quite significant. This is so because Tnz’]7 focuses only on
a particular direction but 7}, ; have power against several different directions. Note that we

did not simulate Tn1 7 here, due to its severe size distortion.

4.2 Testing Linear Model Specification
We now consider testing the hypothesis of a correct linear model specification:
Hy : P (E[y|x;] = x;,0,) = 1 for some 6, € ® C R.

Following Lee et al. (1993), we generate four DGPs for power simulations with u, 1.i.d.
N (0, 1) and yp = 0.

(1) NLAR (Nonlinear AutoRegressive): y; = 0.7|y;—1|/[|yi—1| + 2] + u;.

(2) STAR (Smooth Transition AutoRegressive): y; = 0.6®(y;—1)y;—1 + u;, where ®(-)

denotes the standard normal distribution function.

(3) Threshold AutoRegressive (TAR-2):

v = 0.9y:—1 + uy, if |y,—1] < 1,
! —0.3y;—1 + u;, otherwise.



(4) Sign autoregressive (SGN): y; = sgn(y,—1) + u;, where

1, if x > 0,
sgn(x) =41 0, ifx =0,
-1, ifx <O.

The CvM and KS test statistics in this simulations are computed as:

" 2
1
CvM,, = —

S

b

1 & .
- Yy — X0, l(x < Xxi)
ﬁg(t t ) t

Ln i (yr — x,én> 1(x; < x;)

KS, = max

’

where én is the OLS estimator. As the KL expansion is not available in this case, we do not
consider the conventional smooth tests in these simulations.

The empirical powers are summarized in Table 3. Compared with CvM,, and KS,,, T,, s
with J = 2, 3, 4, 5 perform significantly better under TAR-2 and SGN but are less powerful
under NLAR; none of these tests have power advantage under STAR. Similar to the previous
power simulations, the data-driven test Tnz,j has lower powers than the proposed smooth tests
in general. Yet, Tn%j still outperforms CvM,, and KS,, under TAR-2 and SGN. Note that a
smooth test may have very low power for some J (for example, J,, 1 under TAR-2 and SGN),

the data-driven test always has some reasonable power.

5 Concluding Remarks

In this project we propose a more operational approach to constructing smooth tests without
knowing the covariance kernel of the limiting process. Our simulations confirm that the pro-
posed smooth test has good finite-sample performance and can serve as a useful complement
to the conventional omnibus tests, such as the CvM and KS tests. There are some important
research directions. First, we find that the data-driven test of Escanciano and Mayoral (2010)
suffers from size distortion but the proposed data-driven test is not powerful. A data-driven
test with improved size and power performance would be highly desired. Second, smooth
tests gain power advantage in certain directions by sacrificing test consistency. It is therefore
important to construct a consistent and omnibus test that carries the spirit of smooth tests.

These topics are currently being investigated.
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Table 1: Size simulations: Testing the martingale difference hypothesis.

11D GARCH SV
Test n=100 200 300 100 200 300 100 200 300

CvM,, 50 53 45 50 49 40 40 41 54

KS, 53 51 45 51 53 41 38 39 48
TEM 46 52 42 45 46 40 22 27 3.6
TE! 43 52 41 40 52 40 22 24 24
TEM 35 47 43 40 54 37 20 17 25
TEY 30 43 46 38 52 35 14 17 21
TEM 30 40 42 32 42 37 14 18 19
T; 77 117 120 77 129 115 45 64 66
Ty 54 52 45 52 51 39 35 41 49
T 45 56 45 44 48 43 34 39 36
T3 43 50 41 37 48 36 21 33 35
Tha 36 49 44 31 42 28 20 29 35
Ts 31 46 43 24 39 25 18 29 31
T} 49 59 41 53 52 51 42 50 55
Notes:

1. The entries are rejection frequencies in percentage; the nominal size is 5%.
2. For T2 -, Jo is randomly drawn from {1, 2, 3, 4, 5}, and p = 0.5.
n,j

When n = 100, 200, 300, we set, (y, J) = (0.8, 5), (0.7, 8), (0.6, 11), respectively.
3. For Tn1 o we setm =3and J = 5,8, 11 when n = 100, 200 and 300, respectively.

12



Table 2: Power simulations: Testing the martingale difference hypothesis.

NLMA BIL TAR-1 Exp-AR
Test n=100 200 300 100 200 300 100 200 300 100 200 300
CvM,, 39 64 105 149 306 476 73.6 943 99.1 226 393 536
KS, 34 46 81 326 551 740 0.1 00 00 71 7.6 6.7
TflM 14 1.7 21 141 298 463 69.7 91.7 985 20.5 314 395
szM 6.0 151 245 124 244 391 753 967 998 424 787 94.1
Tf3M 7.0 21.0 34.6 18.6 43.6 658 699 96.6 998 47.1 83.8 96.6
Tn‘i{” 7.7 248 413 157 390 605 658 959 997 404 79.0 950
TfSM 7.7 263 446 147 41.6 64.0 63.6 968 999 363 770 943
T, 22 26 38 193 393 590 740 942 99.1 162 251 325
T2 11.6 242 349 177 345 534 651 916 988 600 919 987
T3 11.6 287 453 278 60.0 815 78.6 984 100.0 5277 86.7 97.6
T4 12.1 321 494 259 59.1 823 869 99.7 1000 468 83.1 96.5
T,s 11.7 357 565 205 542 787 81.8 995 100.0 40.8 79.4 95.6
T? 133 206 315 170 29.0 448 564 84.0 957 337 56.7 764

nj

Notes:

1. The entries are rejection frequencies in percentage; the nominal size is 5%.
2. The parameters for the proposed tests are the same as those in Table 1.
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Table 3: Power simulations: Testing model linearity.

NLAR STAR TAR-2 SGN
Test n=100 200 300 100 200 300 100 200 300 100 200 300
CvM, 345 632 820 287 600 822 100 156 242 182 240 35.1
KS, 348 633 833 282 594 823 98 181 321 239 517 81.2
T, 370 653 850 347 663 858 28 3.0 33 43 4.8 7.3
T2 205 508 721 174 478 729 172 643 927 71.6 99.3 100.0
1,3 212 537 78.0 269 731 929 275 69.7 931 71.6 99.0 100.0
T4 171 503 742 238 69.1 91.6 864 999 100.0 94.8 100.0 100.0
T,s 1477 447 704 186 615 889 822 997 100.0 928 999 100.0
Tn2]~. 183 320 488 169 327 532 626 899 987 741 972 99.8
NOTE:

1. The entries are rejection frequencies in percentage; the nominal size is 5%.
2. The parameters for the proposed tests are the same as those in Table 1.
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