
行政院國家科學委員會專題研究計畫 成果報告 

 

不需估計共變異結構特徵組的新平滑性檢定 

研究成果報告(精簡版) 

 
 
 
計 畫 類 別 ：個別型 

計 畫 編 號 ： NSC 100-2410-H-004-082- 

執 行 期 間 ： 100 年 08 月 01 日至 101 年 07 月 31 日 

執 行 單 位 ：國立政治大學經濟學系 

  

計 畫 主 持 人 ：徐士勛 

  

計畫參與人員：博士班研究生-兼任助理人員：徐兆璿 

博士班研究生-兼任助理人員：謝子雄 

博士班研究生-兼任助理人員：曾憲政 

 

  

  

  

  

公 開 資 訊 ：本計畫可公開查詢 

 
 
 

中 華 民 國   101 年 08 月 28 日 
 



 
中 文 摘 要 ： 假設檢定在經濟、財務或是計量分析中都是相當重要的課

題。一般而言，研究者通常會先選擇使用綜合性的一致性檢

定 (omnibus consistent test)。儘管這些綜合性檢定在理

論上可以檢測任何背離虛無假設的情況，然而，藉由頻譜分

析 (spectral analysis)，文獻上已知綜合性檢定會對「高

頻(high frequency)」對立假設缺乏檢定力。為了避免此問

題， 

已有許多學者提出各式相對應的平滑性檢定 (smooth 

tests)，而且其良好的理論和實證性質都也已被揭露。基本

上，現行的平滑性檢定架構主要是建立在資料序列間的共變

異結構 (covariance structure)所對應的特徵組 (eigen-

pairs)上。 

然而，文獻上僅有極少數的資料序列所對應的特徵組有明確

的型式可供分析使用。為了改善此一缺失，在此計畫中， 

我提出了一個不需要資料序列間的共變異結構即可建立統計

量的新平滑性檢定架構。在給定任何基本函數 (basis 

functions)下，我們可以有相對應於資料序列的傅立葉表現

式 (Fourier representation) 及傅立葉係數 (Fourier 

coefficients)。基本上，這個新的平滑性檢定架構就是建立

在這些傅立葉係數標準化後的主成分 (normalized 

principal components)上。在這樣的架構下，我們進而提出

兩個由資料所驅策 (data-driven) 的新平滑性檢定。 

簡而言之，與目前文獻上常用的平滑性檢定相比，這個計畫

提出了一個具一般化且容易執行的新平滑性檢定架構來改善

綜合性檢定所可能面臨之缺乏檢定力的問題。我們的模擬結

果也支持這樣的方法。 

中文關鍵詞： 綜合性檢定、 平滑性檢定、 傅立葉表現式、 傅立葉係數、 

標準化後的主成分、 特徵組、 資料驅策 

英 文 摘 要 ： As is well known,hypothesis testing is an important 

task in economic, financial or econometric 

analysis.Generally speaking,considering an omnibus 

consistent test is usually the first attempt for many 

researchers when there is no particular preferred 

alternative to the null hypothesis.Despite the 

capability of an omnibus test to detect deviations in 

all directions, it is also well known that the 

omnibus tests may lack power against the so-called 

``high frequency‘‘ alternatives after invoking 

spectral analysis. To avoid this ``power 

deficiency‘‘ problem in the omnibus tests, smooth 



tests are then proposed in various issues  hypothesis 

testing problems, and good theoretical properties and 

empirical evidence  of smooth tests have been 

documented by many researchers. In the  existing 

smooth tests framework, the eigen-pairs of the 

(asymptotic) covariance structure of the process 

plays the central  role. However, only for some few 

processes, we may have explicit forms for  the 

corresponding  eigen-pairs. In order to  remedy this 

deficiency, this project aims to propose more general 

and more implementable smooth-type test. In this 

project,we propose a new smooth-type test approach 

without any knowledge of the covariance structure of 

the process in forming the associated test statistic. 

Given any basis functions, we have Fourier 

representations for the process and the corresponding 

Fourier coefficients.In essence, this new smooth-type 

test approach is  established by using the normalized 

principal components for these Fourier coefficients. 

Moreover, two associated data-driven smooth-type 

tests are also proposed. In sum, other than the 

conventional smooth tests, 

this project provide a new, general and easy-to-

implement  approach  to increasing the 

testing powers of the omnibus tests. The simulation 

results support this approach. 

英文關鍵詞： basis functions, data-driven tests, eigen-pairs, 

Fourier coefficient, Fourier representation, 

normalized principal components omnibus tests, power 

deficiency, smooth tests 

 



1 Introduction

As is well known, besides estimating the model consistently, hypothesis testing is another

important task in economic, financial or econometric analysis; for example, there are the

goodness-of-fit tests of Anderson and Darling (1952), the tests for martingale difference by

Durlauf (1991), Dominguze and Lobato (2003) and Escanciano and Velasco (2006), and

the general model specification tests of Newey (1985), Tauchen (1985), Bierens (1982), and

Bierens and Ploberger (1997); to mention only a few. Some of these tests are designed for

detecting some specified alternatives to the null hypothesis, they are known as “directional

tests”. The directional tests are not consistent because they are developed to focus their

testing powers in the direction of some alternatives of interest. Another class of tests is the

so-called “omnibus tests”. Such tests are designed to against all alternatives and thus are

consistent. In the literature, the typical omnibus tests are either Kolmogorov-Smirnov (KS)

or Cramér-von Mises (CvM) types of tests.

Generally speaking, considering an omnibus consistent test is usually the first attempt

for many researchers in the hypothesis testing when there is no particular preferred alter-

native to the null hypothesis. Despite the capability of an omnibus test to detect deviations

in all directions, there is an important limitation of omnibus tests however. After invoking

spectral analysis to the covariance structure of the empirical process which forms the test

statistics in omnibus tests, the empirical process can then be represented as the infinitely

weighted sum of resulting eigenfunctions, where the weights are the corresponding eigen-

values. It immediately implies that omnibus tests may only have substantial local power

against few orthogonal directions, i.e., the eigenfunctions with larger eigenvalues, since the

sequence of eigenvalues is decreasing to zero. As a consequence, the omnibus tests may

lack power against the so-called “high frequency” alternatives, the directions (eigenfunc-

tions) with smaller eigenvalues. More details and discussions may refer to, e.g., Bierens and

Ploberger (1997), and Janssen (2000), Ecasnciano (2009), among many others.

To avoid this “power deficiency” problem in the omnibus tests, Neyman (1937) first pro-

poses the “smooth tests” for the problem of goodness-of-fit. After that, good theoretical

properties and empirical evidence of smooth tests in various hypothesis testing problems

have been documented by many researchers; e.g., Eubank and LaRiccia (1992) Delgado

and Stute (2008) for goodness-of-fit tests, Delgado et al.(2005), and Escanciano and May-

oral (2010) for testing martingale difference hypothesis, Stute (1997) and Escanciano (2009)

for model specification tests. In essence, the smooth tests are constructed by dropping the

decreasing weights in resulted spectral representation, the so-called Karhunen-Loève (KL)

1



expansion, of associated processes in forming the test statistics. Therefore, they have better

power against “high frequency” alternatives than the corresponding omnibus tests. Smooth

test thus can be viewed as a compromise between omnibus and directional tests.

In the existing smooth tests framework, it is obvious that the eigen-pairs of the (asymp-

totic) covariance structure of the process plays the central role. Only when the process

is standard (weighted) Wiener process, standard (weighted) Brownian bridge, or Brownian

sheet, we may have explicit forms for these eigen-pairs. That is, for a general stochastic pro-

cess, Gaussian process without knowledge of covariance kernel in conventional model spec-

ification tests for example, the methods for estimating these eigen-pairs are further needed;

see e.g., William and Seeger (2000, 2001), Carrasco et al (2007), and Escanciano (2009).

These estimation methods, however, are sometimes not easy to implement, since there are

infinitely many, or at least as many as sample size, eigen-pairs to be estimated. In order to

remedy this deficiency, this project aims to propose more general and more implementable

smooth-type test.

In this project, we propose a new smooth-type test approach without directly estimat-

ing the eigen-pairs for the covariance structure of the process in forming the associated test

statistic. Given any basis functions, we have Fourier representations for the process and the

corresponding Fourier coefficients. It is then easy to compute the eigen-pairs and the prin-

cipal components for any finitely many Fourier coefficients. The new smooth-type test is

established by using the resulting normalized principal components. Moreover, from a prac-

tical viewpoint, two associated data-driven smooth-type tests are also proposed. Other than

the existing smooth tests, there are some good features of this proposed approach. First, the

conventional smooth test is just a special case of the proposed. Second, no knowledge of

covariance structure of the process is needed. Third, the implementation of the proposed test

is easy since it is not hard to find the principal components for any given Fourier coefficients.

Finally, because it is valid for any basis functions, the proposed approach can provide infor-

mation about the underlying data-generating process in different and more general ways.

This report proceeds as follows. We propose a new smooth test in Section 2. The asymp-

totic properties of the proposed test and a new data-driven test are discussed in Section 3.

Section 4 reports simulation results. Section 5 concludes this report.
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2 The Proposed approach

Given any basis functions b j (t), j = 1, 2, . . . , for L2[a, b], Fourier analysis represents

H(t, ω) as

H(t, ω) = lim
J→∞

J∑
j=1

φ j (ω)b j (t), (1)

where φ j (ω) is the so-called Fourier coefficient associated with b j . Moreover, Parseval’s

Theorem gives that∫ b

a
H2(t, ω)dt = lim

J→∞

J∑
j=1

φ2
j (ω). (2)

Given J , let 888J (ω) = [φ1(ω)φ2(ω) · · ·φJ (ω)]′, and λ1, λ2, . . . , λJ and uuu1, uuu2. . . . , uuu J

respectively be the associated eigenvalues and eigenvectors for the variance-covariance ma-

trix of 888J (ω), Var(888J ) say, where λ1 ≥ λ2 ≥ · · · ≥ λJ > 0. The we have

Var(888J ) = UUU333UUU ′, UUU ′UUU = IJ , (3)

where UUU = [uuu1uuu2 · · · uuu J ] a J × J matrix, 333 is a J × J diagonal matrix with entries λi , i =

1, . . . , J, along the principal diagonal, and IJ is a J × J identity matrix. Accordingly, we

may further represent 888J as

888J (ω) =
[
UUU3331/2888∗J (ω)

]
,

where

888∗J (ω) = 333
−1/2UUU ′888J (ω) := [φ∗1(ω)φ

∗

2(ω) · · ·φ
∗

J (ω)]
′ (4)

is a vector of J normalized principal components for the Fourier coefficients associated with

basis functions {b j (t)}. Note that these principal components {φ∗j (ω)} are independent ran-

dom variables with zero mean and unity variance. Besides, since λ j are ranked in decreasing

order, φ∗1(ω) is the most informative component which accounts for the most variations of

resulted Fourier coefficients, φ∗2(ω) is the second one, and so on.

Given these J normalized principal components for the resulted Fourier coefficients
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{φ j (ω)}, we further have

J∑
j=1

φ2
j (ω) = 888

′

J888J =
[
UUU3331/2888∗J (ω)

]′ [
UUU3331/2888∗J (ω)

]
= 888∗J (ω)

′3331/2UUU ′UUU3331/2888∗J (ω) = 888
∗

J (ω)
′333888∗J (ω)

=

J∑
j=1

λ jφ
∗2
j (ω), (5)

a weighted sum of independent random variables φ∗2j (ω), j = 1, 2, · · · , J . As a conse-

quence, we may represent (1) and (2), respectively, as,

H(t, ω) = lim
J→∞

J∑
j=1

φ j (ω)b j (t) = lim
J→∞

J∑
j=1

√
λ jφ
∗

j (ω)b j (t), (6)

∫ b

a
H2(t, ω)dt = lim

J→∞

J∑
j=1

φ2
j (ω) = lim

J→∞

J∑
j=1

λ jφ
∗2
j (ω). (7)

Note that if H(t, ω) is Gaussian, then for j = 1, 2, · · · , φ∗j (ω) are independent standard

Gaussian random variables and φ∗2j (ω) are independent chi-squared random variables with

degree of freedom one.

2.1 New smooth-type test approach

In the hypothesis testing framework, if Hn(t, ω) is the resulting empirical process such that

Hn(t, ω) converges in distribution to H(t, ω) under the null, that is,

Hn(·) H⇒ H(·) under Ho,

then the L2-norm of H(t, ω) in (7) is the asymptotic distribution of the so-called Cramér-von

Mises (CvM) test statistic,
∫ b

a Hn(t, ω)2dt say. As is well known, the conventional CvM tests

suffer the problem of power deficiency since the diminishing weights λ j in (7) indicates that

the “high-frequency” alternatives, the directions of φ∗2j (ω) with larger j , can not be detected

by the test. Therefore, we may drop the decreasing weights λ j , j = 1, . . ., to improve testing

power. As a consequence, based on proper sample counterpart for φ∗j , φ∗n, j say, we propose

a new smooth-type test as

Tn,J =

J∑
j=1

φ∗n, j (ω). (8)
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2.2 Data-driven smooth-type tests

Based on statistic Tn,J constructed in (8), we may propose two possible data-driven tests.

Given the upper bound J̄ depending on the sample size, the first one introduces some penalty

function, P(n, J, q) say, as in typical model selection framework, that is

T 1
n, J̃
=

J̃∑
j=1

φ∗2n, j , (9)

where J̃ = arg min1≤J≤ J̄
∑J

j=1 φ
∗2
n, j − P(n, J, q), and

P(n, J, q) =

{
2J log n, if max1≤ j≤ J̄ |φ

∗

n, j | ≤
√

q log n,

2J, otherwise,

q is some fixed number; see e.g., Inglot and Ledwina (2006), Ecsanciano and Lobato (2009)

and Escanciano and Mayoral (2010).

Beaised, following Bierens (1990), we adopt another data-driven method that takes a

particular component (φ∗n, j )
2 as the test statistic. Specifically, let ĵ be a number between one

and J̄ such that

(φ∗
n, ĵ
)2 = max

(
(φ∗n, j )

2, 1 ≤ j ≤ J̄
)
.

The second proposed data-driven test is

T 2
n, j̃
= (φ∗

n, j̃
)2, (10)

where for some pre-specified numbers γ > 0 and 0 < ρ < 1,

j̃ =

{
jo, if (φ∗

n, ĵ
)2 − (φ∗n, jo)

2
≤ γ nρ;

ĵ, otherwise,
(11)

with jo randomly chosen from a given set (e.g., {1, 2, . . . , J̄ }).

3 Asymptotic Properties

The result below follows easily from the maintained assumption that Hn converges weakly to

a Gaussian process H with mean zero. Let 888n,J = [φn,1φn,2 · · ·φn,J ]′ and it corresponding

normalized principal components 888∗n,J = [φ∗n,1φ
∗

n,2 · · ·φ
∗

n,J ]′, then we have

Lemma 3.1 For a given J , 888n,J
d
−→ 888J , as n → ∞, where 888J is a vector of J normal

random variables with mean zero.
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It is then not difficult to see that the normalized principal components of var(888n,J ) also

converges in distribution to those of var(888J ). Therefore, it follows that

Lemma 3.2 For a given J ,

888∗n,J
d
−→ 888∗J ∼ N (0, III J ), as n→∞.

The distribution of Jn,J is an immediate consequence of Lemma 3.2.

Theorem 3.3 For a given J ,

Tn,J =
(
888∗n,J

)′(
888∗n,J

) d
−→ (888∗J )

′(888∗J ) ∼ χ
2(J ), as n→∞.

The result below establishes the null distribution of the data-driven test (11):

Theorem 3.4 With j̃ determined by (11),

T 2
n, j̃

d
−→ χ2(1),

where T 2
n, j̃

is given by (10).

In contrast with the data-driven method considered by Escanciano and Mayoral (2010),

the finite-sample size of this test ought to be more accurate because the statistic includes

only one principal component and its null distribution is χ2(1). Without including more

components in the test, this test may not be powerful enough to detect the deviation from the

null in other directions.

4 Simulations

In the simulations we consider testing the martingale difference hypothesis and testing the

linearity of model specification. As the conventional smooth test is available only for the

former, the proposed test is compared with that of Escanciano and Mayoral (2010), T E M
n,J

say, in this case but not otherwise. As benchmarks, we also compute the CvM and KS tests

based on a wild bootstrap procedure in all experiments. In our simulations, we consider

three sample sizes n = 100, 200, 300. For the proposed smooth tests, we simulate Tn,J for

J = 1, 2, 3, 4, 5 and the proposed data-driven tests, T 1
n, J̃

and T 2
n, j̃

with jo randomly drawn

from {1, 2, 3, 4, 5}, ρ = 0.5, and (γ, J̄ ) = (0.8, 5), (0.7, 8), (0.6, 11) for n = 100, 200 and

300, respectively. All nominal sizes are 5%. The number of Monte Carlo replications is

3000; the number of bootstraps is 500.
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4.1 Testing the Martingale Difference Hypothesis

For testing the martingale difference hypothesis, we follow the simulations in Escanciano

and Mayoral (2010). Letting ut be i.i.d. N (0, 1), we consider three different data generating

processes (DGPs) for size simulations.

(1) IID: yt = ut .

(2) GARCH: yt = σtut , with σ 2
t = 0.001+ 0.01y2

t−1 + 0.90σ 2
t−1.

(3) SV (Stochastic Volatility): yt = exp(σt)ut , where σt = 0.936σt−1+0.32vt , and vt are

also i.i.d. N (0, 1) and {ut} and {vt} are mutually independent.

The conventional CvM and KS tests are:

CvMn =
1
n

n∑
i=2

[
1

σ̂n
√

n

n∑
t=1

yt111(yt−1 ≤ yi−1)

]2

,

KSn = max
i=2,··· ,n

∣∣∣∣∣ 1
σ̂n
√

n

n∑
t=1

yt111(yt−1 ≤ yi−1)

∣∣∣∣∣ .
Under suitable regularity conditions,

Hn(ξ)⇒W(τ 2(ξ)),

where W is the standard Wiener process, τ 2(ξ) := σ−2 IE[y2
t 111(yt−1 ≤ ξ)], and σ 2 :=

IE[y2
t ]. It is well known that the eigen-pairs associated with the covariance kernel of W are:

λεj =
1

( j − 1/2)2π2 ,

φεj (t) =
√

2 sin(( j − 1/2)π t), t ∈ [0, 1], j = 1, 2, . . .

The empirical sizes are summarized in Table 1. As expected, the empirical sizes of the

bootstrapped CvM and KS tests are very close to the nominal size 5% in all cases. The

smooth tests of Escanciano and Mayoral (2010), T E M
n,J , and the proposed smooth tests, Tn,J ,

perform reasonably well in most cases but are under-sized when the DGPs is SV. It can

also be seen that the data-driven test, T 1
n, J̃

, of Escanciano and Mayoral (2010) is severely

over-sized, yet the proposed data-driven test, T 2
n, j̃

, has very accurate sizes.

For power simulations we consider the following DGPs: Let ut be i.i.d. N (0, 1).

(4) NLMA (Nonlinear Moving Average): yt = ut−1ut−2(ut−2 + ut + 1).

(5) BIL (Bilinear): yt = ut + 0.15ut−1yt−1 + 0.05ut−1yt−2.
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(6) TAR-1 (Threshold AR):

yt =

{
−0.5yt−1 + ut , if yt−1 ≥ 1,

0.4yt−1 + ut , otherwise.

(7) Exp-AR (Exponential AR): yt = 0.6yt−1 exp(−0.5y2
t−1)+ ut .

The empirical powers are summarized in Table 2. Clearly, KSn and CvMn have quite

different power performance. While KSn has no power in all cases but BIL, CvMn has

no power against NLMA and has high power against TAR-1. Compared with CvMn , the

conventional smooth tests T E M
n,J have better empirical powers under NLMA and Exp-AR

(except for Tn,1) and have comparable powers under BIL and TAR-1. It is interesting to

observe that the proposed smooth tests, Tn,J , dominate the conventional smooth tests in

most cases. These results are encouraging, as they suggest that deviations from the null may

be detected without the knowledge of the covariance kernel of the limiting process. As for

the proposed data-driven smooth test T 2
n, j̃

, its powers are, in general, lower than those of

Tn,J , and the power loss may be quite significant. This is so because T 2
n, j̃

focuses only on

a particular direction but Tn,J have power against several different directions. Note that we

did not simulate T 1
n, J̃

here, due to its severe size distortion.

4.2 Testing Linear Model Specification

We now consider testing the hypothesis of a correct linear model specification:

H0 : IP ( IE [yt |xt ] = xtθo) = 1 for some θo ∈ 222 ⊂ IR.

Following Lee et al. (1993), we generate four DGPs for power simulations with ut i.i.d.

N (0, 1) and y0 = 0.

(1) NLAR (Nonlinear AutoRegressive): yt = 0.7|yt−1|/[|yt−1| + 2]+ ut .

(2) STAR (Smooth Transition AutoRegressive): yt = 0.68(yt−1)yt−1 + ut , where 8(·)

denotes the standard normal distribution function.

(3) Threshold AutoRegressive (TAR-2):

yt =

{
0.9yt−1 + ut , if |yt−1| < 1,

−0.3yt−1 + ut , otherwise.
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(4) Sign autoregressive (SGN): yt = sgn(yt−1)+ ut , where

sgn(x) =


1, if x > 0,

0, if x = 0,

−1, if x < 0.

The CvM and KS test statistics in this simulations are computed as:

CvMn =
1
n

n∑
i=1

∣∣∣∣∣ 1
√

n

n∑
t=1

(
yt − xt θ̂n

)
111(xt ≤ xi )

∣∣∣∣∣
2

,

KSn = max
i=1,...,n

∣∣∣∣∣ 1
√

n

n∑
t=1

(
yt − xt θ̂n

)
111(xt ≤ xi )

∣∣∣∣∣ ,
where θ̂n is the OLS estimator. As the KL expansion is not available in this case, we do not

consider the conventional smooth tests in these simulations.

The empirical powers are summarized in Table 3. Compared with CvMn and KSn , Tn,J

with J = 2, 3, 4, 5 perform significantly better under TAR-2 and SGN but are less powerful

under NLAR; none of these tests have power advantage under STAR. Similar to the previous

power simulations, the data-driven test T 2
n, j̃

has lower powers than the proposed smooth tests

in general. Yet, T 2
n, j̃

still outperforms CvMn and KSn under TAR-2 and SGN. Note that a

smooth test may have very low power for some J (for example, Jn,1 under TAR-2 and SGN),

the data-driven test always has some reasonable power.

5 Concluding Remarks

In this project we propose a more operational approach to constructing smooth tests without

knowing the covariance kernel of the limiting process. Our simulations confirm that the pro-

posed smooth test has good finite-sample performance and can serve as a useful complement

to the conventional omnibus tests, such as the CvM and KS tests. There are some important

research directions. First, we find that the data-driven test of Escanciano and Mayoral (2010)

suffers from size distortion but the proposed data-driven test is not powerful. A data-driven

test with improved size and power performance would be highly desired. Second, smooth

tests gain power advantage in certain directions by sacrificing test consistency. It is therefore

important to construct a consistent and omnibus test that carries the spirit of smooth tests.

These topics are currently being investigated.
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Table 1: Size simulations: Testing the martingale difference hypothesis.

IID GARCH SV

Test n=100 200 300 100 200 300 100 200 300

CvMn 5.0 5.3 4.5 5.0 4.9 4.0 4.0 4.1 5.4

KSn 5.3 5.1 4.5 5.1 5.3 4.1 3.8 3.9 4.8

T E M
n,1 4.6 5.2 4.2 4.5 4.6 4.0 2.2 2.7 3.6

T E M
n,2 4.3 5.2 4.1 4.0 5.2 4.0 2.2 2.4 2.4

T E M
n,3 3.5 4.7 4.3 4.0 5.4 3.7 2.0 1.7 2.5

T E M
n,4 3.0 4.3 4.6 3.8 5.2 3.5 1.4 1.7 2.1

T E M
n,5 3.0 4.0 4.2 3.2 4.2 3.7 1.4 1.8 1.9

T 1
n, J̃

7.7 11.7 12.0 7.7 12.9 11.5 4.5 6.4 6.6

Tn,1 5.4 5.2 4.5 5.2 5.1 3.9 3.5 4.1 4.9

Tn,2 4.5 5.6 4.5 4.4 4.8 4.3 3.4 3.9 3.6

Tn,3 4.3 5.0 4.1 3.7 4.8 3.6 2.1 3.3 3.5

Tn,4 3.6 4.9 4.4 3.1 4.2 2.8 2.0 2.9 3.5

Tn,5 3.1 4.6 4.3 2.4 3.9 2.5 1.8 2.9 3.1

T 2
n, j̃

4.9 5.9 4.1 5.3 5.2 5.1 4.2 5.0 5.5

Notes:
1. The entries are rejection frequencies in percentage; the nominal size is 5%.
2. For T 2

n, j̃
, jo is randomly drawn from {1, 2, 3, 4, 5}, and ρ = 0.5.

When n = 100, 200, 300, we set, (γ, J̄ ) = (0.8, 5), (0.7, 8), (0.6, 11), respectively.
3. For T 1

n, J̃
, we set m = 3 and J̄ = 5, 8, 11 when n = 100, 200 and 300, respectively.
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Table 2: Power simulations: Testing the martingale difference hypothesis.

NLMA BIL TAR-1 Exp-AR

Test n=100 200 300 100 200 300 100 200 300 100 200 300

CvMn 3.9 6.4 10.5 14.9 30.6 47.6 73.6 94.3 99.1 22.6 39.3 53.6

KSn 3.4 4.6 8.1 32.6 55.1 74.0 0.1 0.0 0.0 7.1 7.6 6.7

T E M
n,1 1.4 1.7 2.1 14.1 29.8 46.3 69.7 91.7 98.5 20.5 31.4 39.5

T E M
n,2 6.0 15.1 24.5 12.4 24.4 39.1 75.3 96.7 99.8 42.4 78.7 94.1

T E M
n,3 7.0 21.0 34.6 18.6 43.6 65.8 69.9 96.6 99.8 47.1 83.8 96.6

T E M
n,4 7.7 24.8 41.3 15.7 39.0 60.5 65.8 95.9 99.7 40.4 79.0 95.0

T E M
n,5 7.7 26.3 44.6 14.7 41.6 64.0 63.6 96.8 99.9 36.3 77.0 94.3

Tn,1 2.2 2.6 3.8 19.3 39.3 59.0 74.0 94.2 99.1 16.2 25.1 32.5

Tn,2 11.6 24.2 34.9 17.7 34.5 53.4 65.1 91.6 98.8 60.0 91.9 98.7

Tn,3 11.6 28.7 45.3 27.8 60.0 81.5 78.6 98.4 100.0 52.7 86.7 97.6

Tn,4 12.1 32.1 49.4 25.9 59.1 82.3 86.9 99.7 100.0 46.8 83.1 96.5

Tn,5 11.7 35.7 56.5 20.5 54.2 78.7 81.8 99.5 100.0 40.8 79.4 95.6

T 2
n, j̃

13.3 20.6 31.5 17.0 29.0 44.8 56.4 84.0 95.7 33.7 56.7 76.4

Notes:
1. The entries are rejection frequencies in percentage; the nominal size is 5%.
2. The parameters for the proposed tests are the same as those in Table 1.
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Table 3: Power simulations: Testing model linearity.

NLAR STAR TAR-2 SGN

Test n=100 200 300 100 200 300 100 200 300 100 200 300

CvMn 34.5 63.2 82.0 28.7 60.0 82.2 10.0 15.6 24.2 18.2 24.0 35.1

KSn 34.8 63.3 83.3 28.2 59.4 82.3 9.8 18.1 32.1 23.9 51.7 81.2

Tn,1 37.0 65.3 85.0 34.7 66.3 85.8 2.8 3.0 3.3 4.3 4.8 7.3

Tn,2 20.5 50.8 72.1 17.4 47.8 72.9 17.2 64.3 92.7 71.6 99.3 100.0

Tn,3 21.2 53.7 78.0 26.9 73.1 92.9 27.5 69.7 93.1 71.6 99.0 100.0

Tn,4 17.1 50.3 74.2 23.8 69.1 91.6 86.4 99.9 100.0 94.8 100.0 100.0

Tn,5 14.7 44.7 70.4 18.6 61.5 88.9 82.2 99.7 100.0 92.8 99.9 100.0

T 2
n, j̃

18.3 32.0 48.8 16.9 32.7 53.2 62.6 89.9 98.7 74.1 97.2 99.8

NOTE:
1. The entries are rejection frequencies in percentage; the nominal size is 5%.
2. The parameters for the proposed tests are the same as those in Table 1.
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